
Fast Failure Detection in a Process Group

Xinjie Li and Monica Brockmeyer∗

Department of Computer Science
Wayne State University, Detroit, MI 48202

Fax: +1-313-577-6868
{xinjieli, mbrockmeyer}@wayne.edu

Abstract

Failure detectors represent a very important building
block in distributed applications. The speed and the ac-
curacy of the failure detectors is critical to the performance
of the applications built on them. In a common implementa-
tion of failure detector based on heartbeats, there is a trade-
off between speed and accuracy so it is difficult to be both
fast and accurate. Based on the observation that in many
distributed applications, one process takes a special role as
the leader, we propose a Fast Failure Detection (FFD) al-
gorithm that detects the failure of the leader both fast and
accurately. Taking advantage of spatial multiple timeouts,
FFD detects the failure of the leader within a time period
of just a little more than one heartbeat interval, making
it almost the fastest detection algorithm possible based on
heartbeat messages. FFD could be used stand alone in a
static configuration where the leader process is fixed at one
site. In a dynamic setting, where the role of leader has to
be assumed by another site if the current leader fails, FFD
could be used in collaboration with a leader election algo-
rithm to speed up the process of electing a new leader.

1 Introduction

The notion of failure detectors has played an very im-
portant role in the theoretic work of distributed systems in-
volving a group of processes. The study of failure detectors
started as a response to the famous impossibility result of
consensus in a asynchronous distributed system with unre-
liable networks [8]. It is well known that in a asynchronous
distributed system with unreliable networks, it is impossi-
ble to distinguish a slow process from a crashed process so
it is impossible to reach consensus across a process group
[8]. To work around the impossibility result, one thought

∗This material is based upon work supported by the National Science
Foundation under grant CAREER-0347222.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

is to augment the asynchrony model with a failure detec-
tor satisfying certain properties such that consensus could
be reached. A failure detector is a distributed oracle out-
putting the trusted or suspected remote peers at local pro-
cesses. Chandra and Toueg [5] first classified failure detec-
tors by two properties, completeness and accuracy. Com-
pleteness characterizes the ability on detecting failures. Ac-
curacy characterizes the ability of not mistakenly suspecting
correct processes. Different classes of failure detectors are
defined according to the level of completeness and accuracy
they provide. They also proved that the weakest failure de-
tector to be able to solve consensus problem is the class of
eventually weak detectors, denoted �W . The �W satisfies
two conditions, weak completeness, which means eventu-
ally every crashed process is suspected by some process;
and eventual weak accuracy, which means eventually some
correct process is never suspected by any process.

Failure detectors are both a powerful abstraction to aug-
ment the asynchronous model and also a useful building
block in solving real world problems. However, complete-
ness and accuracy can not both be deterministically satisfied
in an asynchronous system [5]. Notice that completeness on
its own is not very useful, as the detector can stratify com-
pleteness simply by suspecting every process. So it is es-
sential that both properties be satisfied. Chandra and Toeug
[5] propose a partial synchrony model under which �W is
implementable. In this partial synchrony model, the timing
attributes (maximum message delay) are bounded, but the
bounds are unknown and hold only after an unknown stabi-
lization interval. While failure detectors are implementable
in partial synchronous model, we notice that the accuracy
property only holds eventually, as the stabilization time is
unknown and the bounds on the message delay is also un-
known. Chandra and Toueg also propose another failure de-
tector, the Ω failure detector in [4]. The Ω failure detector
has the property that eventually all correct processes trust
the same correct process. It is also shown in [4] that Ω and
�W are reducible to each other.

The Ω is of special interest to us in this paper because

it is also seen as a leader election algorithm, as eventually
it outputs the same trusted leader at every process. We will
use Ω and term leader election algorithm interchangeably.

Though there is no restriction on how to implement fail-
ure detectors, almost all implementations use timeouts. By
letting the monitored process sending out heartbeat mes-
sages, other processes could detect the failure from the
missing of timeouts. In partially synchronous systems, the
timeout usually starts out with a small value and adaptively
increases on receiving a late arriving heartbeat messages
from a suspected process.

In practice, however, the message delay is hard to bound.
Measurement of round trip delays over [14] the Internet
has demonstrated that there is a large temporal variation in
round-trip time and the distribution has a long tail on the
right hand side. This means even a very large timeout value
might not be large enough. On the other hand, if the perfor-
mance requirements of an application puts restrictions on
the timeout value, the accuracy guarantee of failure detec-
tion becomes probabilistic.

If a failure detector could make mistakes at any time, the
application would want to know and have requirements on
the speed and accuracy of the failure detector. Intuitively
there is a tension between speed and accuracy in timeout
based failure detectors, suspecting upon multiple or longer
timeout will increase the accuracy at the cost of slower de-
tection. Chen et al. [6] conducted the first quantitative study
on the Quality of Service (QoS) of pair-wise failure detec-
tors and proposed a set of QoS metrics.

In many distributed applications, different processes take
vastly differently roles. Quite often, one process is more im-
portant than the rest and takes the leader role. We say that
such applications are asymmetric. This paper proposes a
new algorithm, Fast Failure Detection (FFD) to improve the
QoS of distributed failure detection of the leader in asym-
metric applications. The basic idea is that if multiple moni-
tor all timed out on the leader, then the accuracy in suspect-
ing the leader is much higher. We call this scheme spatial
multiple timeouts. In the traditional point-to-point failure
detectors, since one timeout is usually not accurate enough,
the monitor process usually suspects the monitored process
after multiple consecutive timeouts. We refer to this scheme
as temporal multiple timeouts. Since the metrics proposed
in the point-to-point settings [6] do not fit perfectly in the
group settings, we will simply define accuracy and speed as
the metrics on the detection of the leader process. FFD is
fast, as it detects the failure of the leader within a time pe-
riod of just a little more than one heartbeat interval (Propo-
sition 4.2). It is also highly accurate due to multiple in-
dependent timeouts. FFD is also communication efficient,
requiring that only n−1 links are permanently active. Note
that FFD is not a failure detector because it is not a dis-
tributed oracle that outputs at every local process. However

we will see that it naturally complements a failure detector
algorithms and increases the performance of the latter.

Now look at some example applications of FFD. As the
first example, consider a distributed service replicated us-
ing primary-backup scheme. Here the leader role is manu-
ally assigned to a process. FFD could be used on its own
to detect the failure of the primary server much faster than
traditional detection algorithms.

As the second example, consider an distributed, repli-
cated data storage service running over Internet. The replica
processes could crash and the Internet could lose messages
or delay messages for an extended period of time. The data
storage system needs to maintain data consistency and tol-
erate any number of process crash failures. For example,
Lamport’s Paxos [11, 12] algorithm addresses this problem
by having one leader propose and enforce the agreed on or-
der of command on all replicas. Paxos could be built us-
ing a Ω [3]. In dynamic environments, FFD has to work
in collaboration with a leader election algorithm. A leader
election algorithm uses its own timeouts to monitor the cur-
rent leader. However, FFD usually detects the failure much
faster and prompts the leader election algorithm to select a
new leader. On the other hand, FFD depends on the leader
election algorithm to tell it what the current trusted leader
is.

The rest of the paper is organized as follows. Section
2 briefly summarizes related work in this area. Section 3
describes the system model. Section 4 introduces our fast
failure detection algorithm and gives proofs on its perfor-
mance. Section 5 shows the application of FFD to leader
election algorithms. Section 6 discusses the issues on the
assumptions we make. Finally, Section 7 concludes the pa-
per.

2 Related Work

Chandra and Toueg [5] first formally classified failure
detectors by completeness and accuracy. The classification
was mainly to capture the synchrony requirements on the
system in order to solve the consensus problem. They also
give a reference implementation of failure detection based
on heartbeat messages [5]. In heartbeat method, process p
sends a heartbeat message to q at regular time interval; q
trusts p when q receives the message and starts a timeout
timer; q suspects p if the timer expires before a new heart-
beat from p is received. The heartbeats method is simple
and it guarantee s completeness. The fully distributed heart-
beats method is not scalable as it results in O(n2) periodic
heartbeat messages.

Previous research addressed the efficiency in implement-
ing failure detectors. [1, 2, 13] give implementations of Ω
that require only n − 1 channels that permanently carry pe-
riodic messages.

The aforementioned work were all based on the partial
synchrony models. In the asynchronous network model, no
failure detector could be accurate [5]. As a result, the appli-
cation can only demand a probabilistic accuracy. Usually,
an application also has requirements on the speed of failure
detectors. It is easily seen that there is a tradeoff between
speed and accuracy. In order to get a higher accuracy, usu-
ally a process is suspected only after several consecutive
timeouts instead of one.

In the traditional timeout based failure detectors, a timer
is restarted upon receiving a heartbeat. The deficiency in
this scheme is that the probability of timing out on a mes-
sage depends not only on the delay of that message, but
also on the delay of the previous message. Chen et al. [6]
propose a modified heartbeat method, called the “freshness
points” scheme. In freshness points scheme, the monitored
process p sends heartbeat message mi at time σ′

is, separated
by fixed interval η; and the detecting process q will, at fixed
freshness points τi = σi + δ, check if it has received mj

with j ≥ i. If it has not, it suspects the monitored pro-
cess. We will borrow the “freshness points” scheme in our
paper. This scheme requires synchronized clocks, which is
not unreasonable. For example, GPS could provide highly
precise clocks [15]. When synchronized clock is not as-
sumed, Chen et al. [6] show how past message arrival times
could be used to estimate the freshness points. Chen et al.
also conduct the first quantitative study on QoS of failure
detectors in the same paper [6]. Their work is restricted to
pair-wise failure detectors.

The first work on distributed failure detectors is due to
Gupta, et al. [9]. They propose a randomized distributed
failure detector with low total message load on the system.
They also take advantage of spatial multiple timeouts as a
tool to increase the accuracy of the failure detector. This pa-
per differs from [9] in the following aspects: this research
develops a low cost protocol especially tailored for asym-
metric configurations while [9] targets a symmetric configu-
ration; our algorithm is deterministic and guarantee s a strict
upper bound on detection time of failure while the algorithm
in [9] is randomized and guarantee s a upper bound only on
the expected detection time.

The term fast failure detector (FastFD) was introduced
in [10], referring to failure detectors build upon expedited
messages. Our algorithm does not need special expedited
messaging support.

3 System Model

We consider a group of processes, Π, of size n, collabo-
rating over a wide area network. Each member in the group
is uniquely identified by its id. The knowledge of all mem-
ber ids are known to each node a priori. This assumption
is convenient for analysis but does not limit the scope of the

application of our algorithm only to static configurations.
In practice, dynamic membership could be supported by in-
voking a distributed consensus on the new member compo-
sition, as done in Paxos [11].

In our network model, a message is either lost with prob-
ability pL or delivered within tlat. We do not model the
message latency distribution. We will show in Section 6.1
that our simple model suffices.

Since we borrow the “freshness point” method in heart-
beating from [6], we make the same assumption that the
clocks are synchronized. Though not an impractical as-
sumption by itself, we could always use the same method-
ology as in [6] when this assumption is not met.

The system imposes a constraint on the smallest possible
interval between two consecutive heartbeat messages, titv ,
usually on the order of seconds or tens of seconds. Set-
ting titv too low is impractical because first it will take up
too much processing power and network bandwidth; and
second, temporally close messages tend to be highly corre-
lated, providing little new information. Heartbeat messages
separated temporally more than titv are assumed to be in-
dependent.

The typical message latency tlat, which is usually on the
order of tens or hundreds of milliseconds, is much smaller
than titv (tlat � titv). If a message is delayed for too long,
it will be effectively considered lost by the freshness point
scheme at the receiving process. The message round trip
time, trtt, equals 2 ∗ tlat.

Following the freshness point scheme, the monitored
process sends one heartbeat every titv (σi = i ∗ titv). On
the monitoring process, it defers the freshness point by a
detection delay δ, which is to say τi = σi + δ. Under the
point-to-point setting that one single process is monitoring
another process, the length of δ determines how accurate the
detection is. Roughly, if δ is as long as m∗tint +tlat, it will
accommodate m heartbeat delay or loss, and the probability
that all of them lost is pm

L . The smallest value δ can assume
is tlat, corresponding to m = 0. To have high accuracy
in the point-to-point setting, m has to be fairly large. For
example, if pL = 0.1 and we want the detection accuracy
be 0.99999, m has to be at least 5. When the value of δ is
large, we will use another symbol ∆ to denote it.

4 The Fast Failure Detection Algorithm

In distributed applications, quite often the protocol is
based on a special leader process and a number of partic-
ipants. The Paxos [11] algorithm described in Section 1 is
one example of many such applications. In such applica-
tions, the current leader should be monitored so if fails, a
new leader could be elected. If the detection is slow, then
when the current leader fails, the system becomes either
unavailable or appears slow to the clients; if the detection

keeps making mistakes, the system falls into an unstable
state as it will keep electing new leaders.

In the algorithm, we call the process that is monitored
the watched process, or simply the watched, and monitor-
ing process monitors. In the static settings, the watched will
always be the leader process. In the dynamic settings, the
watched is set to be currently believed leader due to a leader
election algorithm. Since the leader elections could make
mistakes, the watched will be the same as the real leader
only when the leader election algorithm stops making mis-
takes and stabilizes on one leader.

Inspired by the application requirement notion in [9], we
define the following QoS metrics on FFD:

FAILURE DETECTION ACCURACY The probability
of mistakenly detecting a non-faulty watched process
as faulty is at most Pm.

FAILURE DETECTION SPEED The failure of the
watched is detected, subjected to the accuracy
requirement Pm, within Tdetect(Pm) seconds.

The algorithm is shown in two parts. Figure 1 lists func-
tion definitions, and the task watched. Figure 2 shows
the main monitor task monitor and another transient task
collectVotes.

Among the monitors, the one with smallest id is said
to be the primary monitor. The watched sends heartbeats
(WATCHED-OKmessages) to all other processes (Line 26 of
Figure 1). The heartbeat messages contain a sequence num-
ber and the ids of all processes it believes to be its current
monitors. Upon receiving a heartbeat, a monitor will record
the information of the current peer monitors (Line 15 of Fig-
ure 2). From this information, the primary monitor could be
self determined when necessary (Line 6 of Figure 2).

Upon the first timeout, the primary monitor asks the rest
of the monitors if they also timed out on the same heartbeat
(Line 8 of Figure 2). If all responses are positive, it will
suspect the current watched process and report to the upper
layer about this suspicion and the number of timeouts it has
collected (The collectVotes task starting at Line 29
of Figure 2).

The upper layer has the ultimate decision on whether to
suspect the current leader and ask the leader election algo-
rithm to elect a new leader. The number of timeouts (k)
provides the information for the upper layer to calculate the
(in)accuracy probability of the detection, for example, by
using the equation Pm = pk

L since we assume independence
of message loss. Notice the report of a leader failure is a
suggestion, due to the probabilistic nature of the detection.

Any other deterministic function suffices.
If message loss is not independent, then a different equation which

makes use of the correlation information between message loss could be
employed if the correlation is known.

Some details are omitted in the algorithm for clarity of
presentation. For example, when the primary monitor is
collecting vote, a delayed vote for a previous ballot should
not be confused as a new vote for this ballot. This could be
easily accomplished by adding a nonce or timestamp to the
messages.

We prove two propositions showing that to meet the
same accuracy requirement, FFD is much faster in detecting
leader failures, by comparing its lower bound on detection
time with that of the traditional algorithm based on temporal
multiple timeouts.

Proposition 4.1 To bound inaccuracy to be below Pm, the
traditional temporal multiple timeouts scheme takes a time
of at least

T = titv ∗ log(Pm)
log(pL)

.

Proof Within T seconds, let m be the number of heartbeat
messages sent. The probability that all of them are lost is
pm

L . According to the accuracy requirement, pm
L ≤ Pm, so

m ≥ log(Pm)
log(pL) . Given that the heartbeats must be separated

by titv , the lower bound on the time of detection is titv ∗
log(Pm)
log(pL) .

Proposition 4.2 If the size of the correct processes n >

m + 1, where m = � log(Pm)
log(pL) �, then the new algorithm

achieves Pm within titv + tlat + trtt ≈ titv if no messages
are lost.

Proof The worst case is that the leader fails just after send-
ing one heartbeat. The primary monitor detects this within
time length titv +tlat and takes another trtt to collect votes.
With the assumption that messages sent to different moni-
tors are independent, to bound the inaccuracy to be below
Pm, at least m = log(Pm)

log(pL) number of independent time-
outs are needed. Under a failure-free run, a group size of
n > m + 1 will provide the needed number of independent
timeouts. Since tlat < trtt � titv , titv + tlat + trtt ≈ titv .

We use an example to illustrate the speed-up of the new
algorithm. Suppose that Pm = 0.00001, tint = 10s,
pL = 0.1, and the group size is greater than 6. From Propo-
sition 4.1, the time required for failure detection is at least
50 seconds for a detector based on temporal multiple time-
outs. From Proposition 4.2, it takes only slightly more than
10 seconds for the new algorithm while achieving the same
accuracy. Also notice that the accuracy of the new algo-
rithm gets better when the group size grows.

5 Application of FFD to the leader election
algorithms

This section shows how the FFD algorithm works to-
gether with a leader election algorithm, or Ω. To be precise,

/* variables used by both the watched task and the monitor task */
watched = ⊥ // set externally to be the currently trusted leader1

/* variables used by the watched task */
V = Π // V is the current view of the group at the watched2

/* variables used by the monitor task */
missed = false // Did I missed the latest heartbeat from the watched3

monitoring=false // set after receiving first heartbeat from the watched4

peerMonitors = {p} // my peer monitors5

/* function definitions */
function OnSetNewLeader (newLeader)// called externally77

if watched != newLeader then8

abort collectVote // always safe to abort a task that is not running9

watched = newLeader10

missed = false11

monitoring = false // till receivs the first WATCHED-OK12

peerMonitors = {p}13

end14

end function15

for each process p: costart watched, monitor16

task watched17

on every time instant τ ′
i = ∆ + i ∗ titv1919

/* use a big delay ∆ to accommodate several MONITOR-OK message loss or
delays from the monitors */

if p == watched then20

Q = {q | no MONITOR-OK from q for heartbeat j ≥ i is received }21

T = Π − Q // T is the set from which fresh heartbeat is received22

V = (V ∪ T) − Q // update the current view on live processes23

end24

on every time instant σi = i ∗ tint2626

send mi =(WATCHED-OK, p, i, V) to all processes in V27

endtask28

Figure 1. The FFD algorithm, part 1: the shared routine and the watched task.

task monitor1

on every time instant τi = tlat + i ∗ titv2

if monitoring AND did not receive (WATCHED-OK, q, j, K) from watched with j ≥ i then3

missed = true4

if p is the smallest among peerMonitors then66

send (DID-YOU-MISS-TOO, p, watched) to all in peerMonitors88

start task collectVotes9

end10

else11

// received fresh WATCHED-OK message from the watched process
monitoring = true12

missed = false13

peerMonitors = K1515

end16

on every time instant σi = i ∗ titv17

send (MONITOR-OK, p, i) to watched // Ping the watched so it can update its view18

upon receive(DID-YOU-MISS-TOO, primaryMon, suspected)19

if monitoring AND watched == suspected then20

if missed then21

send (I-MISSED-TOO, p, suspected) to primaryMon22

else23

send (I-DIDNOT-MISS, p, suspected) to primaryMon24

end25

end26

endtask27

task collectVotes2929

/tcpan ephemeral task with no loops miss-count = 130

restart timer t131

upon (t1 > 2 ∗ trtt) // wait long enough s.t. normal replies will arrive32

Report (SUSPECT, p, watched, miss-count)3434

upon receive (I-MISSED-TOO, voter, suspected)35

if suspected == watched then36

miss-count = miss-count + 137

end38

upon receive(I-DIDNOT-MISS,voter, suspected) // dismiss the suspicion39

if suspected == watched then40

missed = false41

abort collectVotes42

end43

endtask44

Figure 2. The FFD algorithm, part 2: the monitor task and the collectVotes task

under the asynchronous model, no Ω implementation could
maintain the semantics of eventual correctness. For conve-
nience of presentation, and with a slight abuse of terminol-
ogy, we will still call such implementations Ω, knowing that
it no longer has the eventual correctness semantics.

We first show an example of an existing leader election
algorithm in Figure 3, then we show how to modify it to
work under the asynchronous system model and how FFD
works together with it.

This following leader election algorithm in Figure 3 is
taken from [1] by Aguilera et al. It is a leader election al-
gorithm, or in other words, an implementation of Ω. The
synchrony requirement in [1] is even weaker than the par-
tial synchrony model proposed by Chandra and Toueg. The
synchrony requirements in [1] are that there is one process
whose outgoing channels are eventually timely, with mes-
sage delay bound α. All other channels could be lossy or
untimely. As we pointed out before, the bound α, like any
bounds on the message delay in a partial synchrony model,
is usually big. The timeout value is 2α because the temporal
gap between two consecutive heartbeats could be as long as
2α. For a formal correctness proof, please see [1].

Under the asynchronous and probabilistic network
model, we have to modify the leader election algorithm.
First of all, the timeout (in Line 26, Figure 3) will no longer
be accurate as there will no bound on the message delay.
The timeout could now be due to message loss or extended
delay, both of which captured by the pL in our model.

We modify the leader election algorithm to work to-
gether with FFD. To be consistent, we also modify it to use
the freshness point heartbeating scheme. The modified al-
gorithm is shown in Figure 4. The leader/candidate sends
one heartbeat on every titv , at time points σi = i ∗ titv . To
increase the accuracy the detection, the detection freshness
point is delayed from σi extendedly, i.e., τi = σi + ∆. As
before, ∆ = m∗titv +tlat, where m is the number of heart-
beat delay or loss the detector want to accommodate. Also,
since the detection is distributed, any process could (mis-
takenly) timeout the current leader and advance to the next
round, effectively demoting it. The bigger the group size is,
the more likely some member will mistakenly timeout the
current leader. So we have to increase the detection timer
even more to counter this distributed “amplification” effect.

Besides adopting the freshness points detection scheme,
a few more changes are needed. First, the leader should be
also suspected when the FFD algorithm suspects it (Line 29
in Figure 4). Second, when a new leader is elected, the FFD
should be notified about this change (Line 8 and Line 25 in
Figure 4).

Under the asynchronous network model, the leader elec-
tion algorithm, or Ω, could make mistakes at any time. The
correctness of it could only be described in probabilistic
fashion. When all the channels become very untimely such

that the timeouts are often premature, there is little guaran-
tee from the algorithm. Fortunately, many real world sys-
tems usually alternate between long “stable” periods, when
the channels are timely, and short “unstable” periods, when
some channels are not timely [7]. So we will consider the
typical situation, that is when the system is stable and has a
correct leader. Under this situation, when the leader fails,
the FFD algorithm detects the failure much faster, com-
pared to the traditional temporal multiple timeout detection.
When FFD detects the failure, it prompts the leader election
algorithm to elect a new leader. So overall, a new leader is
elected much faster than the traditional leader election algo-
rithm.

When under the same synchrony assumptions are made
as in [1] for the algorithm in Figure 3, the correctness proof
of the modified algorithm in Figure 4 is essentially the same
as in [1].

6 Discussion

This section discusses the issues connected with the two
assumptions we make, the adoption of a simplified network
model where message latency is not modeled in detail, and
the assumption on the independence of heartbeats sent to
different monitors.

6.1 Justification for our simplified net-
work model

In our network model, a message is either lost with prob-
ability pL or delivered within tlat. Alternatively, one could
use a more detailed model [6] where a message is either lost
with probability pL or takes a random length of time to ar-
rive, such that the distribution of the latency is known or at
least its mean and variance are known.

Given a set of prescribed requirements on the failure de-
tector, the knowledge on the distribution of message latency
would appear to be helpful in calculating the parameters
such as heartbeat interval (η) and detection delay (δ). How-
ever, it is not obvious how helpful this information would
be. We use an example to demonstrate that the results cal-
culated from the simplified model and the detailed model
are essentially the same, so a detailed model is not neces-
sary.

Let us look at one example based on one in [6]. Given the
requirements on the detection speed of 30s, and the require-
ments on the other two QoS metrics defined in [6], and un-
der the assumption that message loss probability pL = 0.01
and that message delay is exponentially distributed with

The set of metrics defined in [6] is different from those in this paper.
They are detection speed, mistake duration bound, and mistake recurrence
lower bound in [6].

Code for each process p :1

function StartRound (s) // executed upon start of new round2

if p != s mod n then3

send (START, s) to all // bring all to new round4

r = s // update current round5

leader = ⊥ // demote previous leader but do not elect leader yet6

restart timer7

end8

on initialization:9

StartRound (0)10

costart 0 and 111

task 012

loop forever /* the leader/candidate sends OK every α time */13

if p == r mod n AND have not sent (OK, r) within α then14

send (OK, r) to all15

end16

endtask17

task 118

upon receive (OK, k) with k = r do // current leader/candidate is active19

if leader = ⊥ AND received at least two (OK, k) messages then20

leader = k mode n // now elect leader2222

restart timer23

end24

upon timer > 2α do // timeout on current leader/candidate2626

StartRound (r +1) // start next round27

upon receive (OK,k) or (START , k) with k > r do28

StartRound (k) // jump to round k29

upon receive (OK,k) or (START , k) from q with k < r do30

send(START,r) to q // update process in old round31

endtask32

Figure 3. The stable leader election algorithm by Aguilera et al. [1]. (Figure 3 in [1])

Code for each process p :1

function StartRound (s) // executed upon start of new round2

if p != s mod n then3

send (START, s) to all // bring all to new round4

r = s // update current round5

leader = ⊥ // demote previous leader but do not elect leader yet6

Invoke OnSetNewLeader(⊥) in FFD88

end9

on initialization:10

StartRound (0)11

costart 0 and 112

task 013

on every time instant σi = i ∗ tint14

if p == r mod n then15

send mi = (OK, i, r) to all16

end17

endtask18

task 119

on every time instant τi = ∆ + i ∗ titv20

/* use a big delay ∆ to accommodate several OK message loss or delays from
the leader/candidate */

if has received (OK, j, k) with k = r and j >= i then21

// current leader/candidate is active
if leader = ⊥ then22

leader = k mode n // now elect leader23

Invoke OnSetNewLeader(leader) in FFD2525

end26

end27

upon the call of Report(SUSPECT, p, q, miss-count) AND q = leader AND miss-count is big enough. // the2929

FFD algorithm reports a suspicion
StartRound (r +1)30

upon receive (OK,j, k) or (START , k) with k > r do31

StartRound (k) // jump to round k32

upon receive (OK,j,k) or (START , k) from q with k < r do33

send(START,r) to q // update process in old round34

endtask35

Figure 4. The modified leader election algorithm.

mean 0.02s, the parameters calculated in [6] are: heart-
beats sent at 9.97s interval (η) and the detection delay (δ)
is 20.03s.

To evaluate the consequence of our simplified model,
we extend the analysis of [6] to show that similar results
are achieved under our simplified model. Under our sim-
plified model, we take the same message loss probability
pL = 0.01, to satisfy the same set of requirements, we cal-
culate the heartbeats interval as 9.9985s and detection delay
as 20.0015s, which are for all practical purposes the same
as those calculated from the more complex model.

Based on this typical example, we believe that our sim-
plified model is adequate. In general, the relationship be-
tween the more complex model and our simple model is as
following. The knowledge of the distribution in the com-
plex model could be used to calculate the probability that
a message arrive later than Tlat. All messages arrive later
than Tlat is considered lost and captured by the parameter
pL.

6.2 Discussion on the independence of
heartbeats to different monitors

We made a key assumption that if two heartbeat mes-
sages sent from the same server to two different monitors
are lost, then two things could have happened. The first pos-
sibility is that a failure occurs at the server (server crash) or
at the local network where the server resides (network ca-
ble unplugged or local router down). In this case, no partic-
ipant will receive the heartbeat. According our algorithm,
the server will be detected as failed and that is exactly what
we want. The second possibility is that the failure is not lo-
cal to the server. In this case, we assumed that the loss of
heartbeats is independent. This assumption is reasonable if
two messages take different network paths. We believe that
if the two monitors are widely dispersed, the two messages
will take two different paths. Large DHT networks built
over the Internet provides an ideal platform our protocol is
suited for because in DHT systems, two randomly selected
DHT ids have the property of being widely separated.

When the message paths are not entirely independent, we
could extend our model to include the correlations between
them. The correlation coefficients should be rather stable if
the paths taken are stable. Thus, these coefficients are likely
to be measurable.

7 Conclusion

This paper proposes a Fast Failure Detection (FFD) al-
gorithm using spatial multiple timeouts in a process group.
FFD detects the failure of the leader with high accuracy
upon missing the first heartbeat, the best we can do with
failure detection based on heartbeats. FFD could be used

alone in a static setting where the leader process is fixed or
manually reconfigured. FFD could also be used to improve
the performance of leader election algorithms in a dynamic
setting where different processes could assume the role of
the leader. All distributed applications based on a single
leader, such as Paxos, could benefit from the FFD to im-
prove their performance.

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Stable leader election. In DISC, pages 108–122,
2001.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing omega with weak reliability and
synchrony assumptions. In PODC, pages 306–314, 2003.

[3] R. Boichat, P. Dutta, S. Frlund, and R. Guerraoui. Decon-
structing paxos. SIGACT News, (1):47–67, 2003.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. In PODC ’92: Pro-
ceedings of the eleventh annual ACM symposium on Prin-
ciples of distributed computing, pages 147–158, New York,
NY, USA, 1992. ACM Press.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, 1996.

[6] W. Chen, S. Toueg, and M. K. Aguilera. On the qual-
ity of service of failure detectors. IEEE Trans. Comput.,
51(5):561–580, 2002.

[7] F. Cristian and C. Fetzer. The timed asynchronous dis-
tributed system model. IEEE Transactions on Parallel and
Distributed Systems, 10(6):642–657, 1999.

[8] M. Fischer, N. Lynch, and M. Patterson. Impossibility of
distributed consensus with one faulty process. Journal of
the ACM(JACM), pages 374–382, 1985.

[9] I. Gupta, T. Chandra, and G. Goldszmidt. On scalable and
efficient distributed failure detectors. In Proc. 20th Annual
ACM Symp. on Principles of Distributed Computing, page
170.

[10] J.-F. Hermant and G. L. Lann. Fast asynchronous uniform
consensus in real-time distributed systems. IEEE Trans.
Comput., 51(8):931–944, 2002.

[11] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, 1998.

[12] L. Lamport. Paxos made simple. SIGACT News, (4):18–25,
2001.

[13] M. Larrea, A. Fernandez, and S. Arevalo. Optimal imple-
mentation of the weakest failure detector for solving con-
sensus. srds, 00:52, 2000.

[14] V. Paxson, A. Adams, and M. Mathis. Experiences with
nimi. In First Passive and Active Measurement Workshop,
2000.

[15] P. Verssimo and M. Raynal. Time, clocks and temporal or-
der. Recent Advances in Distributed Systems, Chapter 1,
LNCS 1752, Springer-Verlag, 2000.

