
Object Placement in Parallel Tape Storage Systems

Xianbo Zhang, Dingshan He, David H.C. Du and Yingping Lu
Department of Computer Science and Engineering

DTC Intelligent Storage Consortium (DISC)
University of Minnesota, Minneapolis, MN 55455

{xzhang,he,du,lu}@cs.umn.edu

Abstract

High performance computing and enterprise data cen-
ter require huge amount of data transfer between disk and
tape. With the help of large capacity disk, writing to tape
is less problematic than reading from tape. We are in-
vestigating how to use multiple tape libraries to build a
parallel tape storage system with high aggregated data re-
trieval bandwidth. The challenge lies in that increasing
data transfer parallelism may also increase tape switch
time and data seek time that reduce the effective data re-
trieval bandwidth. We are proposing a novel scheme to
place objects across tape drives based on object access
pattern to reduce tape switch time and in the meanwhile
increase data transfer parallelism. A multiple-tape-library
simulator is built to study the proposed scheme. Simulation
results show that our scheme outperforms other two pre-
viously proposed schemes with a better trade-off between
tape switch time, data seek time and data transfer time.

1. Introduction

In the high performance computing cluster environment
there are many data intensive applications that feature high
I/O bandwidth and huge storage space requirement. Due to
the large amount of data generated within the cluster envi-
ronment [3, 4], moving data between disk and tape is a nec-
essary step to assure the system of a sustained high perfor-
mance. Thus, high performance data transfer between disk
and tape would be extremely important for these cluster
file systems. This high performance data transfer between
disk and tape is equally important to the backup/archive
system for enterprise data centers. For business continu-
ance and regulation requirement, critical data are periodi-
cally or even continuously backed up to tapes. If any data
loss should occur, the data backup needs to be restored.
The total restore time has to be minimized to reduce enter-
prise financial losses.

Due to decreasing cost and increasing capacity of the
ATA/SATA drive, staging disk and disk based virtual tape
library (VTL) [5] are widely placed in front of the phys-

ical tape libraries to temporarily backup/archive the large
amount of data from high performance computing clus-
ter or enterprise data center. These disks work as a high
performance buffer with low access latency helping the
sequential-access tape drives write in streaming mode with
high performance. However, this disk data buffer can not
help tape drives retrieve data in high speed. With a com-
mon backup/archive process, data are moved onto tapes
without data retrieval in mind.

We focus our research on increasing the data retrieval
speed for tape storage system within the high performance
computing environments and enterprise data centers. The
restore operation is needed more frequently than every-
one’s initial thought. To improve the utilization and fair
access of high performance computing cluster resources,
users are usually preallocated a time slot to run their ap-
plications. When the running application becomes inac-
tive at the end of the allocated time slot, the application
and its related data have to be migrated to tape to guaran-
tee enough high performance storage space to other active
users. When the user’s time slot comes again, the migrated
data have to be restored to the cluster to resume the user’s
work for further computing/analysis. For some numeri-
cal simulation program, the whole running time goes from
days to months [7]. The running state of the program is
backed up to a disk and eventually to a tape at every check-
point for data recovery in the event of any hardware or
software failure. If a failure does happen, the data backup
from the latest checkpoint needs to be brought back to the
primary disk to restore the running state of the simulation
program.

In this paper, we are investigating how to use multiple
tape libraries to build a parallel tape storage system with
high aggregated data retrieval bandwidth through proper
data placement and tape switch strategy. Intuitively, mul-
tiple tape libraries working together can increase the ag-
gregate bandwidth between disk storage and tape storage
and reduce the tape switch time by introducing parallel
load/unload operation. However, as noted in [11, 15, 20],
without a proper data placement across drives, increas-
ing data transfer parallelism may also increase tape switch
time and data seek time, which delay data transfer and de-

crease the effective data retrieval speed. To make the intu-
ition come true, we are proposing a novel object placement
scheme based on object access relationship to place ob-
ject across tape drives/libraries to reduce tape switch time
and increase data transfer parallelism, thus achieving high
effective data retrieval bandwidth. Our proposed scheme
achieves good trade-off between tape switch operation,
data transfer operation and data seek operation and outper-
forms two other previously proposed placement schemes
according to the simulation.

The rest of this paper is organized as follows. An
overview of related work on data placement for tape li-
braries is given in Section 2. The problem is formulated in
Section 3. Section 4 briefly describes the object placement
trade-offs on parallel tape libraries. Our proposed object
placement scheme is presented in Section 5 and evaluated
by simulation in Section 6. The conclusions and discus-
sion are presented in Section 7.

2. Related work

Tertiary storage libraries are demanded by many mul-
timedia and scientific computing applications due to their
huge storage requirements. There is a large body of re-
search on improving tape request response time, which
consists of optional tape cartridge switch time, object seek
time and data transfer time. In order to reduce the num-
ber of tape switches, [20] explores object relationship and
puts objects with a strong relationship on the same tape
media. The authors assume that the tape switch time dom-
inates the whole request response time, which may not be
true for some tape systems, and the potential of parallel
data transfer is ignored. Research studies in [24] focus
on optimizing object seek time with proper object align-
ment. Based on independent object access probabilities,
the optimal solution within one tape ends up with an or-
gan pipe alignment of access probabilities. To reduce av-
erage seek time for multiple tapes, [11] develops differ-
ent optimized placements for tapes that either rewind to
the middle position of the tape or rewind to the beginning
position of the tape when they are unmounted. Such op-
timal solutions do not consider the effects of tape switch
and object relationship. [22] shows that an organ-pipe ar-
rangement is also optimal for cartridges and file partition-
ing under different storage configurations in carousel type
mass storage systems. More studies have been conducted
on using object-striping techniques to reduce data trans-
fer time [15, 10, 13, 14]. Striping is a well-known tech-
nique for improving the effective I/O bandwidth for disk
storage systems [21, 8, 6, 23]. Unfortunately, striping on
sequential-accessed tapes suffers from long synchroniza-
tion latencies not faced by random-accessed disks. The
optimal striping width on tapes depends on object size,
system workload, the ratio of readers and robotic arms.
The striping system may perform worse than non-striping
system [9, 13, 19, 10]. Thus, in our proposed scheme, we

do not consider object striping.

3. Problem formulation

We make the following three assumptions about data
retrieval characteristics, which to a large extent reflect
the data retrieval characteristics within the high perfor-
mance computing environment and a backup/restore sys-
tem [18, 12]: (1) Objects form clusters and a cluster of ob-
jects have high chance to be retrieved together; (2) Object
clusters have different access probabilities, and an access
probability can represent any manually assigned weight or
priority of the object cluster; (3) Most data object accesses
to the tape storage exhibit whole object sequential access
patterns, i.e., the entire object is retrieved from tape.

Figure 1 presents the data transfer architecture we are
exploring, where each tape drive has a limited data transfer
rate compared to the high performance disk arrays. Tape
drives can transfer data to the disk cache in parallel, how-
ever the tape load/unload within a tape library is sequen-
tial due to the constraint of one robot in a tape library.
Robots work independently across tape libraries. We de-
fine the tape request response time as the time interval from
tape storage system receiving an object request to finishing
all requested object transfers. The effective data retrieval
bandwidth of a tape storage system is equal to the size of
transferred data divided by the tape request response time.
For the same amount of data, the longer the tape request
response time, the lower the corresponding effective band-
width.

Tape Library Robot

Tape Drives

Data path

Request path

Tape cartridge
Switch

Application servers
(Clients)

Transfer bottleneck

Figure 1. Parallel tape storage system model

The problem we are investigating is: How to place data
objects among tape libraries with multiple tape drives to
minimize the average tape request response time of Nreq

requests ∑
Nreq
i=1 (P(Ri)× t(Ri)). Where P(Ri) is the access

probability of request Ri while t(Ri) is the request re-
sponse time for request Ri , which equals to the summa-
tion of Tswitch, Tseek and Ttrans f er. All three components are
variables that depend on the placement and the retrieval
scheduling for the requested objects. The placement trade-
offs are discussed in Section 4.

In summary, we are assuming the following:

(1) A set of Nob j objects (O1,O2, ...) with different
sizes.

(2) A set of Nreq requests: {R1,R2, ...}. The access
probability of each request is known; each request can ask
for one or more objects.

(3) The service for a request is completed when the last
object of a request has been transferred to disk.

(4) The same object can be asked for by different re-
quests.

(5) We have n identical libraries; each tape library has:
One robot arm for loading and unloading tapes to drives;
d tape drives, {D1,D2, ...,Dd}, each with the same perfor-
mance properties; t tapes, each with the same capacity Ct ;
d << t.

(6) The bottleneck of data transfer path lies at tape
drive, i.e., network or communication channel contention
is negligible elsewhere.

We believe that the optimal solution for the problem is
NP-hard and will only look for a heuristic solution.

4. Object placement trade-offs

As mentioned before, the request response time is the
time period from receiving a data request to finishing all
requested data transfers, which is composed of three items:
(1) Tswitch: if the required tape drive is occupied by another
tape, it includes the time of tape rewinding, tape unmount-
ing, tape returning to storage cell and fetching the required
tape by robotic arm to the drive, and tape mounting. Oth-
erwise, Tswitch equals to 0 if the tape cartridge is already
mounted on a tape drive; (2) Tseek: the time to locate the
required objects; (3) Ttrans f er: the time to transfer the re-
quested objects from tape to disk.

For a specific request, requested objects may or may not
all reside on the same tape. They may be across multiple
tapes within the same tape library or even across multi-
ple tape libraries. Depending on the object placement, the
response time for a request may end up with one of the
following three cases, associated with different cost func-
tions.

Case 1: All requested objects are on the same tape.
The request response time is determined by the response
time of the single tape: T = Tswitch + ∑

Nreq
i=1 (Tseek,Oi +

Ttrans f er,Oi). The total seek time can be minimized if the
requested objects are located next to each other on the
tape and close to the tape drive head position. Tseek,Oi and
Ttrans f er,Oi are the seek time and transfer time of the i− th
object of the request. The pros and cons are summarized
below.

Pros: Reduced Tswitch due to at most one switch per
request which reduces contentions for tape drives and the
robot

Cons: No data transfer parallelism within a request
Case 2: Requested objects are spread across multiple

tapes within the same tape library. Object transfers are
in parallel but tape switches are sequential assuming one

robotic arm per tape library. The total request response
time is determined by the maximum time used by an in-
volved tape. The required time to transfer data from each
involved tape is just as described in Case 1. The pros and
cons of this placement are generalized as follows:

Pros: Reduced data transfer time if tape drive data
transfers happen in parallel

Cons: Potential to increase Tswitch due to increased con-
tention for tape drives and the robot

Case 3: Objects are further spread across multiple tape
libraries. The difference of this case compared to Case 2 is
that multiple robotic arms work in parallel. Therefore, we
can take advantage of the possible tape switch parallelism
between tape libraries. However, within a tape library, the
same concerns exist as in Case 2. It has the following pros
and cons.

Pros: Reduced data transfer time due to increased par-
allelism within a request; reduced Tswitch due to parallel
robotic arms

Cons: It may increase contention for tape drives and
introduce a wider range of tape drive startup delay

Load balancing among tape drives is important to re-
duce request response time for all cases. In summary, there
are many factors that affect the tape request response time
and these factors are affecting each other. A good object
placement should provide a good trade-off between tape
switch time, data seek time and data transfer time.

5. Proposed object placement

Considering the big penalty associated with tape
switches and long transfer time associated with huge re-
quest size, we are proposing an object placement scheme
to leverage object access probabilities and object relation-
ships to increase tape switch parallelism and synchronize
data seek with high probability, and thus increase object
transfer parallelism. We focus on reducing tape switches
within a tape library, increasing tape switch parallelism
across tape libraries and increasing data transfer paral-
lelism among tape drives. To achieve these goals, we in-
troduce the concept of tape batch and a special tape switch
strategy to increase the probability of tape switch paral-
lelism and data seek synchronization as well as reduce the
number of tape switches.

A tape batch is composed of n×i tapes to which each li-
brary contributes i tapes. To achieve potential parallelism
in tape switch, objects within a cluster should be spread
within a tape batch with the observation that objects within
a cluster have high chance to be requested together. To re-
duce the number of tape switches within a library, (d−1)
tapes should hold objects with accumulated probability as
high as possible and be kept mounted all the time. It is
mathematically proved in [11] that such a placement com-
bined with the least popular replacement policy minimizes
the number of tape switches. However, minimizing the
number of tape switches may not minimize the tape switch

time. If a request needs to access objects from two of-
fline tapes and only one drive working as a switch drive,
one tape has to wait until the other one has completed the
sequential operations of tape switch, data seek and data
transfer. On the other hand, if there are two drives work-
ing as switch drives, one tape can start to be mounted just
after the other one is mounted. The optimal number of
switch drives, m, depends on the object probability distri-
bution and the configuration of the tape libraries, and the
change of m also changes the accumulated object probabil-
ity of the always-mounted tape batch. There is no simple
formula to get the optimal number. The value of m ranges
from 1 to d− 1, we investigate how to choose a close-to-
optimal value of m through the simulation.

With all these considerations in mind, we developed
a set of heuristic algorithms to minimize tape request re-
sponse time, which are described in the following sub-
sections covering object clustering, tape batch and corre-
sponding switch strategy, object placement and tape load
balancing.

3rd batch 4th batch1st batch 2nd batch

tape

n tape
libraries

near-line
tapes

(d-m)
tapes

Figure 2. Tape batches across libraries

5.1. Object clustering

We define the similarity among objects as the proba-
bility they will be accessed together. The similarity of
P(Oi,O j) between object Oi and O j is the sum of the prob-
abilities of all requests that contain both objects. The sim-
ilarity of P(Oi,O j,Ok) among object Oi, O j and Ok is the
sum of the probabilities of all requests that contain all three
objects, and so on. Following the hierarchical algorithm
from [17] we can build an object relationship tree with
each individual object being a leaf of the tree. Consid-
ering the bottom of the tree (leaf level) as level 1, a node
of level n represents an access probability among n ob-
jects. Once the tree is formed, it is traversed following a
depth-first method to get all the clusters based on a preset
probability value. Thus, objects with high probability of
being accessed together will be grouped into a cluster. Re-
quests information are used to reduce the clustering com-
putation costs. If we are looking for relationship among
three objects, objects are chosen from requests with three
or more objects and the probability compuation only needs

to involve these requests with three or more objects. The
quality of the object clustering, which is measured by the
probability of objects being accessed together and proper
cluster size in terms of the number of objects and the total
required space, is vital for the success of the overall place-
ment scheme. The cluster size can be controlled by the
preset probability threshold. As a general rule, the number
of objects in a cluster from the first sublist should be close
to or less than n×(d−m) and the number of objects in a
cluster from other sublists should be close to or less than
n×m for maximum parallelism.

5.2. Tape batch and switch strategy

The tape library system is composed of n tape libraries;
each has d identical drives and more than d tapes. Tape
mount and unmount within a tape library is performed by
one robotic arm in the library. As shown in Figure 2,
all n×d drives are divided into two batches: the batch
with tapes always kept mounted and the batch used for
tape switches. The always-mounted batch is composed of
n×(d−m) drives to which each library contributes (d−m)
drives; the other batch is composed of n×m drives to which
each library contributes m drive. Accordingly, all tapes are
divided into two kinds of batches: the first one contains
n×(d−m) tapes composed of (d−m) tapes from each li-
brary, and the second and later batches each contains n×m
tapes composed of m tape from each library. The first
batch of tapes matches the first batch of drives and is kept
mounted all the time, and the second batch is mounted dur-
ing startup time and will be swapped out if the requested
object can not be found within the mounted tapes. We do
not force tapes within a batch to be swapped all together,
but with the proposed placement in Subsection 5.3, tapes
within a batch is likely to be swapped together with high
probability.

5.3. Placement algorithm

To reduce tape switch operations, tapes within the first
batch should accumulate access probability as high as
possible from all available objects to be allocated, tapes
within the second batch accumulate probability as high
as possible from the remaining unallocated objects, and
so on. Equally important, objects within a cluster should
be kept within one tape batch. Following these allocation
principles, the minimum number of tape switches can be
achieved. However, given a set of objects with various
probabilities and sizes, how to achieve the tape probability
distribution as described can be reduced to the well known
0-1 knapsack problem [16], which is a NP-hard problem.
For simplicity and computation efficiency we developed
the following heuristic solution.

Step 1. Compute object probability from request prob-
ability as ∑Oi∈R j P(R j).

Step 2. Sort objects into a decreasing order list based on
individual object probability density. The probability den-

sity of object Oi is defined as P(Oi)/size(Oi). The object
relationship is not considered in here but in Step 4.

Step 3. Divide the formed object list into multiple sub-
lists: the first sublist has the total object size less than the
total capacity of k×n×(d−m)×Ct (the total batch capac-
ity), where k, the tape capacity utilization coefficient, is
less than 1; the rest of the sublists each has the capacity of
k×n×m×ct (another batch capacity).

Step 4. With batch capacity constrains, refine sublists
based on object clusters formed using the algorithm de-
scribed in Subsection 5.1. Most likely objects with strong
relationship will not be far away from each other within
the sorted list, and we only need to move objects between
adjacent sublists. The refining goal is to make objects with
a strong relationship fall into the same sublist to reduce
tape switches while maintaining the skewed tape proba-
bility distribution, i.e., tape probability from 1st batch >
tape probability from 2nd batch > tape probability from
3rd batch, and so on. Ideally, any request should cause at
most one tape switch in a tape library.

Step 5. Allocate objects in each sublist to correspond-
ing tape batches. For maximum data transfer parallelism,
objects within a cluster are split to multiple tapes if their
aggregate size is big enough. Otherwise, simply putting
them on the same tape does not change data transfer time a
lot but reduces tape switch time. Tape load balancing algo-
rithm in Subsection 5.4 is used for splitting objects within
a tape batch.

Step 6. Align objects within each tape following the
organ-pipe alignment based on individual object probabil-
ities [11].

5.4. Tape load balancing

Tape load balancing and maximum data transfer par-
allelism are the goal of allocating objects in a sublist to
the corresponding tape batch. For each object cluster, we
first decide how many tapes should be used based on clus-
ter composition and available tapes. Then we split objects
in the cluster to multiple tapes based on object load and
tape load information. Load of object Oi is computed as
P(Oi)×Size(Oi) while tape load is computed as the sum-
mation of object loads on the tape. To achieve load bal-
ancing and highly parallel data transfer we use a greedy
algorithm shown in Figure 3 for placement within a tape
batch.

6. Performance evaluation

We have built a multiple-tape-library simulator com-
posed of more than 4,000 lines of code to study the perfor-
mance of our proposed object placement scheme and com-
pare it with two other previously proposed schemes briefly
introduced in Section 2. For reference convenience, we
call these two proposed schemes object probability place-
ment and cluster probability placement respectively and
present their main points as follows:

variable i, flag, ndrv
initialize workload of all considered tapes to 0
place all clusters of a sublist into cluster list C set
for each cluster C in C set do

sort objects in C into increasing order based on load
sort m tapes in decreasing order based on workload
assign ndrv a proper value based on info of C and tapes
i← 0
flag← 0
for each object O in the sorted list

if (flag==0) then i←i+1 else i←i-1
if (i==ndrv) then {flag←1; i←i-1}
if (i==-1) then {flag←0; i←i+1}
assign object O to tape Ti
increase workload of Ti by P(O)∗ size(O)

for each tape do
align objects based on organ-pipe alignment
write objects to the tape

Figure 3. Greedy load balancing

Object probability placement Individual object ac-
cess probabilities are assumed to be known. Within a tape,
average object seek time is minimized when objects are
placed in an organ pipe arrangement. The optimal place-
ment scheme is schematically shown in Figure 4 for a li-
brary with 3 tapes assuming each tape can hold 5 equally
sized objects. The proposed scheme optimizes object seek
time based on independent object access probabilities [11].

P12

P1 > P2 >……>P15

Tape 1

Tape 2

Tape 3

P6 P1 P9 P15

P11 P5 P2 P8 P14

P10 P4 P3 P7 P13

P1

P1 > P2 >……>P15

Tape 1

Tape 2

Tape 3

P6 P7 P11 P15

P2 P4 P9 P12 P14

P3 P5 P8 P10 P13

Tapes rewinding to the middle Tapes rewinding to the beginning

Figure 4. Object probability placement

Cluster probability placement Assuming the access
cost in tape library is dominated by the media switch op-
eration and head positioning delay. With the observation
that objects have access relationship, the scheme places
objects with strong relationship onto one tape to reduce
tape switches[20]. It proposes several algorithms to form
object clusters.

For convenience, our placement scheme is called
parallel batch placement.

Simulator The simulator simulates multiple drives
transferring data in parallel based on assumptions de-
scribed in Section 3. Integrated with the simulator is an in-
dexing database that stores object locations as well as other
object properties such as object size information. Given
a request, the corresponding tapes are identified based on
the object indexing database. Requested object(s) resid-
ing on mounted switching tapes will be served before they
are unmounted while the tape switch operation happens to
any tape drive containing no requested objects. After a
mounted switching tape finishes transferring the requested
object(s), it is rewound and unmounted by a robot, and an

offline tape containing any requested object(s) is mounted
by the robot to serve its contained object(s). Tape drives
are working independently and robots across tape libraries
are also working independently. The objects retrieving or-
der within a tape is optimized to reduce the data seek time
based on object location information retrieved from the in-
dexing database. The servicing time of each tape drive,
including the time waiting for robot, tape switch time, data
seek time and data transfer time, is recorded for the re-
quest being served. The longest servicing time recorded
with a tape drive is the tape response time for the request.
The simulator models robotic arm mount/unmount opera-
tions as constant time values for a given tape library, and
computes object seek/tape rewind time using a linear posi-
tioning model as described in [18], i.e, the tape drive head
positioning time is proportional to the distance between the
head start position and the end position. We also assume
the tape drive reads an object in streaming mode after the
tape drive head is positioned to the beginning of the object.
Considering all the tape switch operations and data loca-
tion operations for data read, the tape drive hardly works
in streaming mode most of the time and the effective data
retrieval rate can not reach the manufacturer’s rated speed.
As mentioned before, robots and tape drives work in par-
allel without forced synchronization.

Simulation Settings: We are using the following pa-
rameters to set up our simulation, as shown in Table 1.
These parameters follow the specifications of IBM LTO
Gen 3 tape drive and StorageTek L80 tape library [1, 2].

Table 1. Tape drive/library specifications
Average cell to drive time 7.6s
Tape load and thread to ready 19s
Data transfer rate, native 80 MB/s
Maximum/average rewind time 98/49s
Unload time 19s
Average file access time (first file) 72s
Number of tapes per library 80
Tape capacity 400GB
Tape drives per library 8
Number of tape libraries 3

Since the data restore request is submitted one by one
within our considered environment with long time inter-
val between two requests, the request queuing time in the
request queue is zero and does not go into the object band-
width calculation. The simulation objects and requests are
generated as follows. The total number of objects is fixed
as 30,000 and the total number of pre-defined requests
is 300. The object size follows a power law distribution
within a pre-defined range. The number of objects con-
tained in a request also follows a power law distribution
ranging from 100 to 150. The objects in a request are ran-
domly chosen. The same object may be included in several
different requests. The access pattern of request follows a
Zip f distribution. Request popularity Pr = c · r−α, where r
is the request rank starting from 1, c is a constant value and
α controls request popularity distribution. We get uniform

popularity if α=0 and most skewed popularity if α=1.

Metrics: To have a deeper understanding of the behav-
ior of each scheme, in addition to the effective data re-
trieval bandwidth, we also use the following four metrics
to evaluate each scheme: average response time, average
tape switch time, average data seek time and average data
transfer time. By analyzing tape switch, object seek and
data transfer time we can have a better understanding of
the request response time. After the object allocation is
done, based on the probability distribution a request is cho-
sen from the 300 pre-defined requests and submitted to the
simulator to get these four metrics. This repeats 200 times
to get the average value for each metrics. The tape switch
time is defined as the time associated with the operations
of a tape switch, including tape rewind time, tape unmount
time, tape mount time and a possible time waiting for the
robotic arm when it is performing tape switches on other
drives. Considering all the parallel operations of all in-
volved tape drives, it is convincing to use the transfer time
and the seek time of the drive, which finishes serving a re-
quest at the last place, as the transfer time and the seek time
for the request time respectively. Accordingly we compute
the tape switch time as the time difference between the re-
quest response time and the data seek-and-transfer time.
Depending on the actual object placement for the request,
a drive may be involved in multiple object seeks and trans-
fers in serving just one request.

Simulation Results Effect of the number of switching
tape drives m: As shown in Figure 5, when m changes
from 1 to 2, there is a jump in the effective data retrieval
bandwidth (for convenience we call it effective bandwidth
or just bandwidth). As discussed in Section 5, the con-
tention for tape drive and the waiting time for tape switch
are most likely very high when m = 1. A maximum band-
width exists when m is changing from 2 to 4. The actual
highest point depends on the value of α. After m goes
beyond 4, the bandwidth decreases. When the number of
switch drives increases, the always-mounted tape capacity
decreases. The decrease of the always-mounted tape ca-
pacity causes more objects to be served by offline tapes
and increases the contention for the robot and the number
of tape switches. There is a trade-off between the con-
tention for the tape drive and the contention for the robot.
As expected, the bandwidth usually increases when α in-
creases, since always-mounted tapes can accumulate more
probabilities and serve more requests with a more skewed
popularity distribution. In the rest of the simulation, the
value of m is set to 4.

Effect of request popularity skewing factor α: As shown
in Figure 6, with an average request size of around 213
GB, a more skewed request popularity distribution favors
our proposed scheme, parallel batch placement, and ob-
ject probability placement. However, a more skewed re-
quest popularity distribution does not have a big impact on
the effective data retrieval bandwidth from cluster prob-
ability placement. When α increases, less number of

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7

E
ffe

ct
iv

e
ba

nd
w

id
th

 (M
B

/s
)

Number of switch drives

alpha=0.9
alpha=0.6
alpha=0.3

Figure 5. Bandwidth vs. number of drives
used for tape switch

tapes can accumulate larger probability and serve more re-
quests resulting less number of tape switches in general,
which favors parallel batch placement and object prob-
ability placement. Our proposed scheme, parallel batch
placement, always outperforms the other two. In the fol-
lowing simulation, α is set to 0.3, reflecting the fact that
data are not equally popular, which does not favor our
scheme.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ffe

ct
iv

e
ba

nd
w

id
th

 (M
B

/s
)

alpha

parallel batch placement
object probability placement
cluster probability placement

Figure 6. Bandwidth vs. alpha (α)

Effect of request size: Figure 7 shows that the band-
width increases but not dramatically when the average re-
quest size increases. During this simulation, the request
size is changed by changing the object size. Thus, the data
transfer accounts for more percentage of the total response
time while the time for tape switch and data seek may not
be changed. Our proposed scheme still does a better job
than the other two schemes within the tested range. For an
extreme test case, we reduce the object size lower bound
to such a point that the n×d tapes can hold all the objects
and are kept mounted all the time. Thus, object requests
are all served by mounted tapes and the request response
time does not contain any switch time. We found object
probability placement has the lowest response time with a
lowest seek time while cluster probability placement and

parallel batch placement happen to have a similar response
time. But data transfer time of cluster probability place-
ment accounts for 62% of the toatal response time while
data transfer time of parallel batch placement only ac-
counts for 19%. This finding agrees with our expectation
from the design goals of each scheme.

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 160 180 200 220 240 260 280

E
ffe

ct
iv

e
ba

nd
w

id
th

 (M
B

/s
)

Average request size (GB)

parallel batch placement
object probability placement
cluster probability placement

Figure 7. Bandwidth vs. average request
size

Scheme scalability comparison: When the average re-
quest size is about 240 GB, we get the read performance of
the three schemes as shown in Figure 8. When the number
of tape libraries increases, both parallel batch placement
and object probability placement scale well while cluster
probability placement does not scale since it does not have
any data transfer parallelism. However, when the number
of tape libraries increases from 1 to 3, the data retrieval
bandwidth from cluster probability placement increases
reflecting the reduced robot contention. It is clear that our
scheme consistently provides the best performance out of
the three schemes.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 2 3 4 5 6

E
ffe

ct
iv

e
ba

nd
id

th
 (M

B
/s

)

Number of libraries

parallel batch placement
object probability placement
cluster probability placement

Figure 8. Bandwidth vs. number of tape li-
braries

Request response time components: Figure 9 compares
the three schemes in terms of average tape switch time,
average data seek time and average request transfer time
when the average request size is about 160GB. It shows

that object probability placement takes the longest switch
time since it does not take object relationship into consid-
eration and requires more tape switches. The average data
seek time from three schemes does not play a big role here
compared to the tape switch time. The object probabil-
ity placement does the best in data tranfer time. How-
ever, its tape switch time is the worst and dominates the
response time. When the average request size changes,
three schemes show a similar trend as shown in Figure 9.
All the simulation results show that our proposed scheme
achieves a better trade-off among tape switch time, data
seek time and data transfer time than the other two, and
has the best response time most of the time.

0

100

200

300

400

500

600

700

800

avg. switch time avg. seek time avg. transfer
time

tim
e

(s
)

parallel batch object probability cluster probability

Figure 9. Response time component com-
parison

Due to page limitations, we will not show the perfor-
mance of different schemes when tape library technology
improves, e.g., increased data transfer speed and tape ca-
pacity. In general, our scheme improves more than the
other two schemes for these cases. We have varied the to-
tal number of objects, the number of pre-defined requests
and the number of simulated requests, and found they do
not change the relative performance of the three schemes.

7. Conclusions and future work

Reducing tape request response time is a complex re-
search issue and involves many conflicting factors. In this
paper we proposed a novel object placement scheme com-
bined with a special tape switch strategy to increase tape
switch parallelism and data transfer parallelism among
multiple tape libraries. Simulation results show that our
proposed scheme achieves the design goal and has a
better throughput than two previously proposed schemes
[11, 20].

In a real system, objects are moved to tapes period-
ically. When we place objects on tapes, we only have
the local knowledge of object probability and relationship.
How to make an optimal or near-optimal solution for the
long-term backup/retrieve operations remains to be solved.

References

[1] Product specifications, International Business Machines
Corporation (IBM). http://www.ibm.com.

[2] Product specifications, Storage Technology Corporation
(StorageTek). http://www.storagetek.com.

[3] Lustre: A scalable, high-performance file sys-
tem. Whitepaper, Cluster File System, Inc.
http://www.lustre.org.

[4] Sgs file system rfp. Technical report, DOE NNCA and
DOD NSA, April 2001.

[5] Data protection - backup has never been simpler. Whitepa-
per, HP, July 2005.

[6] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Stag-
gered striping in multimedia information systems. SIG-
MOD Rec., 23(2):79–90, 1994.

[7] L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem,
and A. Shoshani. Optimizing tertiary storage organization
and access for spatio-temporal datasets. In NASA Goddard
Conference on Mass Storage Systems, March 1995.

[8] P. M. Chen and D. A. Patterson. Maximizing performance
in a striped disk array. In Proceedings of the 17th annual
international symposium on Computer Architecture, pages
322–331. ACM Press, 1990.

[9] A. L. Chervenak, D. A. Patterson, and R. H. Katz. Storage
systems for movies-on-demand video servers. In Proceed-
ings of the 14th IEEE Symposium on Mass Storage Sys-
tems, page 246. IEEE Computer Society, 1995.

[10] T. Chiueh. Performance optimization for parallel tape ar-
rays. In Proceedings of the 1995 International Conference
on Supercomputing, pages 385–394, July 1995.

[11] S. Christodoulakis, P. Triantafillou, and F. Zioga. Princi-
ples of optimally placing data in tertiary storage libraries.
In Proceedings of the 23rd International Conference on
Very Large Data Bases, pages 236–245. Morgan Kaufmann
Publishers Inc., 1997.

[12] J. N. Daigle, R. B. Kuehl, and J. D. Langford. Queuing
analysis of an optical disk jukebox based office system.
IEEE Trans. on Computers, 39(6):819–828, 1990.

[13] A. Drapeau and R. Katz. Striped tape arrays. In 12th
IEEE Symposium on Mass Storage Systems, pages 257–
265, 1993.

[14] A. L. Drapeau and R. H. Katz. Striping in large tape li-
braries. In Proceedings of the 1993 ACM/IEEE conference
on Supercomputing, pages 378–387. ACM Press, 1993.

[15] L. Golubchik, R. R. Muntz, and R. W. Watson. Analy-
sis of striping techniques in robotic storage libraries. In
Proceedings of the 14th IEEE Symposium on Mass Storage
Systems, page 225. IEEE Computer Society, 1995.

[16] E. Horowitz and S. Sahni. Fundamentals of Computer Al-
gorithms. Computer Science Press, 1978.

[17] S. C. Johnson. Hierarchical clustering schemes. Psychome-
trika, 2:241–254, 1967.

[18] T. Johnson and E. L. Miller. Performance measurements
of tertiary storage devices. In Proceedings of the 24rd In-
ternational Conference on Very Large Data Bases, pages
50–61. Morgan Kaufmann Publishers Inc., 1998.

[19] K. Keeton, A. Drapeau, D. Patterson, and R. H. Katz.
Storage alternatives for video service. In Proceedings of
the Thirteenth IEEE Symposium on Mass Storage Systems,
pages 100–105. IEEE Computer Society, 1994.

[20] J. Li and S. Prabhakar. Data placement for tertiary stor-
age. In 10th NASA Goddard Conference on Mass Storage
Systems and Technologies/19th IEEE Symposium on Mass
Storage Systems, pages 193–207, April 2002.

[21] D. A. Patterson, G. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (raid). In Proceed-
ings of the 1988 ACM SIGMOD international conference
on Management of data, pages 109–116. ACM Press, 1988.

[22] S. Sesardi, D. Rotem, and A. Segev. Optimal arrangements
of cartridges in carousel type mass storage systems. The
Computer Journal, 37(10):873–887, 1994.

[23] P. Triantafillou and C. Faloutsos. Overlay striping and op-
timal parallel I/O for modern applications. Parallel Com-
puting, 24(1):21–43, 1998.

[24] C. K. Wong. Algorithmic Studies in Mass Storage Systems.
W. H. Freeman & Co., 1983.

