
Dynamic Binary Translation and Optimization in a Whole-System Emulator -
- SkyEye

Chen Yu[1], Ren Jie[1] ,Zhu Hui[2] , and Shi Yuan Chun[1]

[1]Department of Computer Science and Technology
Tsinghua University, Beijing 100084, P.R.China

[2]Department of Computer Science and Technology
Beijing University of Aeronautics&Astronautics,

Beijing 100084, P.R.China
yuchen@tsinghua.edu.cn

Abstract

This paper presents the design of a high
performance whole-system emulator --- SkyEye.
Several optimization methods used in SkyEye are
proposed and analyzed. By using novel searching
strategy for Translated Block (TB), SkyEye save the
time to find proper translated block. SkyEye uses Basic
Equal Length Unit (B-ELU) method to implement
dynamic binary translation. The performance model of
B-ELU is built to get the best length of translated block.
In order to further reduce the switch time between
executing of translated block and searching for
translated block, adaptive block linking (ABL) method
is designed. Using these methods, SkyEye which
simulates ARM CPU based hardware system achieves
marvelous performance in experiments.

1. Introduction

Nowadays, binary translation and optimization
technologies have achieved a high profile, since there
are many famous projects such as the IBM DAISY
open-source project, QEMU open-source project,
Transmeta Crusoe, and HP Dynamo. Binary translation
has several attractive features: firstly, it makes
hardware one layer of software, thus guarantees the
easy implementation of complex legacy architecture(s)
through simple hardware and the introduction of novel
concepts without forcing any software changes.
Secondly, binary translation enables significant
software optimizations that would not be done with
hardware alone.

This paper introduces a high performance whole-
system hardware emulator –SkyEye [7], on which an

unmodified guest operating system (such as Linux,
uClinux, eCos, L4) and all related applications can run.
SkyEye itself runs on several host operating systems
such as Linux, Windows. Currently, SkyEye is capable
of simulating most ARM hardware platforms and
various peripheral devices, such as NIC, LCD, Flash
and UART. Compared with other similar emulators,
SkyEye has the following desirable features:
1) Speed optimization. This is beneficial for large-

size programs, because it usually takes too much
execution time to run these programs on
traditional emulators.

2) Flexible combination of hardware simulation.
SkyEye can combine different simulated
hardware device/CPU components to simulate a
whole hardware system.

3) Automatic detection of task switches and function
calls. This feature could provide detailed
information on energy consumption or
performance statistics for each functions in guest
operating systems.

4) Hardware statistic function: give statistics on the
usage of different SkyEye simulated hardware
components (such as Cache) which can provide
detailed information for computer architecture
researcher.

5) Support for voltage scaling, which enables the
energy estimation for those guest operating
systems that have dynamical power management

[8].

2. Related Researches

SimOS [1] is a MIPS based whole-system emulator.
The key part of SimOS is Embra[2] which can run large,
real-world programs and commercial operating

systems. Embra can handle self-modifying code and
can self-host. But the development of SimOS was
stopped.

The QEMU machine emulator and dynamic binary
translator [4] is an emulation project that was started by
Fabrice Bellard. It provides experimental implement-
ations for x86, ARM, SPARC and PowerPC source
machines running Linux. QEMU runs stably on x86
and PowerPC host machines, and has experimental
implementation for Alpha, SPARC, ARM, S390 and
IA-64. All of the machine dependent modules in
QEMU are written manually. QEMU translates all
source machine instructions instead of combining
interpretation with the dynamic translation of selected
traces.

DELI [3] is a descendant of the original Dynamo
dynamic optimization system. DELI is a runtime code
translation system that exports an interface for
customizing its behavior, which focuses on providing
caching and linking services for binary translators and
emulators. Its underlying platform is a special VLIW
embedded processor, and its primary goal is to support
ISA compatibility by flexibly emulating other
embedded processors.

The University of Queensland Dynamic Binary
Translator UQDBT [5] was an attempt to build a
complete dynamic binary translator from specification
files. The dynamic binary translator abstracts the
source machine instructions into a high-level
representation which is then translated into host
machine instructions.

The DAISY (Dynamically Architecture Instruction
Set from Yorktown) framework [6] is an experimental
dynamic binary translator developed at the IBM T. J.
Watson Research Center. As the target of their VLIW
compiler, DAISY proposes a simple VLIW
architecture that is a superset of features of common
existing machines and functions. Source machine
instructions are translated into VLIW instructions that
in turn are interpreted by a VLIW emulator.

3. System Architecture

This section presents the SkyEye architecture and
implementation of whole-system simulation. The main
goal of SkyEye is to run/debug/analyze guest operating
system on it. Figure 1 illustrates the architecture of
SkyEye. SkyEye is made of several components:

 CPU emulator (ARM, Blackfin, Coldfire,
MIPS)

 Device emulator (LCD, Net IC, Flash, UART,
Touch Screen, …)

 Dynamic Binary Translator/Tracer/Fixer
(dynamic translating target binary code and
optimizing translated host binary code)

 Debugger (debugging the OS on SkyEye in
source level with GDB)

 Power Analyzer (analyzing the Power/Energy
of Whole System consumption)

 Machine Configuration (according to the
Machine Configuration file to assemble the
simulated board-level hardware)

Figure 1 SkyEye Architucture

4.Translation Implementation and Optimi-
zation Technologies

4.1. Translation Implementation

SkyEye first parses the Machine Configuration file

(skyeye.conf) to get the hardware configuration. Then
SkyEye loads executable OS kernel files and file
system image that are estimated. After finishing the
loading process, SkyEye begins to execute the
instructions of OS and applications.

When SkyEye starts to emulate, it first analyzes the
operation code and address, then translates each target
CPU instruction into a few host instructions which
form Translated Block (TB). The detailed process on
dynamic binary translation and optimization will be
discussed in next section.

If SkyEye needs to estimate the Power/Energy
consumption in the whole hardware system, then
LDR/STR and other memory access instructions are
estimated by “SkyEye Device and Memory Energy
Model”, while other normal instructions are estimated
by “SkyEye Instruction Energy Model”. SkyEye
Symbol Table Component records the function names
and entry addresses. If PC register is equal to the entry
address of function, Function Call Check Component
is activated and detailed energy consumption
information for that function is recorded.

When SkyEye first encounters a piece of target CPU
codes, SkyEye Translator Component dynamic
translates the codes into translated block (TB). When
SkyEye use basic translating method, the length of
each target CPU codes is equal. Along with the
OS&applications running on SkyEye, the SkyEye
Tracer Component monitors the executive frequency of
TB, finds the hot spot, and combines several TBs in
hot spot executive path into a bigger Super TB
adaptively. SkyEye Fixer Component monitors the
self-modifying code, and invalidates corresponding TB
to guarantee the consistency. If a given TB is
invalidated too often because of write accesses, a
bitmap representing all the code inside the TB is built.
Each time CPU writing into that TB, SkyEye Fixer
Component will checks the bitmap to see if the code
really needs to be invalidated, so SkyEye Fixer
Component avoids invalidating the code parts in TB
when only data is modified in TB. In order to improve
the performance of SkyEye, we designed several new
methods in SkyEye Translator/Tracer/Fixer. The
sections below will show these details.

4.2. Performance Model of Translated Unit
Constructing

The general methods for translating and constructing

unit are Basic Block method and Trace method.
Because SkyEye emulates embedded RISC CPUs for
which each instruction has the same length, SkyEye
use another method — Basic Equal Length Unit
method (B-ELU Construction) to build the translated
unit. The B-ELU construction method dynamically
translates one piece of target code with the same length
each time, so it is much simpler than Basic Block or
Trace method, and the construction time for the
translated unit is less than that of the other two
methods. The key factor of B-ELU method is to choose
a suitable instruction length for translated unit.

There are four TB accessing modes in the process of
SkyEye B-ELU translation. Mode I: Query the recent
accessing record of TB, get the corresponding entry
address of TB; Mode II: Query the List/Hash Table of
translated block, get the corresponding entry address of
TB; Mode III: Query the List/Hash Table of translated
block, get the corresponding entry address of TB;
Mode IV: Translate block at the first time, get the
corresponding entry address of TB and update
List/Hash Table and recent accessing record. The
statistic notation of each mode access time is shown
below:

 IN : The accumulative time of TBA Mode I
 IIN : The accumulative time of TBA Mode II
 IIIN : The accumulative time of TBA Mode III
 .IV noN : The accumulative time of TBA Mode

IV without the time of self-modified
accessing

 .IV smN : The accumulative time of TBA Mode
IV with self-modified accessing

 IVN : + .IV noN .IV smN
 : The accumulative time of all TBAs allN

B-ELU method can split the Text (Code) Section

Space of user-level process or OS into N (N>=1)
equal length TBs. If the length of TB is very short,
SkyEye translator has to spend more time on switching
the execution of TB and the translating of TB,
and , , will decrease. But if we set the
length of TB to a very large value, some problems will
rise, and

allN IN IVN

IIN , IIIN will increase. Three main reasons are
shown below:

1. There may exist many accesses whose entry

addresses aren’t at the beginning or end of the

TB, so SkyEye Translator Component will spend
more time on partial translation of TB.

2. There may be several non-instructions in large
TB, so SkyEye Translator Component has to do
several unnecessary translations.

3. Large TB could include Text Section, Data
Section, BSS Section, so SkyEye Fixer
Component for self-modified code might make
wrong judgment, and do some unnecessary TB
re-translation.

In order to find the best Search strategy for TB, we

design and compare three different search strategies for
TB. The implementation of each strategy is shown in
Figure 2, Figure 3 and Figure 4. The primary concern
is how to reduce searching time of access address for
TB. The first strategy is to record the translated TB in a
list, and search the list every time. The second strategy
is to use hash table to replace list and use recent access
address record to store the last access address of TB.
The third strategy is to record all possible access
address in a translated TB and the last access address
of TB.

yes

begin

Judge translated ?

R etu rn T b access
address

S earch hash tab le

Re-translate， store
TB access address

in to list

Translate at the
first time， store
TB access address

in to list

yes

no

no

Figure 2 search strategy 1 for TB

The speed of each strategy is: Strategy 1 < Strategy
2 < Strategy 3. The memory space consumed by each
strategy is shown below:

 Strategy 1： 12* +16*(IN IIIN +) IVN

 Strategy 2： (8+8+TB_LEN)* IVN

 Strategy 3： (8+8+TB_LEN)* IVN

Update recnet
access record

begin

Judge translated?

Return TB access
address

Search recent access
record

Translate at the first
time，store all possible TB
access address into hash table

and update recent access record

yes

no

yes

no Search hash
table

Figure 3 search strategy 2 for TB

In order to find the suitable length of translated

block (TB), the -ELU performance model was
introduced. Some notations are presented first. The
first parts of notations are the number of different
process for TB; The second parts of notations are the
time of different process for TB.

M: The total number of TBA Modes, which
represents the switch of TB translation. TBA i means
type i of TB (i=1,2,3,4); M1: number of recent queries
for TB access address record; M2: the number of
query for chain list or hash table; M3: the number of
partially translation for TB; M4: the number of
complete translation for TB which isn’t because of
self-modified code; Msm: the number of complete
translation for TB which is because of self-modified
code.

TDBT: The accumulative time of dynamic translating
B-ELU; TT&Q: The accumulative time of translating &
querying in four TBA Modes; Ti: The accumulative
time of TBA mode i, （i=1,2,3,4）; 1T : The average

time of search recent access record; 2T :The average

time of search list or hash table; 3T : The average time

of partially translating TU; 4T : The average time of

complete translating TU; CPUT : The average time of

translating one target CPU instruction; : The
length(in byte) of TB; T

TUL
E: The accumulative executive

time of TB; TS: The accumulative switch time of TB;

ST :The average switch time of TB.

yes

U pdate recent
access record

begin

Judge translated?

R eturn TB access
address

Search recent access
record

Search hash table

Re-translate, store TB
access address in hash
table and update recent

access record

Translate in the first
time, store TB access
address in hash table and

update recent access record

yes

no

no

yes

no

Figure 4 search strategy 3 for TB

The main executive cycle of SkyEye includes:

Searching TB----Translating TB----Executing TB. So
we can get the total time of SkyEye’s dynamic binary
translation using the equation shown below:

&D B T T Q S ET T T= + + T (1)

& 1 2 3 4 . .() () (T Q I II III II III III IV no IV smT T N N N T N N T N T N N= × + + + × + + × + × +) (2)
4

1

() (S S SM S i SM
i

T T M M T M M
=

= × + = × +∑) (3)

According to equation(1)--(3), wc can get the B-
ELU performance equation:

1 2() (DBT I II III II IIIT T N N N T N N= × + + + × + +)
4

3 4 . .
1

() ()III IV no IV sm S i SM E
i

T N T N N T M M T
=

× + × + + × + +∑ (4)

The performance equation for the strategy 1 is:

2 3()DBT I II III IIIT T N N N T N= × + + + × +
4

4 . 4 .
1

()IV no IV sm S i SM E
i

T N T N T M M T
=

× + × + × + +∑ (5)

The performance equation for the strategy 2 is:

1 2() ()DBT I II III II III IIIT T N N N T N N T N= × + + + × + + × +3
4

4 . 4 .
1

()IV no IV sm S i SM E
i

T N T N T M M T
=

× + × + × + +∑ (6)

The performance equation for the strategy 3 is:

1 2 4() ()DBT I II III II III IV noT T N N N T N N T N= × + + + × + + × +

According to the equation (5), equation (6) and the

fact 2 1 ()I I II IIIT N T N N N× >> × + + , Strategy 2
searches the recent accessing address record in very
short time, therefore it doesn’t need to search the
relatively slow hash table every time and could obtain
better performance than strategy 1. According to the
equation (6) and (7), Strategy 3 saves the time 3 IIIT N× ,
so it get has a better performance than strategy 2.
In order to get the parameters in these equations, we
use GNU gprof to test uClinux+MiniGUI running on
SkyEye and estimate the times of the four TUA modes.
The result is shown in Table 1.

From the data in Table 1, we can calculate the value
of .() /I II III IV smN N N N+ + , which represents the average
utilization of TB. If the utilization of TB is the only
concern, then the longer TB is a better choice.
However it also shows the value of NIV.sm changes
dramatically when the length of TB is longer than
16KB. The reasons were already presented in Section
4.2.

We did several measurements by running uClinux
and MiniGUI applications on SkyEye, and get those
parameters in equations.

.

4

1

(S i SM
i

T M M
=

× + +∑

It shows that the search strategy 3 is SkyEye’s best
B-ELU search strategy. By assigning the parameters
with the above data,

4T becomes

4 (/ 4TUCPUT T L= ×) (8)
) ET (7)

Table 1 the experiment values of NI/ NII / NIII / NIV.no / NIV.sm / Nall

Length
of TB

NI NII NIII NIV.no NIV.sm Nall

4 26096887 0 0 53039 0 26149926

32 5451358 1589436 5006 8360 0 7054160

128 2726851 2752042 6372 2735 0 5488000

1024 1715849 2881449 7262 596 0 4605156

4096 1496608 3057402 7510 223 0 4561743

32768 1484681 3063538 7646 42 1 4555908

65536 1482669 3065527 7676 24 8 4555904

Because
1T and

2T is respectively two magnitude

smaller than
CPUT and

ST ,
1T and

2T could be ignored.
Therefore the equation 7 for strategy 3 can be
simplified as:

. .(/ 4) ()DBT E CPU TU IV no IV smT T T L N N− = × × + +
4

1

(S i
i

T M M
=

× +∑

Because the execution time of target CPU
instructions is irrelevant to the length of TB, ET could
be assumed as a constant. When the measured
parameters are assigned into equation (9), DBT ET T−
will be minimal with the length of TB in [256, 4096].
Therefore the best region of the length of TB is [256,
4096].

)SM
 (9)

Table 2 the measured parameters in equations (1)~(7)

T1 N1 T2 N2 T4 Length

of TB/4
N4 Ts N+NWB

1.06 26096887 0 0 0.023 1 53039 26.53 26149926

0.71 14676940 0.04 496755 0.19 2 27856 14.33 14704796

0.57 9564991 0.11 1207263 0.15 4 15073 9.63 9580064

0.48 5772217 0.16 2180475 0.14 16 4735 5.77 5776952

0.32 4902964 0.38 2732207 0.2 64 1613 5.05 4904577

0.27 4615278 0.36 2882779 0.26 128 971 4.86 4616249

0.27 4569921 0.25 3021458 0.25 512 359 4.92 4570280

0.20 4561520 0.17 3064912 0.33 1024 223 4.50 4561743

0.17 4561025 0.26 3065104 0.36 2048 128 4.94 4561153

0.18 4560619 0.17 3065565 0.53 4096 73 4.91 4560692

0.21 4555865 0.23 3071184 0.42 8192 43 4.56 4555908

0.17 4555872 0.28 3073203 0.75 16384 32 4.64 4555904

1T =5.25744x10^-8 2T =8.97373x10^-8 =1.64x10^-6 ST =1.02625x10^-6 CPUT

From the SkyEye B-ELU performance equation, we
can analyze the factors that affect the translation
performance. When we use B-ELU with best strategy
and Best Length of TB, the result is good. But we also
have detected that the time of switch time of TB
executing turns into the performance bottleneck of
SkyEye. There for, Adaptive Block Linking method is
used to solve the problem.

4.3. Adaptive Block Linking

When SkyEye sets 4096 Byte as the length of TB

and uses searching strategy 3 for TB, we have detected
that the switch time of TB executing became the
performance bottleneck. In order to reduce the switch
time, adaptive block linking (ABL) method is designed
and realized in SkyEye Tracer Component. ABL
method can reduce the switch time of TB and speed up
the execution. The process of ABL method is:

1. After each TB is executed, SkyEye Tracer

Component uses the simulated target CPU
Program Counter register and other information
of the simulated target CPU state to find the next
executing TB in hash table.

2. If the next executing TB has not been already
translated, SkyEye translator will dynamically
translate the next TB. Otherwise, if the current TB
and next TB doesn’t have self-modified indication,
then a direct jump at the end entry of the current
TB is made, and the hash table is updated.

3. If the current TB and next TB were linked by the
direct jump, they form a new bigger TB --- Super
TB.

4. When there are self-modifying actions in Super
TB, the first basic TB be modified will be found
in the Super TB and the Super TB will be divided
into several basic TBs. Finally, SkyEye Translator
Component re-translates the modified basic TB
and updates hash table.

5. Experiments and Results

The Experiment environment includes a PC with
2GHZ P4 CPU with 256MB memory. We run uClinux-
2.6.x+applications on SkyEye with different strategies
and different length of TB. We also have modified
QEMU-0.8.0 to run ARM Linux-2.6.x+applications
and test the performance of QEMU. Figure 5 compares
the performance of SkyEye using different methods
and QEMU. SkyEye and QEMU were compiled by

GCC-3.3 with CFLAGS=’-pg …’, then the
performance statistic data can be gathered by gprof.

From the data collected by gprof, SkyEye using B-
ELU with 4 bytes TU is about 1 times faster than
SkyEye using interpreting methods. If SkyEye chooses
4096 byes TU and searching strategy 3, it is about 6
times faster than SkyEye using interpreting methods. If
SkyEye adds ABL method to reduce the switch time, it
is about 10 times faster than SkyEye using interpreting
methods, and is also faster than QEMU. We also
noticed that SkyEye used almost all memory (196MB)
in PC for TB cache, but QEMU occupied about 64 MB
memories.

The experiment results show that SkyEye with B-
ELU (4096 bytes) + searching strategy 3 + ABL is
fastest. QEMU uses optimized methods including basic
block as TB, direct block chaining, condition code
optimization and register allocation. The performance
of QEMU was also very good.

6. Conclusions

In this paper, we present an implementation of an
emulator—SkyEye. SkyEye uses novel searching
strategy for translated block (TB) to reduce the search
time for TB. The performance equations of dynamic
binary translation were built and the best TB length
was calculated using measured parameters. The
adaptive block linking (ABL) method was designed to
delimit the unnecessary switch time of TB executing.
With the above strategy and methods, SkyEye got a
good performance in experiment The future work will
focus on designing the distributed SkyEye Tracer to
improve the performance of SkyEye further., designing
loop structure recognizer to optimize the loop structure
in target OS&Application. The debugger support on
SkyEye will be added to help developers to develop or
debug system software more easily.

Acknowledgments. This paper was supported by the
National High-Tech Research and Development Plan
of China (No.2003AA1Z2090), National Natural
Science Foundation of China (No. 60203024), and
Tsinghua University Research Found (No.JC2003021),
University. Doctorial Research Foundation,
No.20050003048.

The SkyEye distribution is available online under

GPL license. Please refer to the SkyEye home site for
more information about this project:
http://www.skyeye.org

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

interpreting

B-ELU with stratgy 1

B-ELU with stratgy 2

B-ELU with stratgy 3

B-ELU with stragty 3 and ABL

QEMU with all optimizaitons

Figure 5 the performance of translating&optimizing methods in SkyEye and QEMU
the value of X axis: the length of TB= 2^(x) using B-ELU in SkyEye
the value of Y axis: executing time (second)

7. References

[1] Rosenblum, M., Herrod, S., Witchel, E., AND

Gupta, A. 1995. The SimOS approach. IEEE
Parallel and Distributed Technology, 4(3), 34-43.

[2] Witchel, E., AND Rosenblum, M. 1996. Embra:
Fast and flexible machine simulation. In
Proceedings of the 1996 ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, 68-79.

[3] Desoli, G., Mateev, N., Duesterwald, E.,
Faraboschi, P., AND Fisher, J. A. 2002. DELI: A
new run-time control point. In Proceedings of the
35th International Symposium on Micro
architecture (MICRO '02), 257–268.

[4] David Ung and Cristina Cifuentes. Optimizing
Hot Paths in a Dynamic Binary Translation.
Workshop on Binary Translation, 2000. 38- 139

[5] Fabrice Bellard. The QEMU CPU Emulator, 2004.
http://fabrice.bellard.free.fr/qemu/.

[6] Kemal Ebcioglu and Erik R. Altman. DAISY:
Dynamic Compilation for 100% Architectural
Compatibility. In ISCA, pages 26–37, 1997. 41

[7] Chen Yu, etc., SkyEye Emulator,
http://www.skyeye.org

[8] Kang Shuo, Wang Hua yong, Chen Yu, “An

Energy-awared Simulator for Energy Co-
estimation in the Embedded System”, The 2004
International Conference on Embedded Software
and System, LNCS.,2004.10

http://fabrice.bellard.free.fr/qemu/
http://www.skyeye.org/

	1. Introduction
	2. Related Researches
	3. System Architecture
	4.Translation Implementation and Optimi-zation Technologies
	4.1. Translation Implementation
	4.2. Performance Model of Translated Unit Constructing
	4.3. Adaptive Block Linking

	5. Experiments and Results
	6. Conclusions
	7. References

