
Decoupling the bandwidth and latency bounding for table-based schedulers∗

Raúl Martı́nez, Francisco J. Alfaro, José L. Sánchez
Dept. de Sistemas Informáticos. University of Castilla-La Mancha. Albacete, Spain

{raulmm, falfaro, jsanchez}@dsi.uclm.es

Abstract

The provision of Quality of Service (QoS) in computing
and communication environments is currently the focus of
much discussion and research in industry and academia. A
key component for networks with QoS support is the output
scheduling algorithm.

Some of the latest network technology proposals define
scheduling algorithms that use an arbitration table to se-
lect the next packet to be transmitted. These table-based
schedulers are simple to implement and can offer good la-
tency performance. However, the versions proposed until
now do not work properly with variable packet sizes. More-
over, they face the problem of bounding the bandwidth and
latency assignments.

In this paper, we propose a new table-based scheduler,
which we call Deficit Table (DTable), that works properly
with variable packet sizes. We also propose a methodology
to decouple the bandwidth and latency assignments.

1. Introduction

Current high performance packet networks are required
to carry traffic of different applications. Some of these ap-
plications, like real-time video or telephony, require pre-
specified service guarantees. Therefore, multiservice packet
networks need to enable Quality of Service (QoS) provi-
sioning. The provision of QoS in computing and communi-
cation environments is currently the focus of much discus-
sion and research in industry and academia. A key compo-
nent for networks with QoS support is the output scheduling
algorithm, which selects the next packet to be sent and de-
termines when it should be transmitted, on the basis of some
expected performance metrics.

An ideal scheduling algorithm implemented in a high
performance network with QoS support should possess the
following properties:

∗This work was partly supported by the Spanish CICYT under Grant
TIC2003-08154-C06-02, by the Junta de Comunidades de Castilla-La
Mancha under Grant PBC-05-005-1, and by the Spanish State Secretariat
of Education and Universities under FPU grant.

• Fairness: The fairness of a scheduling algorithm is
measured as the maximum difference between the
bandwidth allocation provided by the scheduling algo-
rithm and an ideal fair queuing scheme.

• Good End-to-End Delay: The end-to-end delay is de-
fined as the sum of the transmission delay, the propaga-
tion delay, and the queuing delay experienced at each
network node. The last component is by far the most
significant. Thus, a good scheduling algorithm should
guarantee acceptable queuing delay.

• Simplicity: The processing overheads must be some
orders of magnitude smaller than the average packet
transmission time. Thus, in high-speed networks, a
simple scheduling algorithm is mandatory.

The design of a traffic scheduling algorithm involves an
inevitable trade-off among these properties. Among the
three, the delay and implementation complexity are clearly
the most important criteria for the selection of an algorithm
for being used in a real system. While the fairness property
of the algorithm affects only the short-term distribution of
service offered to the sessions sharing the link, a larger de-
lay bound implies increased burstiness of the session at the
output of the scheduler, thus increasing the buffering needed
at the switches to avoid packet losses [13].

Several scheduling algorithms with different properties
have been proposed. In [3], Chaskar and Madhow propose
a category of scheduler called list-based Weighted Round
Robin (WRR) [9], which has a simple implementation and
can offer good latency bounds. In this generalization of the
classical WRR discipline, a list of flow identifiers, called
“service list”, is maintained1. When scheduling is needed,
the list is cycled through sequentially and a packet is trans-
mitted from the flow indicated by the current list identifier.
The same approximation is followed in two of the last high
performance network interconnection proposals. In the Ad-
vanced Switching architecture [1], one of the schedulers de-
fined in the specification is a virtual channel arbitration ta-
ble scheduler. Moreover, the InfiniBand [6] scheduler also

1Sometimes, this list is also called table. In this paper both terms will
be used alike.

uses this kind of table but adds to each entry a weight that
indicates the amount of information that can be transmitted.

In the basic table-based scheduler approximation [3, 1]
each table entry allows the transmission of a packet regard-
less of the packet size. Therefore, this kind of scheduler also
presents the problem of not working properly with variable
packet sizes, as is common in actual high performance net-
works. As we are going to show, the InfiniBand approxi-
mation solves this problem only in part. As far as we know,
a table-based scheduler that is able to handle properly vari-
able packet sizes has not yet been proposed. In this paper we
propose a new table-based scheduling algorithm that works
properly with variable packet sizes. We have called this al-
gorithm Deficit Table scheduler or just DTable scheduler.

Moreover, in this kind of table-based scheduler, we can
control the latency of a flow by controling the maximum
separation between any consecutive pair of entries assigned
to that flow [2]. Therefore, we can provide flows with differ-
ent QoS latency requirements by assigning different maxi-
mum distances. However, this way of assigning the entries
of the arbitration table faces the problem of bounding the
bandwidth and latency assignments [2]. If a maximum sep-
aration between any consecutive pair of entries of a flow is
set, a certain number of table entries are being assigned, and
hence a minimum bandwidth, to the flow in question. In this
paper we also propose a methodology to configure the arbi-
tration table that partially decouples the bounding between
bandwidth and latency assignments.

The structure of the paper is as follows: Section 2
presents a summary of the best known scheduling algo-
rithms and introduces the table-based schedulers. In Sec-
tion 3, we highlight the problems of the table-based sched-
ulers, namely the problem with variable packet sizes, and
the bounding between the bandwidth and latency assign-
ments. In Section 4, we propose the DTable scheduler. In
Section 5, we present our methodology to configure the ar-
bitration table to decouple the bandwidth and latency as-
signments. Details on the experimental platform and the
performance evaluation are presented in Section 6. Finally,
some conclusions are given.

2. Scheduling algorithms

Many fair queuing scheduling algorithms have been pro-
posed, among them, a family of algorithms, which we will
refer to by the generic name of “sorted-priority” algorithms.
This family of algorithms relies on a common-reference vir-
tual clock, according to which arriving packets are stamped
with a virtual time tag. The packets are then transmitted in
an increasing order of time tag.

The best known algorithm of this family is the Weighted
Fair Queuing (WFQ) mechanism [4]. The WFQ algorithm
is an approximation of the Generalized Processor Sharing

(GPS) model [10]. GPS is a fair-queuing model based on a
fluid model that provides perfect instant fairness in band-
width allocation. This ideal model assumes that several
packets from different flows can be simultaneously trans-
mitted. WFQ is a packet-by-packet algorithm that tries to
emulate the GPS model by stamping each packet that arrives
at the egress link with its departure time in a corresponding
GPS system. This provides the best possible fairness and
delay bounds. However, the complexity of this fluid sys-
tem emulation may make the WFQ algorithm unfeasible in
high-speed interconnection technologies.

The Self-Clocked Weighted Fair Queuing (SCFQ) algo-
rithm [5] is a variant of the Weighted Fair Queuing (WFQ)
mechanism [4] which has a lower computational complex-
ity. It defines fair queueing in a self-contained manner and
avoids using a hypothetical queueing system as reference to
determine the fair order of services. Instead, it uses a virtual
time function which depends on the progress of the work in
the actual packet-based queueing system. This approach of-
fers the advantage of removing the computation complexity
associated with the calculation of the time tags in the WFQ
algorithm. However, the price paid is in terms of the end-
to-end delay bound, that grows linearly with the number of
sessions sharing the egress link [13]. Thus, the worst-case
delay of a session can no longer be controled just by con-
troling its bandwidth assignment, as it is possible in WFQ.

Summing up, the sorted-priority family of algorithms
suffers from two major problems. The first problem is that
these algorithms require processing at line speeds for tag
calculation and tag sorting. In other words, each time a
packet arrives at a node, its time tag is calculated and the
packet is inserted at the appropriate position in the ordered
list of packets waiting for transmission. This means that
these algorithms require at least the complexity of a search
algorithm in the list of queued packets: O(log(N)), where
N is the maximum number of packets at the queue, or if
the buffers are not shared, O(log(J)), where J is the num-
ber of active flows. The second problem that may happen in
the sorted-priority approach is that, since the time tag is an
increasing function of the time and depends on a common-
reference virtual clock, which in turns reflects the value of
the time tag of previously served packets, the virtual clock
cannot be reinitialized to zero until the system is completely
empty and all the sessions are idle. In other words, it is
impossible to reinitialize the virtual clock during the busy
period, which, although statistically finite (if the traffic is
constrained), can be extremely long, especially given that
most communication traffic has been shown to exhibit self-
similar patterns which lead to heavily tailed buffer occu-
pancy distributions. Therefore, for practical implementa-
tion of these algorithms, very high-speed hardware needs to
be designed to perform the sorting, and floating-point units
must be involved in the computation of the time tags. This,

2

of course, can be done, but at a great cost and with very
limited scalability.

To avoid the complexity of the sorted-priority approach,
the Deficit Round Robin (DRR) algorithm [11] has been
proposed. The aim of DRR is to implement fair queuing and
achieve practically acceptable complexity at the expense of
other performance metrics such as fairness and delay. The
DRR algorithm is a variation of the Weighted Round Robin
(WRR) algorithm [9] which works properly with variable
packet sizes. In the WRR algorithm, a list of flow weights
is visited sequentially, each weight indicating the number
of packets from the flow in question that can be transmitted.
The sum of all the weights, which is the maximum num-
ber of packets transmitted in each list cycle, is called the
frame length. On the other hand, the DRR algorithm asso-
ciates each queue with a quantum and a deficit counter. The
scheduler visits sequentially each queue. For each queue,
the scheduler transmits as many packets as the quantum al-
lows. When a packet is transmitted, the quantum is reduced
by the packet size. The unused quantum is saved in the
deficit counter, representing the amount of quantum that the
scheduler owes the queue. At the next round, the scheduler
will add the previously saved quantum to the current quan-
tum. When the queue has no packets to transmit, the quan-
tum is discarded, since the flow has wasted its opportunity
to transmit packets.

A well-known problem of the DRR algorithm (which is
also common to other round-robin schedulers) is that the la-
tency and fairness depend on the frame length. The longer
the frame is, the higher the latency and the worse the fair-
ness. In order for DRR to exhibit lower latency and better
fairness, the frame length should therefore be kept as small
as possible. Unfortunately, given a set of flows, it is not
possible to select the frame length arbitrarily. According to
the implementation proposed in [11], DRR exhibits O(1)
complexity provided that each flow is allocated a quantum
no smaller than the maximum transfer unit. As observed
in [8], removing this hypothesis would entail operating at a
complexity which can be as large as O(N). This restriction
affects not only the weight assigned to the smallest flow, but
the rest of the flows in order to keep the proportions between
them.

As stated before, Chaskar and Madhow [3] propose a
category of scheduler called list-based WRR. In this gen-
eralization of the classical WRR discipline, instead of serv-
ing packets of a flow in a single visit per frame, the ser-
vice is distributed throughout the entire frame. For this, a
list of flow identifiers, called “service list”, is maintained.
When scheduling is needed, the list is cycled through se-
quentially and a packet is transmitted from the flow indi-
cated by the current list identifier. The number of times that
a flow identifier appears in the service list is proportional to
its weight, but these appearances are not necessarily consec-

utive as in the classical WRR algorithm. In [3], it is shown
that the list-based WRR schemes can achieve the perfor-
mance of the sorted-priority algorithms. Moreover, the pro-
posed WRR-based schemes do not involve packet tag sort-
ing, and hence, they have lower implementation complexity
than WFQ-based schemes. These reasons make promising
this kind of schedulers. The study of Chaskar and Madhow
is performed with fixed packet size and they comment that
weighted versions of these schemes could handle variable
packet sizes. However, as far as we know, a table-based
scheduler that is able to handle properly variable packet
sizes has not yet been proposed.

Two recent network technology standards incorporate a
scheduling algorithm similar to the list-based WRR sched-
ulers: Advanced Switching (AS) [1] and InfiniBand [6].
These technologies use Virtual Channels (VCs) to aggre-
gate flows with similar characteristics and the arbitration is
made at a VC level. In both cases, the maximum number of
unicast VCs that a port can implement is 16. AS defines a
VC arbitration table scheduler that works in the same way
as the service list of the list-based WRR schedulers. This
arbitration table can have 32, 64, 128, 256, 512, or 1024
entries. Each entry contains a VC identifier value. When
arbitration is needed, the table is cycled through sequen-
tially and a packet is transmitted from the VC indicated in
the current table entry regardless of the packet size. On the
other hand, InfiniBand defines a scheduler that uses two ta-
bles, one for scheduling packets from high-priority VCs and
another one for low-priority VCs. The maximum amount of
data that can be transmitted from high-priority VCs before
transmitting a packet from the low-priority VCs can be con-
figured. Each table has up to 64 entries. Each entry contains
a VC identifier and a weight, which is the number of units of
64 bytes to be transmitted from that VC. This weight must
be in the range of 0 to 255, and is always rounded up as a
whole packet.

3. Problems of the table-based schedulers

The first problem of the table-based schedulers is that
they do not work in a proper way with variable packet sizes.
However, today network technologies usually use variable
packet sizes. If the average packet size of the different
flows is different, the bandwidth that the flows obtain may
not be proportional to the number of table entries. Figure
1 shows the performance of various table-based schedulers
when there are four aggregated traffic flows in the network.
All these flows have the same data rate and the same num-
ber of assigned table entries but different packet size. The
simulated architecture is the same as that described in the
performance evaluation in Section 6.

Figure 1(a) shows the case of a basic table scheduler sim-
ilar to the AS table scheduler, which is cycled through and

3

(a) Basic table (b) Weighted table (c) Deficit table

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8 1 1.2 1.4 1.6 1.8 2

2048 bytes
1024 bytes
512 bytes
256 bytes

Global Input Load

N
or

m
al

iz
ed

th
ro

ug
hp

ut
pe

r
V

C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8 1 1.2 1.4 1.6 1.8 2

2048 bytes
1024 bytes
512 bytes
256 bytes

Global Input Load

N
or

m
al

iz
ed

th
ro

ug
hp

ut
pe

r
V

C

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.8 1 1.2 1.4 1.6 1.8 2

2048 bytes
1024 bytes
512 bytes
256 bytes

Global Input Load

N
or

m
al

iz
ed

th
ro

ug
hp

ut
pe

r
V

C

Figure 1. Performance of various table-based schedulers for flows with different packet size.

when a table entry is selected, a packet from the VC indi-
cated in that entry is transmitted regardless of the packet
size. As can be observed, when using the basic table sched-
uler, the flows obtain a very different bandwidth because
each flow has a different packet size. Therefore, although
the same number of packets from each flow will be trans-
mitted, the amount of information will not be the same.

The InfiniBand’s weighted table solves the problem only
partially because it allows a packet to be transmitted that
requires even more weight than the remainder of a given
table entry (exhausting them). Figure 1(b) shows the per-
formance of a weighted table that works in this way. We
have assigned all the entries the same weight: 2176 bytes
(34 units of 64 bytes). As can be seen, it presents better per-
formance than the basic table scheduler, but not an optimum
performance.

The second problem of the table-based schedulers refers
to the bounding between the bandwidth and latency assign-
ments. In [3], Chaskar and Madhow propose three list-
based WRR schedulers. For a given set of flows, the ar-
bitration table of the three schedulers is going to have the
same number of entries. Therefore, the difference between
the three schedulers is in the way of distributing the flow
identifiers among the table entries. These different forms
of interleaving the flow identifiers result in different latency
characteristics for the three schedulers.

In [2], the approach is different. Instead of having a set
of flows with different bandwidth requirements and trying
to provide all of them with the best possible latency, flows
present different latency requirements and the table is filled
in such a way that their requirements are achieved. In [2],
it is shown (in that case for InfiniBand) that controling the
maximum separation between any consecutive pair of en-
tries assigned to the same flow, it is possible to control the
latency of that flow. This is because this distance determines
the maximum time that a packet at the head of a flow queue
is going to wait until being transmitted.

When using the table-based schedulers in which an entry
allows one packet to be transmitted, the way of assigning
the entries of the table proposed in [2] faces the problem

of bounding the bandwidth and latency assignments. If a
maximum separation between any consecutive pair of ta-
ble entries of a flow is set, a certain number of them are
being assigned, and hence a minimum bandwidth, to the
flow in question. In that way, to assign to the most latency-
restrictive flows a small amount of bandwidth is not possible
because lower distances must be used for them. This can be
a problem because the most latency-restrictive traffic does
not usually present a high bandwidth requirement. More-
over, we cannot assign more bandwidth to the flows than
that provided for the number of table entries.

We have performed a simple test using a table scheduler
with several aggregated flows, each one using a different
VC. The flows present different latency requirements and
thus a different distance in the arbitration table has been as-
signed to each VC. We have performed the test using an ar-
bitration table of 64 entries. Table 1 shows the distance be-
tween any consecutive pair of the table entries of the flows
and the number and percentage of entries that this entails.
The simulated architecture is also the same as that described
in Section 6. All the flows inject data at the same rate. The
results obtained are shown in Figure 2. As can be seen, the
flows obtain a different throughput depending on the dis-
tance configuration of each flow. This shows a clear bound-
ing between the latency and bandwidth assignments.

Table 1. Arbitration table configuration
VC Distance #entries %entries

D2 2 32 50
D4 4 16 25
D8 8 8 12.5
D16 16 4 6.25
D32 32 2 3.125
D64 64 1 1.5625
D64’ 64 1 1.5625

Total 64 100

4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D2
D4
D8
D16
D32
D64
D64’

Global Input Load

N
or

m
al

iz
ed

th
ro

ug
hp

ut
pe

r
V

C

Figure 2. Performance of the basic table
scheduler for flows with different distance
configuration.

4. The Deficit Table scheduler

In this section we propose a new table-based scheduling
algorithm that works properly with variable packet sizes.
We have called this new algorithm Deficit Table scheduler,
or just DTable scheduler, because it is a mix between the
table-based schedulers presented before and the DRR algo-
rithm. In the same manner that the list-based WRR sched-
ulers distribute the service over the round-robin frame, the
DTable scheduler distributes the quantum assigned to each
flow among the table entries assigned to that flow. We de-
fine the DTable scheduler taking into account a link-level
flow control mechanism in the network, as in the case of AS
or InfiniBand. Thus, if the credits for a given flow have been
exhausted, the scheduler treats the corresponding queue as
if it were empty. If there is no flow control mechanism, the
scheduler must consider that there are always enough cred-
its to transmit a packet. Specifically, this scheduler works
in the following way:

• Each table entry has associated a VC identifier and an
entry weight. The entry weight is the amount of infor-
mation, in flow control credits, that each entry allows
to be transmitted.

• Each VC has assigned a deficit counter that works in
the same way as in the DRR scheduler.

• A VC is active when it stores at least one packet and
there are enough credits to transmit the packet that is
at the head of the VC queue.

• Table entries are cycled through until an entry assigned
to an active VC is found. We will call this VC the
selected VC.

• When a table entry is selected, the accumulated weight
is computed. The accumulated weight is equal to the
sum of the deficit counter for the selected VC and the
entry weight.

• Packets belonging to the selected VC are transmitted.
The accumulated weight is reduced after sending each
packet in an amount equal to the number of flow con-
trol credits required by the transmitted packet.

• The next table entry is selected when any of the fol-
lowing conditions occurs:

– There are no more packets from the selected VC.
In that case, the VC becomes inactive, and the
deficit value for that VC becomes zero.

– There are not enough flow control credits for
transmitting the packet that is at the head of
the VC queue. Therefore, this packet cannot be
transmitted. In that case, the VC becomes inac-
tive, and the deficit value for that VC becomes
zero.

– The accumulated weight is less than the size of
the packet that is at the head of the queue. There-
fore, this packet cannot be transmitted. In that
case, the deficit value becomes equal to the accu-
mulated weight.

We set the minimum value that a table entry can have
associated to the MTU of the network. This is the small-
est value that ensures that there will never be a need to cy-
cle through the entire table several times in order to gather
enough weight for the transmission of a single packet. Note
that this is the same consideration as that made in the DRR
algorithm [11]. Note also that the InfiniBand tables solve
this problem by rounding up to a whole packet the remain-
ing weight in a table entry.

Figure 1(c) shows the performance of the DTable sched-
uler when four flows inject data at the same rate and have
assigned the same number of table entries, but they have
different packet sizes. As can be seen, in this case all the
flows obtain the same throughput. Therefore, the resulting
DTable algorithm is a quite simple modification of the table
scheduler that works properly with variable packet sizes.
The memory requirements for this algorithm over the basic
table scheduler are the memory needed to store the deficit
counter for each VC and the weight associated to each table
entry.

Summing up, we have proposed a new table-based
scheduler that is able to deal properly with variable packet
sizes. We have defined this scheduler considering the posi-
bility of a link-level flow control mechanism.

5. Decoupling the bandwidth assignment from
the latency requirements

In this section we present a new methodology to config-
ure the DTable scheduler presented above to decouple, at

5

least partially, the bounding between the bandwidth and la-
tency assignments. Our aim here is to control the latency
by fixing the maximum distance between any consecutive
pair of table entries for each flow, or aggregate of flows,
and to control the assigned bandwidth by fixing the weights
assigned to those entries. In that way, the latency and band-
width allocation of a flow would be independent.

Supposing an arbitration table with N entries in a net-
work with a certain Maximum Transfer Unit (MTU), and
supposing the ith flow has assigned ni table entries, we
would like to be able to assign the ith flow with a certain
bandwidth φi in the most flexible possible way. This means
that we would like the minimum bandwidth minφi that can
be assigned to that flow to be as small as possible, and the
maximum bandwidth maxφi that can be assigned to that
flow to be as large as possible. Note that in the classical
table scheduler, the number of entries (the proportion of
entries over the total) fixes the bandwidth allocated to that
flow. Table 2 shows all the involved parameters.

Table 2. Arbitration table parameters
N Number of entries of the arbitration table

MTU Maximum Transfer Unit in credits

ni Number of entries assigned to the ith flow
maxφi Maximum bandwidth assignable to the ith flow
minφi Minimum bandwidth assignable to the ith flow

φi Bandwidth actually assigned to the ith flow

k Bandwidth pool decoupling parameter
w Maximum weight decoupling parameter
M Maximum weight per table entry

pool Bandwidth pool

We define two decoupling table parameters: w and k.
The w parameter determines the maximum weight M that
can be assigned to a single table entry in function of the
MTU :

M = MTU × w

The k parameter determines the total weight that can be dis-
tributed between all the table entries. We are going to call
this value the bandwidth pool.

pool = N × MTU × k

The total number of weight units from the bandwidth pool
that the table entries of a flow have assigned fixes the band-
width that the flow has actually assigned.

Note that k,w ≥ 1 because, as stated before, the min-
imum weight that can be assigned to a table entry is the
MTU . Note also that k ≤ w because the bandwidth
pool cannot be larger than the theoretical maximum weight
among all the entries (N × M).

These two parameters fix the minimum and the maxi-

mum bandwidth that can be assigned to a flow:

minφi =
ni × MTU

pool
=

ni × MTU

N × MTU × k
=

ni

N
× 1

k

maxφi =
ni × M

pool
=

ni × MTU × w

N × MTU × k
=

ni

N
× w

k

Table 3 shows an example with a table of 64 entries and 7
flows with different distances between any consecutive pair
of table entries. The w and k parameters have been set to
4 and 2, respectively. The table also shows the bandwidth
that can be actually assigned to each flow depending on the
number of entries and the w and k parameters. As we can
see, the flows can be assigned in a range that goes from
half the percentage of assigned table entries to double that
percentage.

Table 3. Example of decoupling with N=64,
k=2, w=4

Distance #entries %entries minφi maxφi

2 32 50 25 100
4 16 25 12.5 50
8 8 12.5 6.25 25
16 4 6.25 3.13 12.5
32 2 3.13 1.56 6.25
64 1 1.56 0.78 3.13
64 1 1.56 0.78 3.13
Total 64 100 50 200

When choosing the w and k parameters some considera-
tions must be made. If we want to be able to assign a small
amount of bandwidth to a flow with lots of entries, the k
parameter must be small. However, the smaller k is, the
smaller the maximum bandwidth that can be assigned. We
can solve this by increasing the value of w but this has two
disadvantages. First of all, the memory resources to store
each entry weight would be higher. Secondly, the latency
of the flows would increase, because each entry is allowing
more information to be transmitted, and thus the maximum
time between any consecutive pair of table entries would be
higher.

6. Performance Evaluation

In this section, we evaluate the behavior of our decou-
pling methodology. Specifically, we apply it to the proposed
DTable scheduler. For this purpose, we have developed a
detailed simulator that allows us to model the network at
the register transfer level, following the AS specification.
Note that our proposals can be applied, however, to any in-
terconnection network technology that uses a table-based
scheduler. First, we will describe the main AS network
model features. Secondly, the configuration of the table

6

Table 4. Table configuration. N = 64, MTU = 34, k = 2.75, w = 8
VC #entries %entries minφi maxφi φi Total weight

D2 32 50 18.18 145.45 18.18 1088
D4 16 25 9.09 72.72 18.18 1088
D8 8 12.5 4.54 36.36 18.18 1088
D16 4 6.25 2.27 18.18 18.18 1088
D32 2 3.13 1.14 9.09 9.09 544
D64 1 1.56 0.57 4.55 4.55 272
D64’ 1 1.56 0.57 4.55 0.57 34
Total 64 100 36.36 290.90 86.93 5202

Unassigned bandwidth 13.07 782
Total 100 5984

scheduler employed is specified. Thirdly, the traffic model
is described. Finally, we present and analyze the results ob-
tained.

6.1. Simulated architecture

We have used a perfect-shuffle Bidirectional Multi-stage
Interconnection Network (BMIN) with 64 end-points con-
nected using 48 8-port switches (3 stages of 16 switches).
In AS any topology is possible, but we have used a MIN be-
cause it is a common solution for interconnection in current
high-performance environments. The switch model uses a
combined input-output buffer architecture with a crossbar to
connect the buffers. Virtual output queuing has been imple-
mented to solve the head-of-line blocking problem at switch
level. As stated before, AS uses VCs to aggregate flows
with similar characteristics and the arbitration is made at
VC level.

In our tests, the link bandwidth is 2.5 Gb/s but, with the
AS 8b/10b encoding scheme, the maximum effective band-
width for data traffic is only 2 Gb/s. We are assuming some
internal speed-up (x1.5) for the crossbar, as is usually the
case in most commercial switches. AS gives us the free-
dom to use any algorithm to schedule the crossbar, so we
have implemented a round-robin scheduler. The time that a
packet header takes to cross the switch without any load is
145 ns, which is based on the unloaded cut-through latency
of the AS StarGen’s Merlin switch [12].

A credit-based flow control protocol ensures that packets
are only transmitted when there is enough buffer space at
the other end to store them, making sure that no packets
are dropped when congestion appears. The MTU of an AS
packet is 2176 bytes. The credit-based flow control unit is
64 bytes, and thus the MTU corresponds to 34 credits.

The buffer capacity is 34816 bytes (16×MTU) per VC at
the network interfaces and 17408 bytes (8×MTU) per VC
both at the input and at the output ports of the switches. If
an application tries to inject a packet into the network inter-
face but the appropriate buffer is full, we suppose that the
packet is stored in a queue of pending packets in the ap-

plication layer. Regarding the latency statistics, a packet is
considered injected when it is stored in the network inter-
face.

6.2. Table scheduler configuration

We have defined 7 VCs with different distances between
consecutive entries in the arbitration table. In a real case
we would assign the traffic flows to these VCs depending
on their latency requirements. Note that we are going to
consider the requirements of a VC as the requirements of
the traffic that is going to be transmitted using that VC. We
have called these VCs D2, D4, D8, D16, D32, D64, and
D64’, indicating the distance between any pair of consec-
utive table entries. Therefore, D2 has more strict latency
requirements than D4, D4 than D8, and so on. A table of 64
entries has been used in the simulations. To allow the de-
coupling between the latency requirements of the VCs and
the bandwidth assigned to them, we have used our method-
ology, assigning to the k parameter a value of 2.75 (the
bandwidth pool is 2.75 times the MTU multiplied by the
number of entries), and the w parameter a value of 8 (each
table entry can be assigned a maximum weight of 8 times
the MTU). These parameters determine the bandwidth pool,
and the minimum and maximum bandwidth per VC:

pool = N × MTU × k = 64 × 34 × 2.75 = 5984

minφi =
ni

N
× 1

k
=

ni

64
× 1

2.75

maxφi =
ni

N
× w

k
=

ni

64
× 8

2.75
=

ni

64
× 2.91

We have chosen this combination of parameter values
because they allow us to assign D2, D4, D8, and D16 the
same bandwidth. This is useful for two reasons. First of
all, our intention is to show that we can assign bandwidth to
a VC with a certain independence of the distance between
consecutive entries, and thus with a certain independence of
the number of entries that a VC has assigned. In order to do
this we are going to inject traffic for all the VCs in the same

7

proportion and we expect to obtain the same throughput for
these VCs. Secondly, this allows us to study the effect of the
different separation between any consecutive pair of table
entries of these VCs in a fair way. Table 4 shows the number
of entries assigned to each VC, the percentage of entries that
this entails, the minimum and maximum bandwidth that can
be assigned to each VC, the bandwidth that we have actually
assigned to each VC in the simulations, and the weight that
we have distributed between the table entries of each VC to
configure this bandwidth.

6.3. Traffic model

The traffic load is composed of self-similar point-to-
point flows of 1 Mb/s. The destination pattern is uniform
in order to fully load the network. The packets’ size is gov-
erned by a Pareto distribution, as recommended in [7]. In
this way, many small-sized packets are generated, with an
occasional packet of large size. The periods between pack-
ets are modeled with a Poisson distribution. Figure 3 shows
the normalized injection rate of the aggregated of flows as-
sociated with each VC. As stated before, we inject the same
amount of traffic in all the VCs.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.4 0.6 0.8 1 1.2 1.4 1.6

D2
D4
D8

D16
D32
D64
D64’

In
je

ct
io

n
ra

te
pe

r
V

C

Global Input Load

Figure 3. Normalized injection rate per VC.

6.4. Simulation results

Figure 4 shows the average values and the confidence in-
tervals at 90% confidence level of ten different simulations
performed at a given input load. For each simulation we
obtain the average throughput, the average packet latency,
and the maximum packet latency of each flow. No statis-
tics on packet loss are given because, as has been said, AS
has a credit-based flow control mechanism to avoid drop-
ping packets. We obtain statistics per VC aggregating the
throughput of all the flows of the same VC, obtaining the
average value of the average latency, and the maximum la-
tency of all the flows. Note that the maximum latency shows
the behavior of the flow with the worst performance.

As stated before, Figure 4 shows the normalized
throughput results per VC. As we can see, when the load
is low, all the VCs obtain the bandwidth they inject. How-
ever, when the load is high (around 95%) the VCs do not

yield a corresponding result, obtaining a bandwidth propor-
tional to their priority. Specifically, the D2, D4, D8, and
D16 VCs obtain the same throughput although they have
assigned a different number of table entries. However, the
D64 and D64’ VCs obtain a different throughput although
they have assigned the same number of table entries. There-
fore, this figure shows that the VCs obtain a throughput that
does not depend on the number of table entries nor on the
distance between any consecutive pair of entries assigned to
the VCs, but on the weight assigned to their entries.

Figure 4 also shows the average and maximum latency
performance. When the load is very low, all the VCs present
a similar low latency. This is because at this load level there
are few packets being transmitted through the network, and
thus there are few conflicts between them. When the load
increases, the latency also increases because some packets
must wait in the buffers until others have been transmitted.
It is at this point that the scheduler algorithm assumes an
important role and the VCs obtain a different latency de-
pending on the scheduler configuration. However, when the
load of the VC begins to outstrip its throughput, the latency
of the scheduler starts to grow very fast. This is because
the buffers used for that VC begin to be full. Finally, the
buffers become completely filled and the latency stabilizes
at a given value which depends on the buffers’ size and the
bandwidth assigned to that VC.

Figure 5 shows the percentage of improvement on av-
erage and maximum latency of the D2 VC over the D4,
D8, and D16 VCs. Note that all of these VCs inject the
same traffic and obtain the same throughput. However,
they obtain a different latency performance depending on
the separation between any consecutive pair of their table
entries. The smaller the distance, the better latency per-
formance they obtain. The percentage of improvement is
very small when the load is small, but increases with the
load. As stated before, this is because scheduler makes the
difference when there are conflicts between packets from
different VCs. However, when the load is higher than the
throughput, the buffers are almost always full. At this mo-
ment, the bandwidth that each VC obtains outweights in im-
portance the distance of the entries in the arbitration table.
This is the reason why the figures show that the percentage
of improvement for those points becomes zero or does not
stabilize in a clear value.

Summing up, our results show that the weight assigned
to the VCs determines the proportion of bandwidth that
they are going to obtain, independently of the number of
table entries or the distance between any consecutive pair
of entries. Moreover, the separation between any consecu-
tive pair of the table entries of a VC determines the latency
performance when the load of that VC is smaller than the
throughput that it obtains.

8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.4 0.6 0.8 1 1.2 1.4 1.6

D2
D4
D8
D16
D32
D64
D64’

Global Input Load

N
or

m
al

iz
ed

th
ro

ug
hp

ut
pe

r
V

C

 0.001

 0.01

 0.1

 1

 10

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6

D2
D4
D8
D16
D32
D64
D64’

Global Input Load

A
ve

ra
ge

la
te

nc
y

(m
s)

 0.01

 0.1

 1

 10

 100

 1000

 0.4 0.6 0.8 1 1.2 1.4 1.6

D2
D4
D8
D16
D32
D64
D64’

Global Input Load

M
ax

im
um

la
te

nc
y

(m
s)

Figure 4. Throughput and latency performance.

 0

 10

 20

 30

 40

 50

 60

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D2−D4
D2−D8
D2−D16

Global Input Load

A
ve

ra
ge

la
t.

im
pr

ov
.

(%
)

−20

−10

 0

 10

 20

 30

 40

 50

 60

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D2−D4
D2−D8
D2−D16

Global Input Load

M
ax

im
um

la
t.

im
pr

ov
.

(%
)

Figure 5. Latency improvement.

7. Conclusions

Recent network technologies such as InfiniBand or Ad-
vanced Switching propose table-based schedulers at the
egress ports. These schedulers exhibit interesting charac-
teristics. However, we have shown that these table-based
schedulers face the problem of bounding the bandwidth and
latency assignments. We have also shown that these sched-
ulers do not work properly with variable packet sizes. Even
the weighted table of InfiniBand only solves the problem
partially, and its results are far from acceptable.

In this paper we have proposed the Deficit Table sched-
uler, which is a new table-based scheduler that works prop-
erly with variable packet sizes. As far as we know, this is
the first table-based scheduler proposal that is able to deal
properly with variable packet sizes.

Moreover, we have proposed a methodology for decou-
pling the bandwidth assignment from the latency require-
ments for table-based schedulers. With this methodology
we set the maximum distance between any consecutive pair
of entries assigned to a flow depending on its latency re-
quirement. Moreover, we can assign the flows with a band-
width varying between a minimum and a maximum value
that depends not only on the number of table entries as-
signed, but also on two table configuration parameters.

We have tested our proposals in an Advanced Switch-
ing simulator, although they can be applied to any intercon-
nection network technology. Simulation results show that
the weight assigned to the VCs fixes the bandwidth they re-
ceive, independently of the number of table entries or the
maximum distance between them, while the latency perfor-
mance comes from the separation between any consecutive
pair of table entries assigned to the VC.

These results are extremely important because they offer
us the solution to two major problems of the table-based
schedulers, which can be used in current interconnection
standards such as InfiniBand or Advanced Switching, or in
future proposals of interconnection standards.

References

[1] Advanced Switching Interconnect Special Interest Group.
Advanced Switching core architecture specification. Revi-
sion 1.0, Dec. 2003.

[2] F. J. Alfaro, J. L. Sánchez, and J. Duato. QoS in Infini-
Band subnetworks. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(9):810–823, Sept. 2004.

[3] H. M. Chaskar and U. Madhow. Fair scheduling with tunable
latency: A round-robin approach. IEEE/ACM Transactions
on Networking, 11(4):592–601, 2003.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and simu-
lations of a fair queuing algorithm. In SIGCOMM, 1989.

[5] S. J. Golestani. A self-clocked fair queueing scheme for
broadband applications. In INFOCOM, 1994.

[6] InfiniBand Trade Association. InfiniBand architecture spec-
ification volume 1. Release 1.0, Oct. 2000.

[7] R. Jain. The art of computer system performance analysis:
Techniques for experimental design, measurement, simula-
tion and modeling. John Wiley and Sons, Inc., 1991.

[8] S. S. Kanhere, H. Sethu, and A. B. Parekh. Fair and efficient
packet scheduling using elastic round robin. IEEE Transac-
tions on Parallel and Distributed Systems, 2002.

[9] M. Katevenis, S. Sidiropoulos, and C. Corcoubetis.
Weighted round-robin cell multiplexing in a general-
purpose ATM switch chip. IEEE Journal on Selected Areas
in Communications, Oct. 1991.

[10] A. K. Parekh and R. G. Gallagher. A generalized processor
sharing approach to flow control in integrated services net-
works: The multiple node case. IEEE/ACM Transactions on
Networking, 1994.

[11] M. Shreedhar and G. Varghese. Efficient fair queueing using
deficit round robin. In SIGCOMM, pages 231–242, 1995.

[12] StarGen. StarGen’s Merlin switch, 2004. http:
//www.stargen.com/products/merlin_
switch.shtml.

[13] D. Stiliadis and A. Varma. Latency-rate servers: a gen-
eral model for analysis of traffic scheduling algorithms.
IEEE/ACM Transactions on Networking, 1998.

9

