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ABSTRACT

In audio fingerprinting, an audio clip must be recognized by
matching an extracted fingerprint to a database of previously
computed fingerprints. The fingerprints should reduce the
dimensionality of the input significantly, provide discrimi-
nation among different audio clips, and at the same time,
invariant to the distorted versions of the same audio clip. In
this paper, we design fingerprints addressing the above is-
sues by modeling an audio clip by Gaussian mixture models
(GMM) using a wide range of easy-to-compute short time
Fourier transform features such as Shannon entropy, Renyi
entropy, spectral centroid, spectral bandwidth, spectral flat-
ness measure, spectral crest factor, and Mel-frequency cep-
stral coefficients. We test the robustness of the fingerprints
under a large number of distortions. To make the system ro-
bust, we use some of the distorted versions of the audio for
training. However, we show that the audio fingerprints mod-
eled using GMM are not only robust to the distortions used
in training but also to distortions not used in training. Using
spectral centroid as feature, we obtain the highest identifi-
cation rate of 99.1 % with a false positive rate of 10−4.

1. INTRODUCTION

An audio fingerprint is a compact representation of percep-
tually relevant portion of the audio content. An audio fin-
gerprint should be able to identify audio files even if they
are severely distorted by perceptual coding or common sig-
nal processing operations. The type of distortions a finger-
print should withstand depends on the application. For ex-
ample, audio fingerprints designed for broadcast monitor-
ing should withstand distortions such as time compression,
dynamic range compression, and equalization. An Audio
fingerprinting system has two principle components: fin-
gerprint extraction and matching algorithm. The fingerprint
requirements include computational simplicity, robustness
to distortions, smaller size, and discrimination power over a
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large number of other fingerprints [1]. The matching algo-
rithms should be efficient to able to identify an audio item
from a database of hundreds of thousands of audio songs in
a few seconds. A large number of fingerprinting schemes
have been proposed. For some recent work, please see [2] –
[5].

The overview of the proposed fingerprinting scheme is
shown in Fig. 1. First the incoming audio clip is pre-
processed and features are extracted from them. Then us-
ing these features, the audio clip is modeled using Gaussian
mixtures. In the training phase, the mixture models of all the
audio clips are stored in the database along with the meta-
data information. In the identification phase, the features
from an unknown audio clip are used to evaluate the like-
lihood of all the models in the database. Then the model
that is most likely to generate the features is identified as
the correct audio clip.
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Fig. 1. Proposed Fingerprinting System

2. FEATURE EXTRACTION

In this work, we use the following features extracted from
the short time Fourier transform (STFT) of the signal for
fingerprint extraction. Let Fi = fi(u), u ∈ (0, M) be
the Fourier transform of the ith frame, where M is the in-
dex of the highest frequency band. To increase the robust-
ness of the fingerprint, the features are not extracted on
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the whole spectrum but on non-overlapping logarithmically
spaced bands. Let Fi,b = fi(ub), ub ∈ (lb, ub) where lb and
ub are the lower and upper edges of the band b. In each of
the frame, the following features are extracted. These fea-
tures have been used successfully in audio fingerprinting [6]
and music classification [7].

1. Spectral Centroid (SC): The spectral centroid is the
center of gravity of the magnitude spectrum of the
STFT and is a measure of spectral shape and “bright-
ness” of the spectrum. Spectral centroid is defined as

SCi,b =

∑ub

u=lb
u. |fi(u)|2∑ub

u=lb
|fi(u)|2 . (1)

2. Spectral Bandwidth (SB): The spectral bandwidth is
measured as the weighted average of the distances be-
tween the spectral components and the spectral cen-
troid. Spectral bandwidth is defined as

SBi,b =

∑ub

u=lb
(u − SCi,b)

2 . |fi(u)|2∑ub

u=lb
|fi(u)|2 . (2)

3. Spectral Band Energy (SBE): The spectral band en-
ergy is the energy in the frequency bands normalized
by the energy in the whole spectrum. Spectral band
energy is calculated as

SBEi,b =

∑ub

u=lb
|fi(u)|2∑M

u=0 |fi(u)|2 . (3)

4. Spectral Flatness Measure (SFM): The spectral flat-
ness measure quantifies the flatness of the spectrum
and distinguishes between noise-like and tone-like sig-
nal. Spectral flatness measure is defined as

SFMi,b =

[∏ub

u=lb
|fi(u)|2

] 1
ub−lb+1

1
ub−lb+1

∑ub

u=lb
|fi(u)|2 . (4)

5. Spectral Crest Factor (SCF): The spectral crest factor
is also a measure of the tonality of the signal. Spec-
tral crest factor is defined as

SCFi,b =
max

(
|fi(u)|2

)
1

ub−lb+1

∑ub

u=lb
|fi(u)|2 . (5)

6. Shannon Entropy (SE): The Shannon entropy of a sig-
nal is a measure of its spectral distribution of the sig-
nal. Shannon entropy is defined as

SEi,b =
ub∑

u=lb

|fi(u)| log2 |fi(u)| . (6)

7. Renyi Entropy (RE): The Renyi entropy of a signal is
also a measure of its spectral distribution. Renyi en-
tropy is defined as

REi,b =
1

1 − r
log

(
ub∑

u=lb

|fi(u)|r
)

. (7)

We used Renyi Entropy of order r = 2.

8. Mel-frequency Cepstral Coefficients (MFCC): MFCC
are perceptually motivated features based on the STFT.
After taking the log-amplitude of the magnitude spec-
trum, the FFT bins are grouped and smoothed accord-
ing to the perceptually motivated Mel-frequency scal-
ing. Finally, in order to decorrelate the resulting fea-
ture vectors a discrete cosine transform is performed.
In this work, we used 13 coefficients since this para-
meterization has been shown to be quite effective for
speech recognition and speaker identification [8].

Let Xi be the set of features extracted for the frame i. Xi

can be any one of the features described above. In order to
better characterize the temporal variations of the signal, the
first derivatives of the above features

δi = δi − δi−1 (8)

are also used included in the feature matrix. In an audio clip,
successive frames are related in time. To include this time
dependency, a time vector is added to the feature matrix.
This time vector is taken as an incremental counter from 0
to 1. Thus the feature matrix of the entire audio clip can be
described as

F ′
M =

⎡
⎢⎢⎢⎣

X1, δ1, t1
X2, δ2, t2
...
XN, δN , tN

⎤
⎥⎥⎥⎦ (9)

where N is the number of frames in the audio clip. Finally
the feature matrix is mean subtracted and component wise
variance normalized to get a normalized feature matrix FM.



3. GAUSSIAN MIXTURE MODELS

Gaussian Mixture Models (GMM) have been successfully
used in audio classification [7] and content based retrieval
[9]. In this work, the technique is used to model an audio
fingerprint as a probability density function (PDF), using a
weighted combination of Gaussian component PDFs (mix-
tures). During the training phase, the GMM parameters of
an audio fingerprint are estimated to maximize the proba-
bility of the audio frames present in the audio fingerprint.
We use the Baum-Welch (Expectation-Maximization) algo-
rithm to estimate the GMM parameters with initialization by
k − means clustering. As the feature vectors in this work
have reasonably uncorrelated components, computationally
convenient diagonal covariance matrices can be used. We
used GMM with 16 mixtures. Thus in the fingerprint extrac-
tion phase, each audio clip is modeled by GMM. During the
matching phase the fingerprint from an unknown recording
is compared with the database of pre-computed GMM and
the GMM that gives the highest likelihood for the finger-
print is identified as correct match.

4. RESULTS

We used a database containing 250 five-second audio clips
chosen from the categories of rock, pop, country, classical,
and jazz. The audio clips are chosen from random portions
of songs from Compact Discs.

4.1. Robustness to Distortions

We used several distorted versions of the audio clips to test
the robustness of the proposed scheme. We used the follow-
ing distorted versions in our tests.

I. Compression – 1) MP3 at 32 kbps, 2) AAC at 32
kbps, 3) WMA at 32 kbps, 4) Real encoding at 32
kbps.

II. Amplitude distortion – 1) 3 : 1 Compression above
30 dB, 2) 3 : 1 Expander below 10 dB, 3) 3 : 1 com-
pression below 10 dB, 4) Limiter at 9 dB, 5) ‘Super-
loud’ amplitude distortion, 6) Noise gate at 20 dB, 7)
De-esser, 8) Nonlinear amplitude distortion.

III. Frequency distortion – 1) Nonlinear bass distortion,
2) Midrange frequency boost, 3) Notch Filter, 750 -
1800 Hz, 4) Notch Filter 430 - 3400 Hz, 5) Telephone
bandpass, 135 - 3700 Hz, 6) Bass cut, 7) Bass boost.

IV. Change in pitch – 1) Lower pitch 2 - 6 %, 2) Raise
pitch 2 - 6 %.

V. Change in speed – 1) Linear speed increase 2 - 6%,
2) Linear speed decrease 2 - 6%.

VI. Resampling at 8 kHz

VII. Echo addition

To increase the robustness of the fingerprints, in addi-
tion to the original audio, some distorted versions of the
audio are also used in training. We used the following dis-
torted versions in our training: 1) Undistorted audio, 2) 3
: 1 Compression above 30 dB, 3) Nonlinear amplitude dis-
tortion, 4) Nonlinear bass distortion, 5) Midrange frequency
boost, 6) Notch Filter, 750 - 1800 Hz, 7) Notch Filter 430
- 3400 Hz, 8) Raise Pitch 1%, 9) Lower Pitch 1%. The
log-likelihood of the test clips are evaluated for all the mod-
els in the database. Then the model that gives the highest
log-likelihood is taken as the correct match. Table 1 shows
the percentage of clips that are correctly identified for dif-
ferent features for distortions used in training as well as for
distortions not used in training. The results show that it is
not necessary to train the model for all possible distortions.
By training the model to some representative distortions, we
can obtain robustness to a wide variety of distortions.

Table 1. Mean Recognition rate for distortions
Train Test Mean

MFCC 99.0 98.5 98.7
Spectral centroid 99.4 99.1 99.2
Spectral bandwidth 99.4 98.9 99.1
Spectral band energy 98.8 98.8 98.8
Spectral flatness measure 99.4 98.6 98.9
Spectral crest factor 99.2 98.6 98.8
Shannon Entropy 99.4 98.8 99.0
Renyi Entropy 99.4 98.9 99.0

4.2. False Positive Analysis

In the previous section it was assumed that the test clip is
present in the database. Hence the model that gives the
highest log-likelihood value is identified as the correct match.
However it is possible that the test clip may not be in the
database. So there should be a criteria to reject the au-
dio clips that are not in the database. A suitable threshold
for log-likelihood can be used to vary the false positive and
false negative rates. The false positive and the correspond-
ing identification rate are shown in Figs. 2 and 3. The per-
centage of audio clips correctly identified at different false
positive rates are shown in Table 2. Among the different
features used, spectral centroid gives the highest identifica-
tion rate of 99.1% with a false positive rate of 10−4. MFCC
performs poorly with an identification rate of 13 %. All the
features except the spectral flatness measure give an identi-
fication rate of more than 90 % with a false positive rate of
10−3.
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Fig. 2. Identification rates at different false positive rates for
MFCC, Spectral centroid, Spectral bandwidth, and Spectral
band energy

Table 2. Identification Rate at different false positive rates
10−4 10−3 10−2

MFCC 13.5 98.4 99.3
Spectral centroid 99.1 99.5 99.8
Spectral bandwidth 93.2 98.4 99.3
Spectral band energy 69.2 94.3 99.2
Spectral flatness measure 31.8 56.4 96.6
Spectral crest factor 93.0 98.4 99.3
Shannon Entropy 71.1 93.9 99.4
Renyi Entropy 64.0 99.3 99.7

5. CONCLUSION

Gaussian Mixture Models have been successfully used in
many classification and identification problems in audio. In
this work, we modeled audio recordings for audio finger-
printing by Gaussian mixtures using features extracted from
the STFT of the signal. Even though we use some distorted
samples of the audio during training, the system is robust to
distortions not used in training. Using spectral centroid as
feature, we obtain the highest identification rate of 99.1 %
with a false positive rate of 10−4.
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