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ABSTRACT

We study the application of the Bamberger directional filter bank
to the problem of rotation invariant texture classification. We ex-
plore the use of purely directional decompositions and the use of
polar-separable Bamberger pyramids. We obtain comparable clas-
sification performance to Gabor-based methods using a smaller
feature set.

1. INTRODUCTION

In the real world, texture-based image analysis algorithms and im-
age database retrieval systems deal with textures that have some
type of distortion with respect to training samples and database
content. One commonly found distortion is rotation. Our visual
system recognizes rotation easily, but it is a non-trivial problem in
image analysis. Hence it is of interest to obtain feature sets that
are rotation invariant (RI).

Extraction of RI feature sets for texture classification has been
addressed in a few works. One of the early approaches was the
use of RI random field models like circular AR models [1] and
Gaussian-Markov models [2]. A second approach based on multi-
channel filtering (i.e spatial filtering) is particularly well suited to
deal with rotation invariance. Greenspan, et al., [3] used a steer-
able pyramid and DFT encoding to obtain RI features. Haley and
Manjunath [4] used a 2-D analytical polar Gabor representation to
form a set of RI macrofeatures based on local magnitude, phase,
and autocorrelation features. As far as wavelet-based approaches,
Hill, et al. [5] used the DT-CWT and DFT encoding to generate
RI features.

In our previous work [6, 7] we have studied the use of the
Bamberger Directional Filter Bank (BDFB) for texture segmenta-
tion and analysis. In this paper, we exploit the orientation selectiv-
ity of the BDFB for RI texture analysis, and introduce the use of
Bamberger pyramids as an alternative to Gabor filters.

In the following section we review the theory of the BDFB
and the implementation of Bamberger Pyramids. In section 3, we
introduce DFT-encoding and its use with BDFBs. In section 4,
we present RI classification results using a purely directional ap-
proach. We introduce the use of Bamberger pyramids for RI classi-
fication in section 5. We finish the paper doing a comparison with
Gabor-based schemes, and discuss extensions for future work.

2. THE BAMBERGER DIRECTIONAL FILTER BANK

Next we review the implementation of the BDFB. For a thorough
discussion we refer the reader to [8, 9]. The BDFB partitions
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Fig. 1. Analysis stage for a tree-structured BDFB

the frequency plane into a set of complementary wedge-shaped
passbands as shown in Figure 4-(a). A tree-structured 2S-band
BDFB has been commonly employed. This is illustrated in Fig-
ure 1 where we show an analysis section for S = 3. Each stage in
the tree structure uses Fan Filter Banks (FFBs) as a building block.
Hence, the implementation of the BDFB is reduced to the design of
FFBs. The FFB is a 2-D two-channel filter bank with complemen-
tary fan-shaped support filters. For alias-free maximal decimation,
each channel is downsampled using a quincunx resampling matrix
M as shown in Figure 2.

To implement perfect reconstruction FFBs we use the three-
stage ladder structure proposed by Ansari, et al., [10]. The analy-
sis stage is presented in Figure 2. The functions βi(z) are 1-D FIR
filters of length Li with all-pass magnitude responses. In this pa-
per we let β1(z) = β2(z) = β3(z) = β(z). Hence, the 2-D filter
design problem reduces to the design of the prototype β(z). We
note that the 2-D filtering is performed efficiently in the polyphase
domain as separable operations. The synthesis structure is straight-
forward to derive using the properties of ladder structures.

After the second stage, it is necessary to resample each sub-
band using unimodular matrices Ui. This operation rearranges
the sampling lattice without downsampling, such that FFBs can be
used throughout the BDFB structure [8, 9]. Finally, the “backsam-
pling” matrices Bi are used to rearranged the directional subbands
over a rectangular lattice [9].

The non-ideal realization of wedge-shaped responses is par-
0-7803-9332-5/05/$20.00 ©2005 IEEE
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ticularly manifested around the origin. For natural images, the
subbands present uneven distribution of the low frequency infor-
mation. Since directional information resides mostly in the mid-
frequency to high-frequency range, the simplest approach to deal
with this issue is too use the “lowpass-highpass” decomposition
presented in Figure 3. The image is first filtered with a lowpass
filter Lωc(z0, z1) with cutoff frequency ωc. The highpass com-
ponent is given by the difference between the input and the low-
pass image. Finally, the highpass component is processed with the
BDFB.

Finally we note that the BDFB is a maximally decimated rep-
resentation. Compared to other directional filter banks (e.g., Gabor
functions), memory savings are substantial.

2.1. Bamberger Pyramids

Polar-separable pyramids (PSPs) allow us to extract information
across different resolutions and orientations. The decomposition
is obtained by combining a radial pyramid and an angular filter
bank in sequence. This allows independent control of the radial
and angular selectivity. In [11, 12] we proposed a family of PSPs
where the BDFB is used as the angular component, and the ra-
dial component can be chosen according to the application. We
identify this family of PSPs as Bamberger Pyramids (BPs). In par-
ticular, we presented Bamberger pyramids using the undecimated
BDFB and the Laplacian pyramid in [11]. A possible partitioning
of the frequency plane is presented in Figure 4-(b).

In this work, we use the BP configuration shown in Figure 5.
Here, the image is decomposed into J undecimated pyramid lev-
els. Except for the lowpass channel, each of the J-1 bandpass chan-
nels is decomposed by the maximally-decimated N -band BDFB.
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Fig. 4. Comparison of the frequency plane partitioning between
the BDFB and a Bamberger pyramid.
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Gaussian pyramid and the BDFB. The BDFB is applied to the dif-
ference image between contiguous lowpass images

3. EXTRACTION OF ROTATION INVARIANT
FEATURES USING DFT ENCODING

In this section, we describe the DFT-encoding step used in vari-
ous works [3, 5]. More specifically, we relate this method to the
extraction of RI features using the Bamberger DFB.

Define the 2-D rotation operator as Rθ(·) which performs of
a rigid rotation by an angle θ. We start by letting x(t0, t1) be a
continuous time texture. Rotation by some θ gives

x′(t0, t1) = Rθ(x(t0, t1)).

Let X(Ω0, Ω1) and X ′(Ω0, Ω1) be the Fourier transforms of x(t0, t1)
and x′(t0, t1) respectively. It can be shown that

X ′(Ω0, Ω1) = Rθ(X(Ω0, Ω1)).

A rotation in the (continuous) spatial domain generates a similar
rotation in the (continuous) frequency domain.

When texture images are digitized, the above relationship does
not hold in general. However, we assume for practical purposes
that

x′[n0, n1] ≈ Rθ(x[n0, n1])

and
X ′[ω0, ω1] ≈ Rθ(X[ω0, ω1]),

where X[ω0, ω1] is the DFT of x[n0, n1]. As the texture is rotated,
texture energy is redistributed on the frequency plane.

As presented in [7], the energy estimates of the BDFB sub-
bands provide an excellent feature set. However, rotation redis-
tributes energy across subbands, inducing changes in the feature



vector. As the rotation angle increases between two textures of the
same class, the feature vectors become dissimilar. Hence it be-
comes necessary to compensate for the undesired rotation. A way
to generate RI features is to do the so-called DFT-encoding.

Suppose that we use a BDFB with a large number of subbands
N . (In the limit, a subband will become a diametral slice of the
frequency plane.) Hence, we have an N -dimensional feature vec-
tor

f = [ f0 f1 f2 . . . fN−1 ]T ,

where fi is an energy measure of the ith subband. We can map f
to a discrete 1-D signal f [n] for n = 0, 1, . . . , N − 1.

Next, we define the circular shift operator for f [n] as S�(f) =
f((n − �)modN). Suppose we have a texture x[n0, n1] with a
feature vector described by the 1-D sequence f [n]. Then we can
show that

Rθ(x[n0, n1]) ⇒ S�(f [n]). (1)

In words, rotation of a texture implies a circular shift on the feature
vector.

In reality, the circular shift on the feature vector is not exact
since we are working with a discrete sequence of energy measures
while θ is a continuous variable. As N gets smaller (e.g., the case
of eight- and four-band BDFBs), the rotation-to-shift relationship
in Equation 1 gets coarser and could become inaccurate.

The DFT-encoding step generates RI features by removing the
circular shift from f [n]. This scheme consists of first taking the N-
point DFT F [k] of the feature sequence f [n]. Next, the magnitude
coefficients |F [k]| are taken to generate RI features. This in effect
removes the phase (i.e., the shift) from the feature vector. The RI
feature vector is given by

F = [ |F [0]| |F [1]| . . . |F [N/2 + 1]| ]T . (2)

Since the DFT magnitude is an even function, the new RI feature
vectors have only N

2
+ 1 elements. Therefore, the generation of

RI features could affect classification performance. On the other
hand, this has the positive effect of reducing classifier complexity.

4. RI TEXTURE CLASSIFICATION USING THE
BAMBERGER DFB

We use the same data set tested by Haley and Manjunath in [4].
This image set is available over the internet [13], and consists of
13 textures. Each texture is scanned and digitized at rotations of
0o, 30o, 60o, 90o, 120o, and 150o. Each image is 512×512 pixels,
and is subdivided into 16 non-overlapping 128×128 images which
are used for training or testing.

Our RI classification system is set-up as follows. In order to
avoid uneven distribution of the lowpass energy across subbands,
we use the lowpass-highpass structure described in Section 2. For
these tests, the ladder filter β(z) was designed with the Parks-
McClellan program with L = 12. As features we compute sub-
band energies using

e1,i =
1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

|yi(n1, n2)|, (3)

where yi(n1, n2) represents the ith subband. Finally, we perform
DFT-encoding on the resulting feature vector.

We chose the Bayes distance rule for classification. We as-
sume that the probability density functions of the feature vectors

Table 1. DFB RI correct classification as a function of ωc.
ωc 0 π/16 π/8 π/4

N=4 50.64% 66.11% 66.99% 61.62%
N=8 50.32% 72.04% 72.12% 68.35%

Table 2. BDFB RI correct classification as a function of ωc using
a combination of three energy features.

ωc 0 π/16 π/8 π/4
N=8 68.67% 90.14% 91.35% 87.66%

have a multivariate Gaussian distribution with mean vectors and
covariance matrices (mk,Ck), for k = 1, 2, . . . , 13. Class para-
meters were obtained using maximum likelihood estimators. The
classification of a feature vector F is done by assigning it to the
class with minimum distance value

dk(F) = (F − mk)T C−1
k (F − mk) + log(det(Ck)). (4)

Each feature vector was tested using the leave-one-out method.
Our first results are shown in Table 1 for different values of N

and ωc. The best result for this system is 72.12% correct classifica-
tion. There are some possible reasons for this poor performance.
First, the sample size (128 × 128) might not be large enough to
capture representative subband energies. Second, feature vector
dimension is reduced after DFT-encoding. Finally, the degree of
directional selectivity might be too coarse, so the rotation-shift re-
lationship from Equation (1) is not captured adequately. To im-
prove classification, we increase the number of features using the
following subband energy measures

e2,i =
1

N1N2 − 1

N1−1∑
n1=0

N2−1∑
n2=0

yi(n1, n2)
2, (5)

and

e3,i =
1

0.6745
MED(|yi(n1, n2)|). (6)

In this case, the feature extraction vector is formed by three energy
measures e1, e2, e3 for each subband. The features are grouped
by energy measure and are DFT encoded separately. The resulting
features are concatenated into a single feature vector of dimension
3(N

2
+ 1). We show the result for an eight-band BDFB in Table

2. Performance is improved significantly with the best result at
91.35% correct classification for ωc = π/8.

5. RI TEXTURE CLASSIFICATION USING
BAMBERGER PYRAMIDS

As we have discussed, the BDFB does not differentiate between
coarse or fine information along a particular direction. Hence,
adding a multiresolution component could improve the classifica-
tion performance of our system. In this section, we introduce the
use of BPs for RI texture classification. In our experiments, we use
the BP described in section 2.

We group the subband energies for each resolution level to
form an N -dimensional feature vector f (j) for j = 1, 2, ..., J − 1.
Then we form RI vectors F(j) using DFT-encoding. The feature



Table 3. Bamberger pyramid RI correct classification for N = 4.
J=2 J=3 J=4 J=5

L=4 49.60% 78.13% 91.59% 94.95%
L=12 49.28% 84.05% 95.35% 97.28%
L=18 49.52% 84.13% 95.19% 97.04%

Table 4. Bamberger pyramid RI correct classification for N = 8.
J=2 J=3 J=4 J=5

L=4 47.92% 81.81% 92.95% 93.99%
L=12 55.93% 92.39% 96.88% 96.71%
L=18 54.81% 92.16% 96.96% 96.88%

vectors F(j) are concatenated to a single feature vector given by

F =
[

F(1)T ... F(2)T · · · F(J−1)T

]T

. (7)

The resulting feature vector has dimension (J − 1) × (N
2

+ 1).
In Tables 3 and 4 we show classification results using (3) as a

feature. We show the performance progression as J is increased.
Beyond J = 5 there was no improvement in classification. The
tables show the advantage of decomposing a texture at different
resolutions and directions. We draw the following observations
from these tables.

• Classification is improved as a function of the length of
β(z). For L larger then 12 we did not find a significant
improvements.

• With two resolution levels, correct classification jumps from
the 54%-56% range to more than 92%.

• The best result is 97.28% correct classification using J = 5
and N = 4. Hence, higher directional selectivity does not
necessarily improve classification.

• For the N = 8, the best performance is at 96.96% with
J = 4.

Using e2 or e3 as the energy measure showed a significant loss
of performance. For instance, using e2 with J = 5, N = 4, and
L = 18 gives 91.83% correct classification.

6. COMPARISON AND DISCUSSION

We have shown that BPs provide good RI classification results.
BPs can be considered as a good alternative to Gabor functions.
They present computational and design advantages like separable
filtering implementation and excellent directional selectivity.

Haley and Manjunath [4] achieve a 96.8% correct classifica-
tion on the same data set. We achieve slightly better performance,
but with significantly lower feature set complexity. Their feature
set is expensive to compute, and consists of a 208-dimensional fea-
ture vector. In our case, our feature is simple to compute, and only
12 features per texture sample are required.

We believe that the improvement over the method in [4] is
caused by two factors. First, the frequency selectivity for BPs is
significantly better than for Gabor functions. Hence, there is less
energy leakage among subbands. This effect can also be observed
in our results. In Tables 3 and 4, we see that increasing L (i.e., gen-
erating sharper filter passbands) improves classification. Second,

the downsampling operations in the BDFB could be considered as
smoothing operations which remove irregularities among texture
samples. As discussed by Wilson and Spann [14], this improves
the “classness” of texture features.

As future work, we plan to compare Bamberger pyramids against
other multichannel representations. Additionally, we plan to take
advantage of the BDFB structure to develop texture classification
systems invariant to other types of geometrical distortions like skew-
ing and more general affine transforms.
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