
CoopStream: A Cooperative Cache Based Streaming Schedule Scheme for
On-demand Media Services on Overlay Networks∗

Baoliu Ye+,†, Minyi Guo† and Jingling Xue‡
+(Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China)

†(Department of Computer Software, the University of Aizu, Fukushima 965-8580, Japan)
‡(School of Computer Science and Engineering, University of New South Wales, Sydney, Australia)

yebl@dislab.nju.edu.cn, minyi@u-aizu.ac.jp, jxue@cse.unsw.edu.au

Abstract

Recently, we have witnessed a tremendous growth of in-
terests in streaming continuous media such as video data
over the Internet. However, how to provide true on-demand
streaming services with VCR functionality is still a chal-
lenging task, especially when their scalability is required.
In this paper, we propose CoopStream, a novel streaming
scheme, to address this challenge in the context of over-
lay networks. At the client side, we propose to use a dual-
channel cache management mechanism to dynamically ad-
just the cache contents based on its current playing state, so
as to support VCR operations locally. On the server side,
we exploit the temporal relationship among asynchronous
streaming requests to schedule streams. This enables us to
reduce significantly the server load by redirecting streaming
requests to the clients that can serve those requests. Simula-
tion results show that, CoopStream is capable of providing
continuous streaming services that are scalable in terms of
the server bandwidth consumed.

1. Introduction

Recently, Internet-oriented streaming applications have
become increasingly popular. However, how to provide true
on-demand streaming services with VCR functionality is
still a challenging task. The true video on-demand services
are distinct from the traditional real-time media streaming
services in the following aspects: 1) asynchrony - a user
may issue streaming requests at different time; 2) nonse-
quentiality - a streaming request may start from any part (or
offset) of a stream; 3) VCR support - a user may make dif-
ferent kinds of VCR operations during a session. Further-

∗This work was partially supported by the National Science Foundation
of China under grant 60573106 and the National Basic Research Program
of China (973) under grant 2002CB312002.

more, the behaviors of different users are unpredictable.
To address the above challenges, earlier solutions adopt

IP multicast as the basic streaming sharing mechanism to
serve multiple requests synchronously [3, 6, 9]. However,
due to the limited deployment of IP multicast as well as
other technical reasons, these solutions were not widely
adopted over the Internet. Recently, Application Layer Mul-
ticast (ALM) has increasingly attracted enormous attention
in the research community. ALM makes no special assump-
tions about the underlying network infrastructure and shifts
the multicast functionality from the network layer to the ap-
plication layer. The topology of ALM is an overlay net-
work constructed by participating nodes. Since each node
can contribute its available resources to the system, theoret-
ically the service capacity increases as the number of nodes
increases.

In this paper, we propose CoopStream, a novel streaming
scheme for providing continuous streaming services with
VCR functionality in the context of ALM. Our basic ob-
servation is that streaming services usually have long du-
rations and the user requests for such services are asyn-
chronous in nature. We can potentially provide scalable ser-
vices in terms of the server bandwidth consumed by using
the caching capability of end hosts and capturing the tem-
poral correlations of asynchronous requests. We explored
this possibility and addressed several associated problems
by making the following contributions:

• We present a dual-channel cache management mech-
anism at the client side to dynamically adjust cache
contents and support VCR actions locally. For a par-
ticular client, our mechanism ensures that the amount
of played media objects and that of unplayed (i.e.,
prefetched) are balanced in local cache by using two
techniques. First, once both parts become imbalanced,
the cache management will temporally suspend the
prefetching stream or open a second channel to com-
pensate for the imbalance. Second, the start offset of

a prefetching stream is specified as an interval rather
than an exact value. Thus the likelihood to find the
requested objects from some existing end hosts is in-
creased.

• We exploit for the first time the temporal correlations
among asynchronous streams to allow the server to
redirect streaming requests to the end hosts where the
requested objects are cached. Each stream request is
identified by an initial offset and a request time. These
two parameters are used to define the temporal rela-
tionship among stream requests. When serving a par-
ticular request, the server first checks if the requested
stream can be served by another end host. Such a
streaming schedule algorithm shifts the streaming ser-
vice responsibility from the server to the client side, ef-
fectively reducing the server bandwidth consumption.

To the best of our knowledge, we are the first to ex-
plore the use of ALM to provide true on-demand stream-
ing services with VCR functionality. Our experimental re-
sults show that CoopStream is capable of providing scal-
able streaming services in term of the server bandwidth con-
sumed. The rest of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 gives an overview
of CoopStream. Section 4 describes the details of our cache
management mechanism. Section 5 presents our streaming
schedule algorithm. Section 6 analyzes the performance re-
sults. Finally, we conclude our work in Section 7.

2. Related Work

There has been a lot of work on providing continuous
on-demand streaming services using IP multicast. To ac-
count for the synchronous nature of IP multicast and avoid
missing a certain portion of a video requested, batching [3]
tries to aggregate asynchronous requests into one multicast
session at the cost of incurring a start-up delay while patch-
ing [6] allows nodes to join an ongoing multicast session
by means of patching the missed portion via a unicast chan-
nel to the server. With merging [9], a node continuously
attempts to catch up with the nearest predecessor stream-
ing until it eventually merges into a largest multicast ses-
sion. There has been relatively little work on supporting
VCR operations using IP multicast. ABM [4] is one such
a client-side buffer management scheme. In this scheme,
stream segments are staggered and periodically broadcasted
in different channels. Their cache management needs to
receive data from these channels simultaneously. A client
is required to maintain three concurrent connections in a
single streaming session. In contrast, each client in Coop-
Stream uses at most two concurrent channels, one of which
is only temporarily opened to prefetch future frames.

In the case of overlay networks, although some solutions

Figure 1. An example of different VCR streams.

using IP multicast have been extended to work over over-
lay networks [5, 8], we are not aware of any previous work
on providing VCR functionality. Some other efforts us-
ing peer-to-peer network techniques can be found in [2, 8].
However, all these solutions ignore the VCR functional-
ity, which is one of the most useful features in real-world
streaming applications.

3. Overview of CoopStream

3.1. VCR Operations

Generally, a VCR operation could be described by a pair
(∆t, ∆l), where ∆t is the duration of the operation, and ∆l
is the moving length. Assuming that the playback rate of a
streaming is a Constant-Bit-Rate (CBR) r, we give the for-
mal definition of VCR actions as follows:

1. Jump Forward/Backward (JF/JB): ∆t = 0, ∆l �= 0.
2. Pause: ∆t > 0, ∆l = 0.
3. Fast Forward/Backward (FF/FB): |∆l/∆t| > r,

∆t > 0.
4. Slow Forward/Backward (SF/SB): |∆l/∆t| < r,

∆t > 0.
5. Normal Play/Play Backward (NP/PB): |∆l/∆t| = r,

∆t > 0.
Let β denote the ratio between the playback rate of

a VCR operation and the normal play. Obviously, β =
∆l/∆t

r . If |β| > 1, it is a fast play; If |β| < 1 and β �= 0, it is
a slow play. β = 0 means a pause operation. β > 0 means
a forward action while β < 0 indicates backward action.

Fig.1 shows an example with different VCR streams. In
this figure, Sa and Sg are two NP streams, Sb an SF stream,
Sc an FF stream, Sd an SB stream, Se an FB stream, and
Sf an PB stream.

3.2. An Overview

CoopStream is an overlay networks-based on-demand
streaming service scheme. The streaming server acts as the
seed of stream files and accepts streaming requests. Each

node devotes a fix-sized storage space capable of buffer-
ing W units of normal playback time to cache the most re-
cent received stream objects. The server maintains an infor-
mation table (see Table 1) to monitor the streaming status
of each node. CoopStream mainly consists of two compo-
nents, the cache management mechanism and the streaming
schedule algorithm. The former is responsible for adjust-
ing cache contents while the latter takes care of scheduling
appropriate streaming for requests.

Table 1. Status information table.
Field Description
IP The IP address of a client
name The name of requested stream file
statime The stat time of a streaming request
os The original offset of a stream request
op the initial prefetch offset of a request
type The VCR type of a stream

We outline the routine of CoopStream as follows. Un-
der NP status, each node simultaneously keeps a certain
length of played frames and unplayed frames in its cache.
The cache buffers stream objects in a round-robin manner.
When a VCR action is issued, the node first tries to serve
the request with local cache. If this fails, it sends a VCR re-
quest to the server. Once returning to the normal play status,
the cache management adjusts its content, with the intent to
support later VCR operations. Upon receiving a streaming
request, the server first searches for the nodes containing
the requested object. If no node is found, the server opens
a new streaming channel. Otherwise, it sends the search re-
sult to the requestor. The requestor in turn selects a node to
act as its ”streaming server”. When a node wants to leave
the system, it must first informs its children to seek for a
new parent. In CoopStream, an abrupt failure could be de-
tected by the suddenly increased packet loss ratio. During
the repairing period, its children can continue their services
by consuming the pre-cached objects.

In nature, all participating nodes in CoopStream are or-
ganized into one ore more groups. Besides receiving media
objects from the parent, each non-leaf node also forwards
the cached objects to its children. In this sense, Coop-
stream is a variation of ALM. However, unlike previous
ALM schemes, the streams delivered over different links
within a tree are asynchronous, i.e., a non-leaf node simul-
taneously forwards different media objects to different chil-
dren. Fig. 2 illustrates a typical scenario of CoopStream.

Figure 2. An typical scenario of CoopStream.

4. Cache Management

4.1. Cache Structure

Each node in CoopStream contains at least a play pointer
(ply ptr) pointing to the current playback position and a
prefetch pointer (pref ptr) pointing to the latest caching po-
sition. We call the media objects that have already been dis-
played past frames and those that have been prefetched into
the cache but not yet played future frames. In addition, a
non-leaf node may have one or more forward pointers (fwd
ptr) which are responsible for forwarding stream objects to
its children (see Fig. 3(b)). For simplicity, we first define
some variables related to the cache of client x at time t as
follows.

Let prx(t) denote the position of prefetch pointer, plx(t)
the position of play pointer, lpfx(t) the length of past
frames, and lffx(t) the length of future frames. oprx(t)
and oplx(t) correspond to the stream offsets of prx(t)
and plx(t), respectively. Let ∆x(t) represent the relative
distance between prx(t) and plx(t), odffx(t) the stream
distance between oprx(t) and the nearest forward pointer
falling into the future frame area, odpfx(t) the streaming
distance between oprx(t) and the nearest forward pointer
within the past frame area. Obviously, ∆x(t) = |plx(t) −
prx(t)|. If there is no forward pointer within correspond-
ing area, then odpdx(t) = ∞ and/or odffx(t) = ∞. If the
cache is saturated and prx(t) < plx(t), then{

lpfx(t) = ∆x(t)
lffx(t) = W − ∆x(t) (1)

else, {
lffx(t) = ∆x(t)
lpfx(t) = W − ∆x(t) (2)

If no VCR action is issued, both lpfx(t) and lffx(t) will
remain unchanged throughout the entire streaming session.
However, once a VCR action is performed, these two vari-
ables as well as ∆x(t) will be changed. In practice, it is
difficult to keep the play pointer right in the middle of the
cache contents. CoopStream defines a relaxed interval to
constrain the offset of play pointer.

|∆x(t) − W/2| ≤ αW, 0 < α < 1 (3)

Figure 3. Cache transformation over VCR actions.

Obviously, this interval is more rigidly restricted with a
smaller α.

4.2. Implementation of VCR Functionality

The VCR implementation relies fundamentally on the
simultaneous availability of the past and future segments
within the cache. We present a dual-channel based cache
management mechanism to selectively prefetch segments
according to the observation of current cache contents. Fig.
3 demonstrates the cache status transformation over differ-
ent VCR operations. Note that the dotted pointer in this
figure depicts the final position after a VCR action and the
translucence shadow interval represents the moving length
during a VCR operation. Throughout this subsection, we
assume x is the client issuing a VCR action at time t0, p is
the parent node of x before the VCR action, and t1 is the
finish time of the VCR operation.

Normal Play. Upon receiving an NP request, the
server schedules two streams, named as instant stream and
prefetch stream, respectively. The start offset of the instant
stream equals to ox. The start offset of the prefetch stream
oprx(t0) is decided by the streaming schedule algorithm ac-
cording to (3) (see Sect. 5). Initially, the instant pointer
(inst ptr) points to the beginning of the cache, while the
prefetch pointer is at the position oprx(t0) − ox. To avoid
service delay, the node starts to play as soon as it receives
the first frame of the instant stream. Meanwhile, the node
registers its stream information to the status information ta-
ble. Once having reached to position oprx(t0) − ox, the
instant streaming closes, but the prefetch stream continues

(see Fig. 3(b)). Under NP status, the play pointer moves
forward at the same speed as the prefetch pointer. Hence,
∆x(t) remains unchanged.

Pause Operation. When a pause action is issued, the
play pointer stops. For a leaf node, it only notifies its parent
node to suspend the stream forwarding. However, for a non-
leaf node, it has to keep on receiving media objects from
its parent until the prefetch pointer meets the play pointer.
In this case, a child must request for a new parent when
its forward pointer reaches the prefetch pointer. When re-
turning to the NP status, the cache management checks the
current cache status. If (3) still holds, the streaming con-
nection will be resumed provided that its parent contains
the required object. At the same time, it updates the corre-
sponding record in the status information table with a tri-
tuple (tx − W/2, oprx(t1) − W/2, oprx(t1)). Otherwise,
the cache management will adjust the cache contents by de-
laying the prefetch stream for a moment. Let χ denote the
delayed time. If δx(t1) > 0, then this connection must be
kept available after the delay. Thus, χ is computed as fol-
lows:

χ = min(odpfx(t1), (α + 1/2)W − ∆x(t1), δ(t1))) (4)

If δx(t1) < 0, node x has to find a new parent. The
server searches for the nodes that may provide a stream with
the offset oprx(t1) within odpfx(t1). The actual start time
is optimized by the node with the objective of minimizing
|∆x(t) − W/2|. The node updates its stream information
on the server with the tri-tuple (t1 + χ − W/2, oprx(t1) −
W/2, oprx(t1)).

Jump Forward. When a jump forward action is is-
sued, the cache management first seeks for the new play-
back offset within the local cache. If this fails, it no-
tifies its children to switch to a new parent. Following
that, this node unregisters its previous stream informa-
tion and requests for a new NP stream starting with the
final offset of the jump forward action; Otherwise, the
play pointer directly moves to the destination and contin-
ues the playback. If (3) becomes false after this opera-
tion, then the ratio of future frames decreases (Fig. 3(d)).
The cache management creates a new prefetch channel i
to selectively download some future frames. The start
offset of the prefetch stream opri(t1) should fall into the
interval:[oprx(t1), min(oprx(t1) + odpfx(t1), oprx(t1) +
(α + 1/2)W]

The initial ppri(t1) of the new prefetch pointer equals to
pprx(t1) + opri(t1) − oprx(t1). The old prefetch stream
channel closes when it reaches ppri(t1). At that time, the
node renews its stream information on the server with the
tri-tuple (t1 − W/2, oprx(t1) − W/2, oprx(t1)).

Jump Backward. In response to this event, the cache
management first locates the new playback offset from local
cache. If this fails, it notifies its children to send stream re-

quests to the server with their current prefetch offset. Then
the node rejoins the system with the final offset requested by
the jump backward action. If it succeeds, the play pointer
turns back to the destination directly. A jump backward op-
eration may violate (3) by increasing the relative ratio of
future frames (Fig. 3(e)). If so, the cache management
must adjust the cache ratio by temporarily suspending the
prefetch channel. The suspending time is decided accord-
ing to (4).

Fast Forward. When a fast forward action is issued,
the play pointer moves forward at the rate of βr(β > 1).
Once the play pointer catches up with the prefetch pointer,
the node requests a fast forwarding stream from the server.
Meanwhile, the cache management notifies all its children
to find a new parent before the corresponding forward point-
ers are overwritten by the play pointer. In this case, the node
will rejoin the system as a new node when returning to the
NP status. If the node resumes the NP status before its cache
contents are consumed up, all the forward pointers keep un-
changed. The cache management employs the same routine
as a jump forward action to check and adjust the cache con-
tents.

Slow Forward. The ratio of future frames gradually
increases with a slow forward action. Once the prefetch
pointer catches up with the play pointer, the prefetch stream
will be suspended. During this period, its children have to
find a new parent when the corresponding forward point-
ers reach the prefetch position. Later, if the play pointer
meets the prefetch pointer again after a round, the node will
request for a new stream with the offset oprx(t) from the
server. There are two different cases that may cause (3) to
become invalid after returning to the normal play status. If
future frames are dominant in the cache, the cache manage-
ment performs a similar cache adjustment routine as a jump
backward action to regulate the position of the play pointer.
Otherwise, it runs the same routine as a jump forward to
balance the cache contents.

Play Backward/Fast Backward. The past frames are con-
sumed at the rate of (|β| + 1)r with a backward action.
In response to this action, This node suspends the prefetch
stream temporarily. Its children will request for a new par-
ent when their forward pointers reach the prefetch pointer.
Once the play pointer moves to the prefetch point, the server
schedules a new PB/FB stream. If the VCR action ends be-
fore the play pointer reaches the prefetch position, the cache
management employs the same algorithm as a pause oper-
ation to resume the prefetch stream. Otherwise, this node
rejoins the system as a new node.

Slow Backward. Initially, the cache management takes
no measure upon receiving a slow backward action. If this
operation finishes before the player pointer and the prefetch
pointer meet together, the cache management utilizes the
same routine as a jump backward operation to modify the

cache contents. Otherwise, the cache management requests
for a slow backward stream from the sever and recovers its
own streaming service. Besides, it takes the same approach
as the play backward/fast backward action to maintain the
streaming services of its children.

5. Streaming Schedule Algorithm

5.1. Temporal Relationship Analysis

We introduce the concept of virtual start time vtx of a
stream Sx to depict the absolute start time of a streaming
and compare the current playback offset of asynchronous
streams:

{
vtx = tx − ox/βr, ifβ > 0
vtx = tx − (L − ox)/βr, ifβ < 0 (5)

where L is the time length of a media file. In the time−
offset (see Fig. 1) based coordinate system, the virtual
start time of a forward stream is the intersection point of its
extension and x-axis. The virtual start time of a backward
stream is the intersection point of its extension and the L-
height horizontal line. For instance, in Fig. 1 the virtual
start time of stream Sa and Sg are vta and vtg, respectively.

With the above definition, we define the temporal rela-
tionship among homogeneous VCR streams (i.e., the same
VCR type) as follows. Suppose node x and node y send
two homogeneous streams Sx and Sy for the same media
file, respectively. If vtx < vty , we call Sx the predecessor
of Sy and Sy the successor of Sx (denoted as Sx ≺ Sy).
Note that the start time of a predecessor may be later than
that of the streaming itself. For example, we can see from
Fig. 1 that Sa and Sg satisfy with Sg ≺ Sa, but obviously
tg > ta.

Since the received objects are buffered into local cache
for a certain time, it is possible to serve new streaming re-
quests through utilizing these cached media objects. Fig.
4 illustrates a potential scenario. In this figure, Sa and Sb

are two NP streams following Sa ≺ Sb. Node b issues a
stream request Rb with the offset ob at time tb. The dou-
ble line along Sa indicates the caching progress of node
a at time tb. Node a contains ob at tb. It can serve Rb

through forwarding the cached objects. Fig. 4 also shows
an instance of sharing cache contents among two backward
streams Sc and Sd (Sc ≺ Sd). We may observe that, if the
offset of a request falls within the current cache window of
it predecessors, then the request could be served by these
predecessors as long as they have enough outbound band-
width. This is the key for our temporal relationship based
streaming schedule algorithm. CoopStream should provide
two kinds of streaming schedule algorithms, namely instant
streaming schedule algorithm and delayed streaming sched-
ule algorithm, respectively.

Figure 4. A scenario of cache sharing.

5.2. Instant Streaming Schedule Algorithm

Upon receiving an instant streaming service request, the
server must schedule a stream immediately. The Instant
Streaming Schedule Algorithm (ISSA) looks for the prede-
cessors containing the required object. If this is successful,
it returns the search result to the requestor. Otherwise, it
initiates a new streaming from itself. Suppose node x sends
an instant streaming request R at time t0. Let P denote
the predecessor set of x, and N the eligible candidate set.
Algorithm 1 gives the pseudo-code of ISSA.
Algorithm 1: the instant streaming schedule algorithm
1: begin
2: while (P �= null) do
3: select a member p from P and let P = P − p;
4: if R is a backward stream then
5: exchange the value of p.op and p.oi;
6: end if
7: ∆o = p.op − p.oi;
8: ∆t = R.statime− p.statime;
9: case ∆o ≤ W/2:
10: if (∆t ≤ ∆o) then
11: if (p.oi < R.oi < p.oi + ∆t or

p.op < R.oi < p.op + ∆t) then
12: N = N + p;
13: else if (∆o < ∆t <= W − ∆o) then
14: if (p.oi < R.oi < p.op + ∆t) then
15: N = N + p;
16: else if (∆t > W − ∆o) then
17: if (p.op + ∆t − W < R.oi < p.op + ∆t) then
18: N = N + p;
19: end if
20: break;
21: case ∆o > W/2:
22: ∆o = W − ∆o;
23: if (∆t <= ∆o) then
24: if(p.oi < R.oi < p.oi + ∆t or

p.op < R.oi < p.op + ∆t)
25: N = N + p;
26: else if (∆o < ∆t <= W − ∆o) then

27: if (p.oi + ∆t − ∆o < R.oi < p.oi + ∆t or
p.op < R.oi < p.op + ∆t) then

28: N = N + p;
29: else if (∆t > W − ∆o) then
30: if(p.op + ∆t − W < R.oi < p.of + ∆t) then
31: N = N + p;
32: end if
33: break;
34: end while
35: if (N <> null) then
36: return N
37: else
38: schedule a new stream from the server;
39: end if
40: end begin

Lines 9-20 outline the algorithm where the initial posi-
tion of the prefetch pointer is at the left side of the middle
line. Among them, lines 10-12 deal with the case where
there is a gap between the past frames and the future frames;
lines 13-15 consider the situation where the cache is con-
secutive but unsaturated; lines 16-19 are for the remained
situation. Similarly, lines 21-33 describe the routines for
the case where the start position of the prefetch pointer is at
the right side of the middle line.

Algorithm 1 is useful for answering a streaming request
with a predetermined offset. However, it doesn’t address the
cases where the start offset of a prefetch stream is an inter-
val [a, b] subject to (3). In fact, this problem is transformed
to one of determining whether there exists an intersection
between the cache window of a predecessor and the offset
interval. The essence of ISSA is to judge whether the re-
quested stream offset falls into the cache of a predecessor.
Therefore, it could be addressed by replacing the judging
condition of algorithm 1 (Line 11, 14, 17, 24, 27 and 30,
correspondingly).

5.3. Delayed Streaming Schedule Algorithm

A delayed request is made up of the start offset and the
maximal allowable delayed time χ. There are two kinds of
nodes that may potentially answer a delayed request: (1)
the nodes that already hold the requested object and (2) the
nodes that will cache the requested media object within χ.
The Delayed Streaming Schedule Algorithm (DSSA) should
search for all these nodes. If no node is returned, it opens
a new streaming connection from the server. Algorithm 2
gives the pseudo-code of the DSSA.
Algorithm 2: the Delayed streaming schedule algorithm
1: begin
2: while (P �= null) do
3: select a member p from P and let P = P − p;
4: ∆o = p.op − p.oi;
5: ∆t = R.statime− p.statime;

Table 2. VCR action patterns

FB SB PB PA NP SF FF JB JF
0.05 0.01 0.01 0.7 0.04 0.05 0.05 0.05 0.05

6: if p contains stream object R.oi then
7: p.rt = W − (p.op + ∆t−R.oi); //the residing time
8: p.et = 0; //the enter time
9: N = N + p;
10: else if p doesn’t contain stream object R.oi then
11: if (∆t ≤ ∆o) then
12: if (p.oi + ∆t < R.oi ≤ p.oi + ∆t + χ) then
13: N = N + p;
14: if (p.oi + ∆t < R.oi < p.op) then
15: p.enttime = R.oi − (p.oi + ∆t);
16: p.restime = W − (p.op + ∆t − R.oi)
17: else
18: p.enttime = R.oi − (p.oi + ∆t);
19: p.restime = W ;
20: end if
21: end if
22: else if (∆t > ∆off) then
23: if (p.op + ∆t < R.oi ≤ p.op + ∆t + χ) then
24: N = N + p;
25: p.enttime = R.oi − (p.op + ∆t);
26: p.restime = W ;
27: end if
28: end if
29: end if
30: end while
31: return N to the requestor
32:end begin

Obviously, we can use ISSA (lines 2-30) to search for
the node currently containing the requested objects(line 6
in DSSA). Lines 10-29 present the algorithm of looking for
the second kind of nodes. Lines 12-21 deal with the situ-
ation where there is a gap between the past frame and the
future frame. Lines 22-28 capture the case where the cache
is consecutive.

6. Simulation Results

We evaluate the performance of CoopStream using J-
Sim [www.j-sim.org]. In our experimental environment,
70% of end hosts have the bandwidth capability of 10Mbps,
the remained nodes are with 100Mbps. The network band-
width of the streaming server is 100Mbps. We assume the
video length L to be 100 minutes, the normal playback rate
r to be 1Mbps. The start offset of a new request is uni-
formly distributed within (0, L). Let |β| = 2 for the fast
play and |β| = 0.5 for the slow play. The arrival of requests

Figure 5. a) Effect of cache size; b) A comparison
with non-delay scheduling policies.

is a Poisson process with an inter-arrival time of λ. We de-
fine the default probabilities of each VCR action in Table
2.

Fig. 5(a) shows the server load with different cache
sizes. We can see that the bandwidth consumption initially
increases over λ until it reaches to a peak value. Later, it
gradually decreases and finally converges. The reason is
as follows. A small arrival rate means that the interval be-
tween two requests is large while the system size is small.
The chance of getting the required segment from end hosts
is small. However, when λ increases, more nodes join the
system within a shorter time. As a result, the streaming file
is gradually divided and cached into different nodes by these
asynchronous requests. Hence, the possibility of serving
streaming requests via end hosts improves. When λ reaches
a threshold, the service activity of the system is balanced.
Thus, the server load is converged. From fig. 5(a) we can
also see that the larger the cache size, the smaller the thresh-
old will be. Fig. 5(b) compares the performance of Coop-
Stream with non-delay scheduling. We set χ = 0 in DSSA
to simulate the non-delay scheduling where the server only
searches for the nodes currently holding the requested ob-
ject. As shown in Fig. 5(b), CoopStream is superior to the
non-delay scheduling algorithm. The result confirms that
the DSSA further improves the system performance through
predicting the cache content availability using the temporal
relationship model. We also depict the theoretical result of
direct streaming where all the requests are served by the
server directly (generated with λL/60). We may observe
that, when λ is very small, the server load of CoopStream
is a little larger than that of direct streaming. CoopStream
usually needs to adjust cache contents with a second chan-
nel after a VCR action. Therefore, the server has to initiate
a second one from itself when λ is small.

Fig. 6 demonstrates the performance of CoopStream un-
der different VCR action patterns. In this experiment, when
the probability of NP action (NP) decreases, the reduced
value is proportionally added to the other VCR actions, and
vice versa. Fig. 6(a) gives the experimental results for the

Figure 6. a) Cache satisfaction; b) Server load

cache satisfaction and Fig. 6(b) illustrates its impact on the
server load. These two figures indicate that, when the prob-
ability of non-NP VCR actions increases, the cache satisfac-
tion ratio decreases slightly while the server load augments
lightly. This means that the negative impact of VCR action
patterns is small. Fig. 6 further confirms that the cache size
is the main factor affecting the performance of CoopStream.

Figure 7. Effect of abnormal leaving.

We also investigate the server performance variations
over different abnormal leaving probabilities p. Fig. 7
shows that the abnormal leaving has little impact. The rea-
son is twofold. First, the node can detect this abnormal
event through the observation of a suddenly heavy packet
loss. Besides, the node can continue its streaming service
by consuming the future frames in the cache. Second, the
server in turn can try to find an eligible node from partic-
ipating nodes by performing the DSSA algorithm, rather
than opening a new streaming channel immediately. Thus,
CoopStream is robust as well as scalable.

7. Conclusions

In this paper, we propose an overlay networks based
scheme, CoopStream, for the true on-demand streaming
service with VCR functionality. Our solution is centered
around a dual-channel based cache management mecha-
nism, and a temporal correlation based streaming schedule
algorithm. To maximally reduce the bandwidth consump-
tion on server, the dual-channel based cache management
actively monitors and adjusts the cache contents based on

the observation of current cache status, so as to satisfy VCR
actions with the cache as possible, and the temporal rela-
tionship based streaming schedule algorithm tries to redi-
rect the stream request to an end host prior to opening a
new streaming from the server. Our study shows that Coop-
Stream performs well in term of scalability and efficiency.
It can support all kinds of VCR operations as studied in this
paper without delay.

References

[1] Y. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proc. of ACM SIGMETRICS 2000, pages 1–
12, Santa Clara, CA, June 2000.

[2] Y. Cui, B. Li, and K. Nahrstedt. ostream: Asynchronous
streaming multicast in application layer overlay networks.
IEEE JSAC, Special Issue on Recent Advances in Service
Overlays, 22(1):91–106, January 2004.

[3] A. Dan, D. Sitaram, and P. Shahabuddin. Schedule policies
for an on-demand video server with batching. In Proc. of
ACM Multimedia ’94, pages 15–23, San Francisco, CA, Oc-
tober 1994.

[4] Z. Fei, M. H. Ammar, I. Kamel, and S. Mukherjee. Provid-
ing interactive functions through active client buffer man-
agement in partitioned video broadcast. In Proc. Of Net-
worked Group Communication (NGC’99), pages 152–169,
Pisa, Italy, November 1999.

[5] M. Guo, M. H. Ammar, and E. W. Zegura. Cooperative
patching: a client based p2p architecture for supporting con-
timuous live video streaming. In Proc. of ICCCN 2004,
pages 481–486, Chicago, IL, October 2004.

[6] K. A. Hua, Y. Cai, and S. Sheu. A multicast technique for
true video-on-demand services. In Proc. of ACM Multimedia
’98, pages 191–200, Bristol, UK, September 1998.

[7] J. Jannotti, K. Gifford, M. Kaashoek, and J. J. O’Toole.
Overcast: Reliable multicasting with an overlay network. In
Proc. of the 4th Symposium on Operating Systems Design
and Implementation, pages 197–212, San Diego, CA, Octo-
ber 2000.

[8] S. Jin and A. Bestavros. Cache-and-relay streaming media
delivery for asynchronous clients. In Proc. Of NGC ’02,
Boston, MA, October 2002.

[9] S. W. Lau, C. S. Liu, and L. Golubchik. Merging video
streams in a multimedia storage server: complexity and
heuristics. Multimedia Systems, 6(1):29–42, January 1998.

[10] B. Ye, M. Guo, D. Chen, and L. Sang. A heuristic routing
algorithm for degree-constrained minimum overall latency
application layer multicast. In Proc. of ISPA’05, pages 320–
332, Nanjing, China, November 2005.

[11] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork,. In Proc. Of IEEE INFOCOM’96,
pages 594–602, San Francisco, CA, March 1996.

[12] R. Zhang, A. R. Butt, and Y. C. Hu. Topology-aware peer-to-
peer on-demand streaming. In Proc. Of 2005 IFIP Network-
ing Conference, pages 1–14, Waterloo, Ontario, Canada,
May 2005.

