
A Formal Analysis of Space Filling Curves for Parallel Domain Decomposition

Srikanta Tirthapura, Sudip Seal and Srinivas Aluru
Department of Electrical and Computer Engineering

Iowa State University, Ames, IA
{snt, skseal, aluru}@iastate.edu

Abstract

Space filling curves (SFCs) are widely used for parallel
domain decomposition in scientific computing applications.
The proximity preserving properties of SFCs are expected
to keep most accesses local in applications that require effi-
cient access to spatial neighborhoods. While experimental
results are used to confirm this behavior, a rigorous math-
ematical analysis of SFCs turns out to be rather hard and
rarely attempted. In this paper, we analyze SFC based par-
allel domain decomposition for a uniform random spatial
distribution in three dimensions. Let n denote the expected
number of points and P denote the number of processors.
We show that the expected distance along an SFC to a near-
est neighbor is O(n2/3). We then consider the problem of
answering nearest neighbor and spherical region queries
for each point. For P = nα (0 < α ≤ 1) processors,
we show that the total number of remote accesses grows as
O(n3/4+α/4). This analysis shows that the expected num-
ber of total remote accesses is sublinear for any sublinear
number of processors. We view the analysis presented here
as a step towards the goal of understanding the utility of
SFCs in scientific applications and the analysis of more
complex spatial distributions.

Key words: domain decomposition, parallel algorithms,
probabilistic analysis, space filling curves.

1. Introduction

Many applications in scientific computing deal with en-
tities (particles, grid cells, unknowns) in three dimensional
space whose interactions are limited to spatial neighbor-
hoods. In grid based methods such as multigrid and adap-
tive mesh refinement, information flow occurs between ad-
joining grid cells, or from parent cells to daughter cells
and vice versa. In graphs resulting from the finite element

The work of the authors was supported in part through NSF grants
CNS 0520102 and CCF 0431140.

method, graph edges exist only between nodes whose cor-
responding elements share physical boundaries. In particle
based methods such as molecular dynamics and smoothed
particle hydrodynamics, particle interactions are restricted
to spatial neighborhoods. The same is true for local field
computation in the fast multipole method and its many ap-
plications. A common theme underlying all these methods
is the execution of a large number of time steps during each
of which interactions are computed as prescribed by the par-
ticular method.

Without loss of generality, we refer to point data
throughout this paper. Points represent locations of parti-
cles in particle based methods, locations of atoms in molec-
ular dynamics, and spatial locations of unknowns in some
other methods. The centers of grid cells can serve the same
purpose in grid based methods. Similarly, a convenient ref-
erence to points can be chosen for finite element decom-
positions, for example, locations of centroids for triangular
elements. Parallelizing the aforementioned applications re-
quires distributing spatial data to processors in a load bal-
anced manner such that information required for computing
interactions is most often locally satisfied within each pro-
cessor. This can be formalized as balanced partitioning of
the interaction graph while minimizing cross edges. Graph
partitioning is known to be NP-hard and several heuristic
methods and graph partitioning tools have been designed.

Any partitioning of spatial point data can be viewed as
imposing a one-dimensional order based on processor in-
dices and any ranking of points within the same processor.
The goal is to have as much of the spatial neighborhood of
a point as possible on the processor to which it is assigned.
Therefore, one can ask the question: which one dimensional
ordering of the underlying spatial data best preserves the
spatial proximity relevant to the application at hand? This
is why space filling curves (SFCs) are seen as effective in
domain decomposition for scientific applications. A signif-
icant advantage of using SFC orderings is that they can be
computed very fast, especially when compared to graph par-
titioning techniques. Besides, a simple scheme determines
which processor should have a point based on its spatial

location, without explicitly needing to store edges of the in-
teraction graph.

Space filling curves are used in diverse applications
ranging from databases [7] to processor allocation strate-
gies on multiprocessor systems [5]. They are frequently
used in many scientific applications including multigrid
methods [3], adaptive mesh refinement [11], fast multiple
method [12] and molecular dynamics [9].

While a few formal results on locality preserving proper-
ties of SFCs are available (for example, see [2, 7]), the use
of SFCs in scientific applications is often empirically justi-
fied by presenting good scaling and run-time results (for ex-
ample, see [1, 10, 11]). Though such evidence is extremely
useful and practical, a formal analysis will provide a bet-
ter fundamental understanding and can potentially lead to
valuable insights. This is the motivation behind the work
presented in this paper. We limit our analysis to the case
of uniform random spatial distributions and address the fol-
lowing two queries:

• Nearest neighbor queries: Given a set of n points,
find all nearest neighbors of each point.

• Spherical region queries: Given a set of n points and
a cutoff radius r, find all the points that lie within dis-
tance r from each point.

These queries are used in many scientific applications.
For example, spherical region queries are used in molecular
dynamics simulations for estimating the rapidly decaying
Lennard-Jones potential.

Consider a set of points uniformly distributed in a 2k ×
2k × 2k decomposition of space, where each cell is occu-
pied with probability p. Let n = 23kp denote the expected
number of points. We prove the following:

1. The expected distance along the SFC to a nearest
neighbor of a point is O

(
n2/3

)
.

Let P = nα (0 < α ≤ 1) be the number of proces-
sors. We estimate the number of points requiring remote
accesses when answering nearest neighbor or spherical re-
gion queries in parallel.

2. For nearest neighbor queries, the total number of
points requiring remote accesses is O

(
n3/4+α/4

)
.

3. For spherical region queries with a fixed radius r, the
total number of points requiring remote accesses is
O

(
n3/4+α/4

)
.

These results provide some interesting insights into the
behavior of SFCs. The first result seems to indicate that
it is counterproductive to have fewer than O

(
n2/3

)
points

per processor, thus restricting the number of processors to

Figure 1. A 8×8 Hilbert space-filling curve [4]
in two dimensions.

O
(
n1/3

)
, as the expected distance for each point will fall

outside the purview of the processor otherwise. However,
this conclusion is incorrect. The latter results show that for
any sublinear number of processors (P = nα; α < 1), the
total number of remote accesses is sublinear. This shows
that the expectation derived in the first result is skewed by
a few points having their spatial neighborhood located very
far away. The number of remote accesses is Ω

(
n3/4

)
, and

increases only as 4
√

P as the number of processors P is
increased. For nα processors, the ratio of computation to
communication is O

(
n1/4(1−α)

)
, showing that communi-

cation costs can be contained for sufficiently large values of
n.

2. Modeling the Problem

Consider the decomposition of a three dimensional cube
into 2k×2k×2k cells. A space filling curve imposes a linear
order on this array of cells. This can be depicted pictorially
by connecting the cells in the SFC-order (see Fig. 1 for
an example of Hilbert curve in 2-dimensions). SFCs are
non-intersecting curves. Spatial point data is ordered using
SFCs by choosing an appropriate decomposition and using
SFC-order to order only the cells occupied by points.

Let m = 23k denote the total number of cells. We pop-
ulate the cells by independently considering each cell, and
placing a point in it with probability p (0 < p ≤ 1). A
cell is called occupied if a point is placed in it, and is called
unoccupied otherwise. We assume the point in an occupied
cell is placed at its center. Let σ denote the set of all 23k

cells, and σ(m, p) denote the set of occupied cells. A space
filling curve is then used to arrange the cells in σ(m, p)
into a one dimensional array, called the SFC-array. Let
|σ(m, p)| denote the number of points. The problem size
n = E[|σ(m, p)|] = 23kp.

Space filling curves are used for parallel domain decom-
position by splitting the SFC-array evenly across proces-
sors using block decomposition. Let P denote the number
of processors. Each processor receives at most � |σ(m,p)|

P �
elements. We consider aggregate queries in which each
point requires information about points in its spatial neigh-
borhood, as defined by the particular query under consid-
eration. If a query for a point can be answered using only
the information available on the same processor, i.e., if the
query point and the points that fall in the query region are
all contained in the same processor, the query requires only
local access. Otherwise, it is said to require remote access.
We are interested in analyzing the number of queries requir-
ing remote accesses.

In practice, SFC-array is computed as follows: The po-
sition of a cell in cell space can be described by integer co-
ordinates (i, j, k) where 0 ≤ i, j, k < 2k. The rank of a
cell in SFC order can be computed by an SFC-specific map-
ping function that takes the integer coordinates as argument.
The SFC-array is computed by sorting the ranks of occupied
cells. The same can be achieved on a parallel computer us-
ing parallel sorting. Parallel sorting also has the desirable
side effect of partitioning the SFC-array across processors.
The SFC-array distance between two cells u, v ∈ σ(m, p) is
defined as the difference between the indexes of u and v in
the SFC-array. The SFC-array distance between two points
is defined as the SFC-array distance between the cells that
contain the points.

3. Preliminary Results

In this section we derive some counting results on the
number of cells contained in certain spherical and cubic re-
gions, for use in subsequent analysis. The intuition behind
why these results are useful is as follows: spheres are ob-
viously relevant to spherical region queries. They naturally
arise even in nearest neighbor queries because the sphere
centered at a point with its nearest neighbor distance as ra-
dius will not have any points inside it. While spheres are
relevant to capturing physical distances, analysis of a hier-
archy of cubic regions is needed to relate the physical dis-
tances to SFC-array distances.

Definition 1 Let C(u, d) denote the region of overlap be-
tween a sphere of radius d centered at cell u and the
2k × 2k × 2k array of cells.

A cell v is said to be contained in C(u, d) iff the center
of v is contained within C(u, d).

Lemma 1 There are are least d3

8 cells contained in
C(u, d), excluding u.

Proof Consider a coordinate system with origin at the cen-
ter of cell u. Irrespective of the location of u, we can find a
point (x, y, z) such that |x| = |y| = |z| = d√

3
and (x, y, z)

is on the surface of C(u, d). Let w = � d√
3
�. Since w is in-

tegral, the cube of side w with one corner at u and another
corner at (x, y, z) has (w + 1)3 grid cell centers inside, or
on the boundary of the cube. But since w + 1 > d√

3
> d/2,

we have (w + 1)3 > d3/8, which proves the lemma.

Note that a 2k × 2k × 2k decomposition of a cube can be
viewed as the result of partitioning the cube into 8 subcubes
by bisecting along each dimension, and recursively carry-
ing out the process on each of the subcubes k − 1 times.
We use the term standard cube to refer to each intermediate
cube resulting from this process. We will continue to use the
term cell to describe cubes at the finest level of decomposi-
tion. When the cube is recursively decomposed l ≤ k times,
there are 8l standard cubes each containing 8k−l cells. Each
such cube is referred to as a cube at level l.

An important property of SFCs is that once they enter a
standard cube, they leave it only after visiting all the cells in
it. If the SFC order is viewed as an array, the collection of
cells in a standard cube always corresponds to a subarray.
Thus, the distance between two cells in the SFC-array is
no more than the number of occupied cells in the smallest
standard cube containing the cells.

Definition 2 For cell u, let A(u, d) denote the smallest
standard cube that encloses the region C(u, d).

Let |A(u, d)| denote the number of cells in A(u, d).
Clearly, |A(u, d)| depends on the location of u. Its smallest
value is Θ

(
d3

)
, corresponding to the cube of side length

2d enclosing C(u, d). On the other hand, if u is adjacent
to a boundary of the first recursive cut of the cube, then
|A(u, 1)| = 23k. The following lemma shows that the aver-

age size of A(u, d) is O
(
dm

2
3

)
.

Lemma 2
∑

u∈σ |A(u, d)| = O
(
d · m 5

3

)

Proof Let Sl denote a cube at level l. For all the cells u
located in a cuboid of dimensions 2d×(2k−l−2d)×(2k−l−
2d) placed symmetrically at the center of Sl (see Fig. 2),

A(u, d) is Sl. Hence, for each cell u within the region in
Sl formed from the fusion of the three cuboids, |A(u, d)| =
8k−l. The number of such cells in Sl is at most the total
number of cells in the three cuboids, which is 3 · 2d · 2k−l ·
2k−l = 6 · d · 4k−l. If σl denotes the set of cells u ∈ σ for
which A(u, d) = 8k−l, then |σl| = 8l · (6 · d · 4k−l). Since

2d

2d

2k−l 2d

2k−l − 2d d

2k−l − 2d

d

d

d

Figure 2. The bounding cube is Sl. The
dashed inner region is composed from fus-
ing three cuboids, each of dimensions 2d ×
(2k−l − 2d) × (2k−l − 2d). For a cell u in this
region, A(u, d) is Sl.

for all u ∈ σl, |A(u, d)| = 8k−l, it follows that:

∑
u∈σ

|A(u, d)| =
k∑

l=0

∑
u∈σl

|A(u, d)|

=
k∑

l=0

(8l) · (6 · d · 4k−l) · (8k−l) = O
(
d · m 5

3

)

4. Nearest Neighbor Distance

In this section, we bound the average SFC-array distance
between a point and its nearest neighbor. This is useful
in formally characterizing the extent to which SFCs pre-
serve locality. Some of the lemmas presented in this section
are also subsequently used in analyzing the effectiveness of
SFC-based parallel domain decomposition.

Definition 3 For cell u ∈ σ, the Euclidean distance to a
nearest neighbor, denoted by du, is defined as:

du =

0 , if u is unoccupied
0 , if all other cells are unoccupied
distance to the nearest neighbor, otherwise

A point may have multiple nearest neighbors. We wish to
capture the farthest distance along the SFC-array to a near-
est neighbor.

Definition 4 For cell u ∈ σ, define Xu as:

Xu =

0 , if u is unoccupied
0 , if all other cells are unoccupied
maximum SFC-array distance to a nearest

neighbor, otherwise

Definition 5 Let Z denote the average of the maximum
SFC-array distance to a nearest neighbor, where the aver-
age is taken over all cells.

Z =
1

pm

∑
u∈σ

Xu

Note that mp is the expected number of points in σ(m, p).
By linearity of expectation, we have

E [Z] =
1

pm

∑
u∈σ

E [Xu] (1)

Using the definition of Xu:

E [Xu] = Pr{u is occupied } · Pr{u is not the

only occupied cell } · E [Xu|Xu �= 0]

≤ p
∑

1≤d≤dmax

Pr{du = d} · E [Xu | du = d] (2)

where dmax is the largest value that d can take given a 2k ×
2k × 2k block of cells. Combining Eqn (1) and Eqn (2), we
have:

E [Z] =
1
m

∑
u

∑
d

Pr{du = d}E [Xu | du = d] (3)

where we adopt the notation used for the rest of the paper in
which the summation of u implies that it is over all u ∈ σ
and that of d implies that it is over all 1 ≤ d ≤ dmax unless
otherwise specified.

Lemma 3 E [Xu|du = d] ≤ p|A(u, d)|
Proof Let Yud be a random variable which denotes the
length of the SFC-subarray that contains all occupied cells
in A(u, d). If du = d, then Xu ≤ Yud, since both u and
its nearest neighbor lie in an SFC-subarray of length Yud.
Thus, it follows that E [Xu|du = d] ≤ E [Yud]. We know
that E [Yud] = p|A(u, d)|, since every cell in A(u, d) is oc-
cupied with probability p.

Lemma 4 For any u ∈ σ(m, p) and d ∈ [1, dmax],
Pr{du = d} ≤ (1 − p)d3/8

Proof The event du = d implies that C(u, d) has no oc-
cupied cells. It follows from Lemma 1 that at least d3/8
cells must be unoccupied. The probability of this event is
no more than (1 − p)d3/8.

Lemma 5 ∑
1≤d≤dmax

d(1 − p)
d3
8 ≤ 16

3p

Proof

Let S =
∑

1≤d≤dmax

d(1 − p)
d3
8

≤
∑

1≤d≤dmax

de
−pd3

8

Note that d is not necessarily an integer. However, d2 is
an integer because d2 = x2 + y2 + z2 for integers x, y and
z. Letting r = d2,

S ≤
∞∑

r=1

√
re

−pr
√

r
8

≤
∫ ∞

0

√
re

−pr
√

r
8 dr

Let y = p
1
3
√

r/2. Then, dy = p
1
3 dr/4

√
r.

S ≤ 16
p

∫ ∞

0

y2e−y3
dy

=
16
p

Γ(1)
3

=
16
3p

Theorem 6 E [Z] = O(n2/3).

Proof Using Eqn (3), Lemma 2, Lemma 3 and Lemma 4,
we get:

E [Z] ≤ p
1
3 n

2
3

∑
1≤d≤dmax

d(1 − p)
d3
8

≤ p−
2
3

3
n

2
3 = O

(
n

2
3

)

Discussion: Although not shown here, we have general-
ized this result to show that the nearest neighbor of a point in
d dimensions is located at an expected SFC-array distance

of O
(
n

d−1
d

)
. It is not surprising that this measure of local-

ity significantly deteriorates with increasing dimensionality.
As the umber of neighboring cells grows exponentially, cap-
turing locality with any one dimensional ordering becomes
increasingly difficult. On the surface of it, the three di-
mensional result indicates that having fewer than O

(
n2/3

)
points per processor might result in all remote accesses, as
not even the expected distance of a nearest neighbor falls
within the same processor. If this were true, the number

of processors would be restricted to O(n1/3). Fortunately,
this is not the case. Even though the expected distance is
large, it turns out that most points have their nearest neigh-
bors much closer. In fact, it will be shown that the number
of remote access remains sublinear unless P = Θ(n).

5. Nearest Neighbor Queries

In Sections 5 and 6, we analyze SFC-based parallel do-
main decomposition with respect to nearest neighbor and
spherical region queries. As mentioned before, the SFC-
array is partitioned across processors using block decompo-
sition. We are interested in the expected number of points
whose query regions contain points that lie on a remote pro-
cessor.

Definition 6 For u ∈ σ, the random variable Nu measures
if any nearest neighbor of u is remote:

Nu =

0 , if cell u is unoccupied
0 , if all NNs of u are available locally
1 , otherwise

(4)

Definition 7 Let N be the number of points that have at
least one nearest neighbor on a remote processor.

N =
∑
u∈σ

Nu

Intuitively, N corresponds to the number of input points
that will result in interprocessor communication during a
parallel nearest neighbor computation. We wish to compute
E [N].

Definition 8 For any point u ∈ σ(m, p), and integer ∆, the
∆-SFC-neighborhood of u is defined as the set of all points
whose SFC-array distance from u is less than or equal to
∆.

In the remainder of this section, we will compute the ex-
pectation of N under the condition |σ(m, p)| > mp/2. Us-
ing the fact E [|σ(m, p)|] = mp and applying a Chernoff
bound, we get Pr{|σ(m, p)| ≤ mp/2} = O

(
e−mp/8

)
.

Since this condition is true with very high probability, it can
be easily seen through conditional probabilities that assum-
ing this condition to be true will not change the asymptotic
value of E [N].

Theorem 7 For P = nα, E [N] = O(n(3/4+α/4)).

Proof Let δ1, δ2 be parameters such that δ1δ2 = n1−α. Let
Tu denote the event that Nu = 1, given that u is occupied.
Let Wu denote the event that the δ1-neighborhood of u is
not available locally, again under the condition that u is oc-
cupied.

E [Nu] = Pr{Nu = 1} = p Pr{Tu}
≤ p

{
Pr{Wu} + Pr{Tu|W̄u}

}

By linearity of expectation:

E [N] =
∑
u∈σ

E [Nu]

≤ p
∑
u∈σ

Pr{Wu} + p
∑
u∈σ

Pr{Tu|W̄u} (5)

The number of points per processor is at least mp
2P =

n1−α

2 . Among all points assigned to a processor, ex-
cept for the set of 2δ1 points that are at the extreme left
and right ends of the subarray of the SFC that is as-
signed to the processor, the rest of the points have their δ1-
SFC-neighborhood available locally. Thus, no more than

2δ1
1/2n1−α = 4

δ2
fraction of the points u have Wu = 1. Using

this, and the fact mp = n in Equation 5:

E [N] ≤ 4n

δ2
+ p

∑
u∈σ

Pr{Tu|W̄u} (6)

Consider a filled cell u. For any d > 0, all points that
are at a distance less than or equal to d are contained in
the standard cube A(u, d). All occupied cells in A(u, d) lie
in a contiguous portion of the SFC array. The number of
occupied cells in A(u, d) is the binomial random variable
B(|A(u, d)|, p) i.e. the number of heads in |A(u, d)| coin
tosses, where the probability of a head on each toss is p.
Recall that random variable du is the physical distance from
u to its nearest neighbor. If the nearest neighbor of u is
remote, and the δ1-SFC-neighborhood of u is local, then it
must be true that A(u, du) has more than δ1 cells.

Thus,

Pr{Tu|W̄u} ≤
∑

d

Pr{du = d} ×

Pr{B(|A(u, d)|, p) > δ1}

∑
u∈σ

Pr{Tu|W̄u} ≤
∑
u∈σ

∑
d

Pr{du = d} ×

Pr{B(|A(u, d)|, p) > δ1} (7)

Using Lemma 4 and Equation 7 in Equation 6, E [N]

≤ 4n

δ2
+ p

∑
u∈σ

∑
d

(1 − p)
d3
8 · Pr{B(|A(u, d)|, p) > δ1}

=
4n

δ2
+ p

∑
d

(1 − p)
d3
8 ·

∑
u∈σ

Pr{B(|A(u, d)|, p) > δ1} (8)

Using Lemmas 8 and 5 in Equation 8, we get:

E [N] ≤ 4n

δ2
+ p

∑
d

(1 − p)d3/813md
p1/3

δ1
1/3

=
4n

δ2
+

13np1/3

δ1
1/3

∑
d

d(1 − p)d3/8

≤ 4n

δ2
+

208n

3δ1
1/3p2/3

Suppose δ1 = nε, so that δ2 = n1−α−ε. Rewriting the
above expression in terms of ε:

E [N] ≤ 4n

n1−α−ε
+ Θ(

n

nε/3
)

= 4nα+ε + Θ(n1−ε/3)

Minimizing the above expression for E [N] with respect
to ε, we finally get E [N] = O(n3/4+α/4).

We now prove Lemma 8 that is used in proving Theorem
7. Implications of the result of Theorem 7 are deferred to
Section 7.

Lemma 8 For r > 0 and δ > log k,

∑
u∈σ

Pr{B(|A(u, r)|, p) > δ} ≤ 13mr
p1/3

δ1/3

Proof We partition σ into k + 1 sets, σ0, σ1, . . . , σk as
follows. For each cell u ∈ σi, |A(u, r)| = 8k−i. From
Lemma 2, we know |σi| ≤ 6r · 4k · 2i. Let “LHS” denote
the left hand side of the expression in the lemma.

LHS =
k∑

i=0

∑
u∈σi

Pr{B(|A(u, r)|, p) > δ}

=
k∑

i=0

6r4k2i Pr{B(8k−i, p) > δ}

= 6r4k
k∑

i=0

2i Pr{B(8k−i, p) > δ}

Let i∗ be the smallest integer such that 8k−i∗p < δ/6.

Thus 2i∗ ≤ 2k+1
(

6p
δ

)1/3
. We can breakdown the above

sum as follows.

LHS = 6r4k
i∗∑

i=0

2i + 6r4k
k∑

i=i∗+1

Pr{B(8k−i, p) > δ}

≤ 6r4k2i∗+1 + 6r4k
k∑

i=i∗+1

2−δ

≤ 12r4k2i∗ + 6r4kk2−δ

We have used the following Chernoff bound: if X is a
binomial random variable whose expectation is µ, then for
any γ > 6µ, Pr{X ≥ γ} < 2−γ . Since δ > log k, the

above expression is no more than 13r4k2i∗ = 13r8k p1/3

δ1/3 =

13mr p1/3

δ1/3 .

6. Spherical Region Queries

In molecular dynamics simulations, the Lennard-Jones
potential between atoms u and v is computed iff their phys-
ical separation d(u, v) ≤ r, where r is a user provided cut-
off distance. Therefore, it is desirable that such pairs of
atoms reside on the same processor to minimize communi-
cation overhead. In this section, we analyze the total num-
ber of points requiring remote accesses for such a spherical
region query. We assume that the cutoff radius r is a con-
stant that is independent of m, p or P .

Definition 9 For a point u ∈ σ(m, p), the φ-neighborhood
of u is defined as the set {v ∈ σ(m, p)|d(u, v) ≤ φ}.

Definition 10 For u ∈ σ, the random variable Ru corre-
sponds to whether the point in u has remote interactions or
not, and is defined as:

Ru =

0 , if cell u is unoccupied
0 , if r-neighborhood of u is local
1 , otherwise

(9)

Definition 11 The random variable R which corresponds
to the fraction of points that have remote interactions is de-
fined as:

R =
1

mp

∑
u∈σ

Ru (10)

Clearly, smaller the value of R, lesser the number of re-
mote interactions and greater the efficiency of computation.
Our goal is to calculate E [R]. As in Section 5, in the re-
mainder of this section, E [R] is computed subject to the
condition |σ(m, p)| > mp/2.

Theorem 9 If the number of processors (P) is nα, then
E [R] = O(n3/4+α/4).

Proof The proof is along similar lines to the proof of the
parallel nearest neighbor. Let δ1, δ2 be parameters such that
δ1δ2 = n1−α. Let Vu denote the event that Ru = 1, given
that u is occupied. Let Wu denote the event that the δ1-
neighborhood of u is not available locally, again under the
condition that u is occupied.

E [Ru] ≤ p
{
Pr{Wu} + Pr{Vu|W̄u}

}

Using a similar argument as in the proof of Theorem 7 to
bound Pr{Wu}, and applying linearity of expectation, we
get:

E [R] =
4n

δ2
+ p

∑
u∈σ

Pr{Vu|W̄u} (11)

Consider a filled cell u. All points that are in a r-
neighborhood of u are contained in the standard cube
A(u, r). If the r-neighborhood of u is not fully local, and
the δ1-SFC-neighborhood of u is local, then it must be true
that A(u, r) has more than δ1 cells.

∑
u∈σ

Pr{Vu|W̄u} ≤
∑
u∈σ

Pr{B(|A(u, r)|, p) > δ1}

≤ 13mr
p1/3

δ1
1/3

(12)

where we have used Lemma 8. Using Equation 12 in
Equation 11, and using mp = n:

E [R] ≤ 4n

δ2
+ 13nr

p1/3

δ1
1/3

If r is a constant, then, using an argument similar to
the one in Section 5, we can minimize the above expres-
sion under the constraint δ1δ2 = n1−α to get E [R] =
O(n3/4+α/4).

7. Discussion

As shown in Sections 5 and 6, the total number of points
requiring remote accesses grows as O

(
n3/4+α/4

)
for both

nearest neighbor and spherical region queries. A number of
interesting conclusions can be drawn from this result. The
number of remote accesses starts out at O

(
n3/4

)
for negli-

gible α, and grows to O(n) as α reaches 1 (for P = n pro-
cessors). The number of remote accesses grows at least as
n3/4, no matter how small the number of processors used.
Thus, interprocess communication overhead does not sig-
nificantly improve by reducing the number of processors.

On the other hand, the total number of remote accesses
grows sublinearly with the problem size n, as long as the
number of processors used is sublinear in n. This implies
that the computational complexity is greater than the com-
munication complexity. As the number of processors P
is increased, the rate at which total remote accesses grow
scales only as 4

√
P . These results favor the use of large par-

allel systems.
Once the points within a query region are found, there is

typically O(1) computation per point. Even assuming that
there are only a constant number of points in each query

region, the total computational complexity grows as O(n).
Thus, the ratio of total computation cost to total communi-
cation cost is given by O

(
n(1−α)/4

)
. This ratio increases

with increasing n, thus improving the situation as n in-
creases. A critical issue for a parallel algorithm to be prac-
tically useful is the ability to limit the communication over-
head in relation to the computational costs. As the ratio
of computational complexity to communication complexity
is an increasing function of n, a lower percentage of time
spent in communication can be achieved for a fixed number
of processors by increasing n. These analyses demonstrate
that SFCs are useful for domain decomposition on large par-
allel systems.

8. Conclusions and Open Problems

In this paper, we presented a formal analysis of the ef-
fectiveness of SFCs for parallel domain decomposition in
the context of nearest neighbor and spherical region queries.
Our analysis provides new and valuable insights, and raises
several important questions for further investigation. Our
results are generic and apply for any space filling curve.
Several researchers have reported that Hilbert SFCs are bet-
ter at preserving locality than, say, the Morton ordering or
Z-SFC [8]. It would be interesting to see if an SFC-specific
analysis can be incorporated in our framework to gain fur-
ther insights. It would be especially important to find if
the different SFCs are equivalent in their locality proper-
ties (up to a constant factor) or if there are more significant
differences. Analysis of SFCs for more complex, and non-
uniform distributions also remains an open problem.

References

[1] S. Aluru and F. Sevilgen, Parallel domain de-
composition and load balancing using space-filling
curves,Proc. 4th IEEE International Conference on
High Performance Computing, (1997) 230-235.

[2] C. Gotsman and M. Lindenbaum, The metric prop-
erties of discrete space-filling curves, IEEE Transac-
tions on Image Processing, 5(5) (1996) 794-797.

[3] M. Griebel and G. Zumbusch, Hash based adaptive
parallel multilevel methods with space filling curves,
Proc. NIC Symposium (2001), In H. Rollnik and D.
Wolf, Editors, John von Neumann Institute for Com-
puting (NIC) Series, 479-492, 2002.

[4] D. Hilbert, Uber die stegie Abbildung einer Linie auf
Flachenstuck, Math. Ann., 38 (1891) 459-460.

[5] V.J. Leung, E.M. Arkin, M.A. Bender, D.P. Bunde, J.
Johnston, A. Lal, J.S.B. Mitchell, C.A. Phillips and

S.S. Seiden, Processor allocation on Cplant: Achiev-
ing general processor locality using one-dimensional
allocation strategies, Proc. IEEE International Con-
ference on Cluster Computing (CLUSTER) (2002)
296-304.

[6] Shen-Yi Lin, Chih-Shen Chen, Li Liu and Chua-
Huang Huang, Tensor Product Formulation for Hilbert
Space-Filling Curves, Proc. International Conference
on Parallel Processing (2003), 99-106.

[7] B. Moon, H.V. Jagadish, C. Faloutsos and J.H. Saltz,
Analysis of the clustering properties of Hilbert space-
filling curve, IEEE Transactions on Knowledge and
Data Engineering, 13(1) (2001) 1240-141.

[8] G.M. Morton, A computer oriented geodetic data base
and a new technique in file sequencing, IBM, Ottawa,
Canada (1966).

[9] A. Nakano, R.K. Kalia and P. Vashishta, Scalable
molecular dynamics visualization, and data manage-
ment algorithms for materials simulations, IEEE Com-
puting in Science and Engineering, 1(5) (1999) 39-47.

[10] J.R. Pilkington and S.B. Baden, Dynamic partitioning
of non-uniform structured workloads with spacefilling
curves, IEEE Transaction on Parallel and Distributed
Systems, 7(3) (1996) 288-300.

[11] J. Steensland, S. Chandra and M. Parashar, An
application-centric characterization of domain-based
SFC partitioners for parallel SAMR, IEEE Trans-
actions on Parallel and Distributed Systems, 13(12)
(2002) 1275-1289.

[12] M.S. Warren and J.K. Salmon, A Parallel Hashed Oct-
Tree N-Body Algorithm, Proc. Supercomputing ’93
(1993) 12-21.

