
Towards the Parallelization of Shot Detection - a Typical Video Mining Applica-
tion Study

Eric Li, Wenlong Li, Tao Wang, Nan Di, Carole Dulong, Yimin Zhang

Microprocessor Technology Lab

Intel Corporation
{eric.q.li, wenlong.li, tao.wang, nan.di, carole.dulong, yimin.zhang}@intel.com

ABSTRACT

As digital video data becomes more pervasive, mining
information from multimedia data becomes increasingly
important, e.g., extraction of goal events in soccer game
automatically from the video content. Though all of these
advances in multimedia mining have shown great potential
in daily life, the huge computational requirement prohibits
its wide use in practice. As computer architecture evolves
from uniprocessor to the era of multi-core processors,
accelerating the multimedia application by exploiting
thread level parallelism would be more promising to boost
performance and provide more functionality.

This paper presents three different parallel approaches,
i.e., task level, data slicing and hybrid parallel scheme, to
parallelize shot detection, a widely used application in the
video mining system. The hybrid scheme, with the explora-
tion of data level and task level parallelism, delivers much
better performance than the other two schemes. Besides,
we also employ several software optimization techniques,
e.g. data blocking and thread affinity, to improve the per-
formance by more than 50%. Experimental results indicate
that there are no obvious parallel limiting factors in the
hybrid parallel scheme. It scales well the increasing num-
ber of processors, and exhibits13.6x speedup on 16-way
processor system.

1. Introduction

Rapid advances in the technology of media capture and
storage have contributed to an amazing growth of digital
video content. As content generation and dissemination
grows explosively, how to help users efficiently search,
browse and manage multimedia contents becomes increas-
ingly important, such as video surveillance, detecting high-
light event detection, and mining digital home photos and
videos in huge volume [2, 9, 11]. These video mining ap-
plications are becoming more popular in daily life. How-
ever, though it provides a lot of functionalities, the large
input data and the underlying complex algorithm require

excessive computation than the commodity PC could af-
ford, e.g., it takes several hours to perform a task on a ten-
hour MPEG-2 video raw file.

As a reaction to this complexity, most modern micro-
processors are equipped with multithreading capabilities to
improve the performance of these applications. In 2002,
Intel introduced Hyper-threading technology, which en-
ables a processor to execute multiple threads simultane-
ously. After that, Intel extends Hyper-threading technol-
ogy to the Dual-core in these years. Current trends in proc-
essor technology indicate that the number of processor
cores in one IC chip will continue to grow, which is rea-
sonably to assume that the number of cores would follow
Moore's Law in future. These advances in personal com-
puters in addition to higher clock frequency provide the
necessary computation power for many multimedia appli-
cations. Therefore, exploiting thread level parallelism in
multimedia mining applications is critical to utilize the
hardware resource and accelerate the mining process [10].

In this paper, we analyze the parallel implementation of
a typical video mining application, i.e., shot detection, on
multiprocessor system, where several parallel schemes,
i.e., task level, data slicing and the hybrid parallel scheme
are explored in terms of parallel efficiency. By taking ad-
vantage of both data and task level parallelism, the hybrid
approach delivers the best performance. It first decom-
poses the input video data into several independent
chunks, and then uses task level parallelization on each
chunk of data.

The rest paper is organized as follows. Section 2 gives
an overview of the whole video mining system and par-
ticularly highlights the shot detection application. Section
3 presents all the candidate parallel schemes. The experi-
mental results and application characterizations are re-
ported in Section 4. Finally, Section 5 summarizes the
paper.

2. Overview of video mining system

Figure 1. Overview of the video mining system

Personal desktop multimedia mining aims to help users

to search, browse and manage their media contents on
desktop PC easily. The key components include low-level
feature extraction (visual, auditory, and textual features),
short boundary detection, scene/story segmentation, video
structural summary, high level semantic concept detection,
intelligent annotation, indexing and content based im-
age/video retrieval. In order to analyze video content se-
mantically, it is essential to fuse multi-modality informa-
tion to bridge the gap between human semantic concepts
and computer low-level features from both the video se-
quence and audio streams. Fig.1 shows a typical video
mining system framework, which often consists of three
layers. First, MPEG decoder decodes the input video into
visual, audio and motion streams. Then the shot boundary
detection determines the shot boundary according to gen-
eral features extracted from the visual streams, e.g., color
histogram, mean value and standard deviation of each
frame’s pixel intensities etc. A few key frames are selected
from each shot to represent the shot’s content. After the
key frames are ready, more complex features are extracted
from these key frames to detect the mid-level keywords by
multi-modality fusion, i.e. visual and audio keywords of
face, building, road, excited speech, music and explosion
etc. Finally, according to the mid-level keywords represen-
tation in time series, we can derive the high-level events,
e.g. highlights in sports video.

Similar to text mining based on parsing of word, sen-
tence, paragraph and whole document, parsing a video
often consists of four levels, i.e., frame, shot, scene and the
whole video sequence. To analyze the video content se-
mantically, shot boundary detection is a prerequisite step
[9]. In general, a shot is a set of video frames captured by a
single camera in one consecutive shoot action. According
to whether the transition between shots is abrupt or not, the
shot boundaries are categorized into cut and gradual transi-
tion (GT). According to the characteristics of different
editing effects, the GTs can be further classified into dis-

solve, wipe, and fade out/in etc. types [13]. In this paper,
we use shot detection algorithm from Tsinghua University
who achieved the best result in the world competition of
TRECVID 2004 and 2005 [13]. The cut detector uses 2nd
order derivatives of color histogram, flash light detector,
and GT filter. The GT detector uses the same features as
the cut detector plus motion vectors [7, 13].

Figure 2. Overview of the shot boundary detection

system

Fig.2 depicts the overview of the shot detection in the

video mining system. It has 48 bins color histogram in
RGB space and 16 bins for each channel. Pixel-wise dif-
ference feature, as a supplement to color histogram, is used
to represent the spatial information. To detect flashlight
effect and monochrome frame, the mean value and stan-
dard deviation of each frame’s pixel intensities are calcu-
lated, at the same time, abrupt change of illumination is
detected by tracking the variation of mean gray value. Be-
sides features from uncompressed domain, motion vectors
from compressed domain are also extracted to reflect the
global motion of a frame [13].

3. Parallel schemes

There are many approaches in parallelizing the shot de-
tection application by exploiting thread level parallelism.
In this section, we present our considerations in different
parallel schemes study and compare their parallel efficien-
cies in detail.

3.1. Parallelism study

The shot detection application can be partitioned into
three modules: video decoding, feature extraction, and shot
boundary detection. We use a MPEG-2 video decoder to
decode the input video stream into a number of consecu-
tive frames, followed by the feature extraction module to
extract a set of visual features from the decoded frames.
The process proceeds until the video decoder reaches the
tail of video stream. After that, all the visual features are
fed into the shot boundary detection module to compute
the final shots. The execution time breakdown indicates
that the video decoding and feature extraction module are

most time-consuming, constituting around 20% and 80%
of total time respectively. The ratio between these two
modules also varies with different data input, ranging from
1:5 to 1:3.5 on average. The shot boundary detection mod-
ule is extremely fast, therefore, is not considered in our
parallel framework.

To study the parallel scheme in this application, we use
the top-down analysis methodology to analyze the applica-
tion. In general, multimedia applications tend to use data
rather than functional parallelism to take advantage of its
embarrassing data parallelism. For video decoder, the
straightforward way is to exploit the parallelism at the
Group of Picture (GOP) or slice level [1, 6], while for fea-
ture extraction, the decoded frames are independent with
each other, and hereby, can be processed simultaneously.
Though the functional level parallel scheme is also inter-
esting, e.g., different functions, like IDCT, MC, VLD etc.
in video decoding, and different features serving as the
basic data processing unit, it suffers a lot from the load
imbalance among different threads and cannot provide
enough parallelism with a large processor number.

Though each module has abundant parallelism sepa-
rately, when they are put in the whole framework, the
overall parallel scheme will be reconsidered since the scal-
ability performance is often limited by the slowest scaling
module. In general, exploring parallelism within each
module separately cannot offer the maximal performance
benefit. In the following, we propose several candidate
parallel schemes to discover which one can provide the
best parallel performance.

3.2. Task level parallel scheme

The workflow of the shot detection application is very
similar to the producer-consumer model, where the video
decoder serves as a task producer to generate a sequence
of video frames, here we consider these video frames as
independent tasks, and they will be put into a shared
buffer. Then the feature extraction module reads in the
decoded frame from the buffer subsequently and extracts
the visual features for the final shot boundary detection.

This scheme perfectly matches the task queue model
provided by Intel OpenMP extension [5], which supports a
workqueue execution model with taskq and task constructs
to allow users to efficiently exploit parallelism among ir-
regular patterns and complicated control structures. Fig.3
depicts a basic OpenMP taskQ working model, when all
the threads encounter the taskq pragma, one is chosen to
initialize task queue, and then the code inside the taskq
block is executed single-threaded. When a task pragma is
encountered within a taskq block, the code inside the task
block is conceptually enqueued as a task and put in the
queue. All the other worker threads will wait to fetch a
task from the queue until task is available.

Figure 3. Execution model of task parallel scheme

Fig.4 shows the parallel sample code with OpenMP

taskQ primitives. In order to keep the dependency amongst
the adjacent decoded frames, we use an “ordered” pragma
to guarantee that the video decoder runs in the same order
as it executes sequentially.

#pragma intel omp parallel taskq ordered
{

// First phase: video decoding
#pragma intel omp ordered shared(frame)
frame = decoding_video();

// Second phase: feature extraction
#pragma intel omp task captureprivate(frame)
extract_feature(frame);

}
Figure 4. Sample code for the task level parallel

scheme

Besides the convenience of exploiting task level paral-

lelism with TaskQ, the associated dynamic scheduling
capability also enables achieving good load balance in the
parallel implementation. When the task queue is full, the
producer thread will turn into the worker thread, take out
one frame from the task queue and perform feature extrac-
tion. With the dynamic scheduling mechanism, the task
level parallel implementation dramatically overcomes the
load imbalance and increases the processor utilization.

Though the idea is conceptually straightforward, it has
several scaling limitations. Since the video decoder essen-
tially runs in serial, therefore, the maximal speedup of this
parallel scheme is determined by the ratio of feature ex-
traction and video decoding module. As previously men-
tioned, this ratio ranges from 5:1 to 3.5:1, indicating that
the maximal speedup is 5x according to Amdahl’s law.
Though we can further improve the scaling performance
by multithreading the video decoding module, e.g., using

the slice level parallelism in one picture to balance the
granularity and the parallel efficiency, previous works in
MPEG2 decoding parallelization with slice level parallel-
ism [3] indicates that only 1.6x speedup is obtained on a
dual-processor system, where the non-parallelizable serial
portion significantly degrades the scaling performance.
Another alternative solution is to exploit GOP level paral-
lelism, however, it has excessive memory requirement and
assumes the GOPs have no interdependencies [1], but this
assumption does not always hold for most MPEG-2 bit-
streams.

3.3. Data slicing parallel scheme

Since both slice and GOP parallel schemes cannot pro-
vide enough parallelism, we turn to explore higher level
data parallelism, e.g., partitioning the raw data into several
video bitstream chunks. Each thread performs the similar
routine as the serial application, decoding the chunk, and
extracting features from the decoded frames. Because the
raw video stream is split naturally, each thread has to find
the new sequence synchronization position. Furthermore,
each frame is marked with a time stamp to allow the syn-
chronization between two adjacent threads. The cost of
synchronization is light-weighted and has little impact on
the final scaling performance.

In the data slicing scheme, each thread executes the
whole work on the assigned segment, e.g. if there are to-
tally four threads and the video stream length is 200 mega-
bytes, each thread will operate on a 50M bytes data respec-
tively. This is a natural embarrassingly parallel scheme
with data statically assigned to each thread. Since the exe-
cution time of video decoding and feature extraction keeps
almost the same for the equal segmented chunk, there will
be very little load imbalance with moderate number of
video decoding threads. Apparently, this scheme is only
applicable for the offline mode, where the raw video data
is already available in disk, and can be accessed at any
position of the file.

In contrast to the task level parallelism, this parallel
scheme provides more concurrency without suffering from
the parallel limitation of one video decoder. However, it
also has some deficiencies. First, it works pretty well for
large data set, but cannot support enough threads with very
small video bitstream, since it may not even find the se-
quence synchronization code on such a small piece of data,
consequently, it has to traverse and decode the video
stream in serial. Second, with more video decoder and
sliced data, the parallel overhead increases dramatically.
The fine grained data are more likely to cause synchroni-
zation overhead and load imbalance among different
threads, and becomes more sensitive with the increase of
processor number. Finally, all the simultaneous video de-
coders may excessively use the shared resources, such as
bus bandwidth, which results in the performance loss of

the whole memory system. It particularly holds true for the
SMP system where several processors share only one bus.

3.4. Hybrid parallel scheme

To take advantage of both task level and data slicing
parallel scheme, we propose a hybrid parallelization ap-
proach to combine these two schemes together. At first, we
decompose the video stream into several chunks, then we
use the same task level scheme on each data chunk as il-
lustrated in Section 3.2. Fig.5 shows the OpenMP sample
code for the hybrid scheme.

// Specify the number of threads
int NumThrds;
// Specify the number of threads per group
int NumThrdsPerGrp;
// Compute the number of group
int GrpNum = NumThrds / NumThrdsPerGrp;
#pragma omp parallel for num_threads(GrpNum)
{
 for (int gid = 0; gid < GrpNum; gid++)
 {
 #pragma intel omp parallel taskq ordered
num_threads(NumThrdsPerGrp) shared(frame)
 {
 #pragma intel omp ordered
 frame = decoding_video();
 #pragma intel omp task captureprivate(frame)
 extract_feature(frame);
 }
 }
}

Figure 5. Sample code for the hybrid scheme

Obviously the hybrid scheme employs a nested parallel
model with two hierarchies, and the outer level classifies
the threads into different groups. Since nowadays a major-
ity of shared memory multiprocessor systems are using a
tree-like architecture hierarchy, e.g., a NUMA system con-
sists of several clusters, and each cluster may have a group
of processors sharing the last level cache (LLC) or local
memory. Meanwhile, the architecture research also indi-
cates that the future multi-core processor may adopt this
tree-like cache hierarchy. Our proposed hybrid parallel
scheme can well suit this particular tree-like memory hier-
archy system. Generally, we set the thread number in each
group to 2 to 4, equal to the number of processors in a
cluster when the system has cluster-wise topology. On the
other hand, the number does not exceed the maximal ratio
as mentioned before, to keep all the tasks busy within each
threads group.

It can be easily observed that the task level and data
slicing parallel schemes are the two extreme examples of

the hybrid parallel scheme. On one hand, it becomes the
task level parallel scheme when the number of group is set
to 1, on the other hand, it turns out to be the data slicing
parallel scheme when each group has only one thread. As a
result, the hybrid parallel approach is a good balance be-
tween the other two schemes, and flexibly adapt to the
particular parallel system in use.

In summary, the hybrid approach has several advan-
tages over the other two schemes. First, it dramatically
improves the scalability performance by manipulating
multiple task queues in parallel. Second, it shows lower
parallel overhead, load imbalance compared to the data
slicing scheme, and can be easily transformed to the task
level scheme for some extreme small video stream case.
Finally, the hybrid scheme offers more flexibility, highly
utilizes the system resource, and achieves the optimal scal-
ing performance. It allows the video stream to be parti-
tioned smartly to align with the target system, e.g. on a 4-
way hyper-threading enabled system, we can use 4 group
of threads and each group contains 2 threads to reuse the
data on a HT enabled processor, or alternatively, use 2
groups of threads and each group consists of 4 threads to
reduce the video decoding memory contention when it is
found to be memory bandwidth limited.

4. Performance characterization and analysis

This section examines the overall performance of par-
allel shot detection application. The measurements are
conducted on a 16-way Intel Xeon shared-memory multi-
processor system. It has 16 x86 processors running at
3.0GHz. Each processor is equipped with 8K L1 data
cache, 512KB L2 unified cache, 4MB L3 unified cache,
and each 4 processors share a 32MB L4 cache. As for the
interconnect, the system uses two 4x4 crossbars. The input
data are chosen from the TRECVID data suite [7] with
MPEG-2 video format.

We use OpenMP programming model to implement
different parallel schemes as illustrated in Section 3, where
the taskQ workqueue model, serving as the extension of
OpenMP standard by Intel is used. To generate highly op-
timized executable codes, Intel 8.1 OpenMP compiler tool
chain and highly optimized IPP library [4] are used. Fur-
thermore, we also use Intel VTune[5] performance ana-
lyzer to identify the hot spots in functional profiling and
guide optimization, e.g., data blocking, data structure reor-
ganization, and loop fusion. To characterize the parallel
performance, Intel VTune Thread Profiler[5] is employed
to quantify the low level metrics, e.g., synchronization,
locks, load imbalance, etc.

4.1. Performance optimization

Before studying the parallel performance, we first de-
scribe several optimization techniques to improve the ap-

plication’s performance. These optimizations are applied
to all the candidate parallel schemes we discussed before.

0

0.4

0.8

1.2

1.6

1 2 4 8 16
Proc Num

L3
 M

is
s

/ K
 In

st
r

Data Blocking Disabled
Data Blocking Enabled

Figure 6. L3 cache misses per 1,000 instructions

for the hybrid scheme

0

20

40

60

80

1 2 4 8 16
Proc Num

B
us

 U
til

iz
at

io
n

R
at

e
(%

)

Data Blocking Disabled
Data Blocking Enabled

Figure 7. Bus utilization ratio for the hybrid

scheme

With in-depth understanding of the application, we can

easily find that shot detection operates on a very large data
set, e.g., the frequently used memory buffer for MPEG2
data is around 8.0MB, which exceeds the size of L2 or
even L3 cache. Fig.6 and Fig.7 depict the L3 cache miss
per 1,000 instructions and bus utilization rate for the hy-
brid scheme. As expected, it experiences very high cache
capacity misses, and the L3 cache misses keep at a very
high level. On the other hand, the memory bandwidth con-
sumption goes up steadily for 8 processors, but starts satu-
ration on 16 processors. Without data blocking, we can
only obtain at most 8x speedup on 16 processors due to the
poor memory system performance.

In order to improve the overall scaling performance,
we first apply data blocking technique to segment the
whole decoded frame into several strips to ensure each
piece of strip can fit in the L3 cache. Then the feature ex-
traction module is performed on each strip with a tempo-
rary buffer, after the completion for all strips in one frame,
the final results will be merged for later use. As plotted in

Fig.6 and Fig.7, the cache misses and memory bandwidth
reduce significantly with data blocking optimization. Fig.8
shows the accumulated performance improvement with
different optimization techniques. The data blocking opti-
mization improves the performance by more than 40% on
16 processors. Furthermore, we can notice the parallel
application gets more benefit than the serial one. The rea-
son can be attributed to the alleviation of the memory
bandwidth contention by minimizing the L3 cache misses.

0

4

8

12

16

1 2 4 8 16
Proc. Num

S
pe

ed
up

Thread Affinity
Data Blocking
Baseline

Figure 8. Optimizations for the hybrid scheme

(speedups are normalized to the baseline on single
processor)

Thread scheduler, an essential component in OS, plays

an important role in driving the application to a high per-
formance. There are already a lot of studies on thread
scheduling, for instance, [8] gives a comprehensive study
on different scheduling techniques and concludes that OS
decision has a significant impact on performance with a
relatively large processor count. Fig.8 reports the perform-
ance benefit when enabling the thread affinity mechanism
by binding threads to specific processors, to minimize the
threads migration and context switches among processors.
In addition, it improves the data locality performance and
mitigates the impact of maintaining the cache coherency
among all the processors. With thread affinity, the L3
cache misses per 1,000 instructions and context switches
per second are reduced by 3% and 10% respectively.
Moreover, we also observe that with thread scheduling
optimization, the performance improvement for the hybrid
scheme is slightly better than the data slicing scheme,
which is reasonable since the threads within each group of
the hybrid scheme are more tightly coupled compared with
the data slicing scheme.

4.2. Scalability performance study

0

4

8

12

16

1 2 4 8 16
Proc. Num

S
pe

ed
up

Task Scheme
Data Slicing Scheme
Hybrid Scheme

Figure 9. Speedup for three different schemes

Fig.9 reports the speedup of video mining system for

three different parallel schemes with 30 minutes MPEG-2
video dataset on up to 16 processors. As expected, the hy-
brid scheme delivers the highest scalability performance,
while the task parallel scheme scales poorly beyond 4
processors. The data slicing scheme lies in the middle,
much better than the task level scheme by providing more
parallelism, and a little worse than the hybrid scheme due
to more load imbalance and excessive use of the memory
sub-system. The results perfectly match our analysis in
Section 3. Since the hybrid scheme outperforms the other
two in terms of scalability performance, we will only study
this scheme in the rest of the paper.

To deeply understand the scaling limiting factors, we
characterize the parallel performance from the high level
general parallel overheads, e.g., synchronizations penal-
ties, load imbalance, and sequential sections, to the de-
tailed memory hierarchy behavior, e.g., cache miss rates
and front side bus bandwidth.

Table.1 Thread profiling information for the hybrid

scheme on 30m MPEG-2 data
#Threads Parallel

(%)
Seq.
(%)

Imbalance
(%)

Locks. &
Sync(%)

Para o/h
(%)

1 99.99 0.01. 0.0 0.0 0.0

2 99.87 0.03 0.09 0.0 0.0

4 99.66 0.08 0.26 0.0 0.0

8 98.59 0.27 1.14 0.0 0.0

16 95.84 1.06 3.06 0.0 0.04

Table.1 gives the general parallel profiling metrics for
the hybrid scheme, where “Parallel” means running time
inside the parallel region, and “Imbalance” represents time
spent waiting for other threads to reach the end of a paral-
lel region. The profiling information reveals that the hy-
brid parallel scheme has very low synchronization and
parallel overhead. The sequential area and load imbalance

goes up steadily with the increase of processor number,
but remains at a relatively low percentage. Overall speak-
ing, the general parallel limiting factors are insignificant
and will not hurt the scalability performance for the hybrid
parallel scheme on 16-way system. Furthermore, when
comparing the load imbalance performance, we find the
hybrid scheme is slightly better than the data slicing
scheme, which confirms that slicing the input video stream
into smaller pieces will introduce more execution instabil-
ity, and result in more load imbalance and parallel over-
head.

Table.2 Memory characterization for the hybrid

scheme on 30m MPEG-2 data

#Threads L3 cache
misses /KInstr.

Cache co-
herency
ratio (%)

Bus utilization
ratio (%)

1 0.08 0.0 0.5

2 0.14 3.8 1.7

4 0.24 14.0 4.6

8 0.24 16.2 10.9

16 0.29 17.2 24.2

Besides the general scalability performance factors,
memory subsystem also plays an important role in identi-
fying the scaling performance bottlenecks. Table 2 shows
the L3 level cache miss rate, cache coherency ratio and
the memory bus utilization rate, where the cache coher-
ency ratio is defined as the ratio of bus requests satisfied
by another cache over the total number of read requests
sent on the bus.

From table.2, it is interesting to see that the L3 cache
misses shows an upward trend with increasing number of
processors, but stalls at 8 processors. At the same time, the
cache coherency ratio also displays the similar trend,
which indicates that the data exchange between threads
take a large fraction of the total memory traffic within
each group of threads. On the other hand, there is little
data transfer among different groups of threads, as a matter
of fact, the data slicing scheme exhibits very low cache
coherency traffics. Along with the increase of L3 cache
misses, the bus utilization ratio also ascends linearly with
the number of processors, but far from the saturation (e.g.,
60% for Xeon MP system) even up to 16 processors. As a
result, with low L3 cache misses and moderate memory
bandwidth requirement, the parallel application with hy-
brid scheme delivers very good scalability performance.

4.3 Data set scaling performance study

To investigate the performance with different input
data sets, we use a set of MPEG-2 video streams to scale

the data in length. As depicted in Fig.10, the parallel per-
formance of the application appears to be closely corre-
lated with the length of input data, e.g., for 3 minutes
video sequence, the speedup is linear for four processors,
but starts deteriorating when eight or sixteen processors
are used. The slowdown for more processors is caused by
the decreasing granularity of the work assigned to each
processor. The trend is also similar for 30 minutes video
data, where the speedup ascends almost linearly for up to
eight processors but gets a little slower for 16 processors.
Furthermore, when the input data stream is so small in
length that we cannot even find a video sequence synchro-
nization code with the sliced data, there will be no parallel-
ism among the input data stream at all and only one video
decoder can be used, hence, the scaling performance will
be significantly degraded.

0

4

8

12

16

1 2 4 8 16
Proc. Num

S
pe

ed
up

MP2 - 3 Minute
MP2 - 10 Minute
MP2 - 30 Minute

Figure 10. Speedup for different input data for hy-

brid scheme

To summarize, the hybrid parallel scheme consistently
outperforms the task level and data slicing parallel scheme,
exhibiting the best scaling performance and highly utiliz-
ing the hardware architecture. It is very promising to scale
well on more than one hundred processors, especially
when we have multiple CPU-cores on the same die in the
near future, offering much higher interconnect bandwidth
among the CPUs.

5. Conclusion

In this paper, we presented a novel hybrid parallel
scheme to accelerate the shot detection application in
video mining system. The basic idea is to expose two-level
nested parallelism, which first slices the video stream into
several chunks, and then exploits the task level parallelism
within each data chunk. Experiments show that it achieves
much better performance than the other two parallel
schemes, i.e, task level and data slicing, and can tailor to
different hierarchies of multiprocessor system. In addition,
the exploration of different parallel scheme study in shot
detection, in another aspect, reveals the future paralleliza-

tion strategy of more video mining applications with mul-
tiple processors.

Besides the comparison among different parallel
schemes, we also perform several optimizations techniques
to improve its scalability performance, e.g., data blocking
and thread affinity, to speed up the execution by more than
50%. The application analysis results indicate that the par-
allel shot detection application is a computation intensive
application, experiencing very low cache miss and mem-
ory bandwidth requirement. In addition, there are also no
obvious scaling limiting factors, e.g., very low synchroni-
zation and load imbalance issues even with up to 16 proc-
essors. As a result, parallel shot detection application ex-
hibits fairly good scaling performance, which can be ex-
pected to scale well on even more processors.

Our future work will include studying more advanced
modules and parallel schemes in video mining system,
e.g., integrating the mid-level features in this video mining
framework, using different task queuing (centralized, dis-
tributed, or hybrid) methods to cope with load imbalanced
tasks, and extending the parallel shot detection application
to more than 64 processors to characterize its performance
on many-core machines.

6. References

[1] A. Bilas, J. Fritts, J. P. Singh. Real-time parallel MPEG-2
decoding in software. In Proceedings of the 11th international
symposium on parallel processing, 1997

[2] L.Y. Duan, M. Xu, et al. A mid-level representation frame-
work for semantic sports video analysis, in ACM MM03, pp.33-
44, 2003.

[3] M. Holliman, E. Li, Y.K. Chen MPEG Decoding Workload
Characterization, in Proc. of Workshop on Computer Architec-
ture Evaluation using Commercial Workloads 2003

[4] Intel Corp. Intel® Integrated Performance Primitives (Intel®
IPP). Available at http://www.intel.com/software/products/ipp

[5] Intel Corp. VTune performance analyzer. Available at
http://www.intel.com/software/products/vtune

[6] E. Iwata and K. Olukotun. Exploiting coarse-grain parallelism
in the MPEG-2 Algorithm, Stanford University Computer Sys-
tems Laboratory, Technical Report CSL-TR-98-771, September
1998.

[7] W. Kraajj, A.F. Smeaton, P. Over, TRECVID 2004-An intro-
duction, in TRECVID 2004 Proceedings, http://www-
nlpir.nist.gov/projects/trecvid/

[8] Robert C. Kunz. PhD dissertation, Performance bottlenecks
on large-scale shared-memory multiprocessors. 2004

[9] C.W. Ngo, T.C Pong, and HJ Zhang. Recent advances in
content-based video analysis. In International Journal of Image
Graphics, 1(3):445–468, 2001.

[10] F.J. Seinstra, C.G.M. Snoek, D. Koelma, etc. User Transpar-
ent Parallel Processing of the 2004 NIST TRECVID Data Set, in
IPDPS 2005

[11] S.W. Smoliar, HJ Zhang, Content-based video indexing and
retrieval, in IEEE Multimedia, vol.1(2), pp.62-2,1994.

[12] Ernesto Su, Xinmin Tian, Milind Girkar, et. Compiler sup-
port of the workqueuing execution model for Intel SMP architec-
tures. In the fourth European workshop on OpenMP (EWOMP),
2002

[13] Jinhui Yuan, Wujie Zheng, Le Chen, etc. Tsinghua Univer-
sity a TRECVID 2004: shot boundary detection and high-level
feature extraction, 2004.

