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ABSTRACT

A convenient representation of a video segment is a sin-
gle “keyframe.” Keyframes are widely used in applications
such as non-linear browsing and video editing. With exist-
ing methods of keyframe selection, similar video segments
result in very similar keyframes, with the drawback that ac-
tual differences between the segments may be obscured. We
present methods for keyframe selection based on two crite-
ria: capturing the similarity to the represented segment, and
preserving the differences from other segment keyframes,
so that different segments will have visually distinct repre-
sentations. We present two discriminative keyframe selec-
tion methods, and an example of experimental results.

1. INTRODUCTION

Video or motion pictures consist of a series of still images.
Many applications extract one or more of these still images,
termed keyframes, as useful graphical representations of the
video data [1]. For example, in the file view interface of
many operating systems, the first frame in a video file is
often used to represent that data.

Users frequently need to manipulate a large number of
video clips; for example, in “drag-and-drop” video editors
like Apple’s iMovie 1. A drawback of previous keyframe
selection techniques is that similar clips result in keyframes
that are nearly identical. Thus different segments are indis-
tinguishable in the interface. Many common video sources
share this problem, such as short video clips from digital
camera, or pre-segmented results from a video repository.

For practical browsing and manipulation of video me-
dia, keyframes must both represent the underlying video
clip and distinguish that clip from the remainder of the col-
lection. This is accomplished by measuring the similarity of
the keyframe to both the shot it came from as well as other
shots. Preferable keyframes must both resemble the shot
they came from as well as differ from the other keyframes.
In this paper, we present quantitative methods for selecting
keyframes that are both representative and discriminative.

1http://www.apple.com/ilife/imovie/

This approach resembles the familiar term-frequency-
inverse-document-frequency (TF/IDF) keyword weighting
developed for text document indexing and retrieval [2]. The
ratio combines two factors: how well a keyword represents
a particular document, and how well the keyword discrim-
inates that document within the entire collection. We extend
this idea to keyframe selection within video documents. Ide-
ally, video source files have been segmented into shorter
video shot segments or “shots.” Because shots are locally
homogeneous, a single keyframe is a reasonable represen-
tation. Any of the many existing approaches may be used
for shot segmentation [3]. In the following discussion, we
use the generic term “segment” to refer to any continuous
video file, regardless of its source. In fact, this approach
may also be used to select representative images from any
image collection or set of collections.

2. RELATED WORK

In the Manga system [4], keyframes are selected using an
importance score based on shot length and rarity within an
agglomerative clustering framework. Like the methods pre-
sented here, this system trades off similarity and redundancy
for keyframe selection. However, our system does not dis-
card any (segment’s) keyframes. More commonly, keyframe
selection follows shot detection. In [5], video skims are pro-
duced by selecting short video shots and selecting keyframes
based on detected object motion. There are also systems
that select keyframes based on text, audio, or speech analy-
sis, e.g. [6]. Aoki et al. [7] presented a rule-based approach
for detecting scene structures such as dialogues (“patterns”
and “acts”) and to exploit redundancy in such scenes in
keyframe selection. In that work, redundancy was defined
in terms of specific rules (shot-level patterns) rather than
frame-level feature similarity.

[8] presents a framework for video summarization also
seeking to select keyframes that are “maximally distinct and
individually carry the most information”. Information is
quantified using the color distribution entropy within each
frame. The Bhattacharyya distance [9] between color-based
histograms is combined with a temporal distance measure
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Fig. 1. Given video segments denoted Q1, · · · , QK , we can
compute the average self-similarity S(j, Qk) as well as the
average cross similarity C(j, Qk) using a similarity matrix.

to quantify inter-frame dissimilarity, and keyframes are se-
lected using dynamic programming. In contrast to the ap-
proach here, the technique uses these frame based measures
within each shot rather than across the entire source video
(possibly for computational reasons). [10] presented an it-
erative approach to discriminative text document clustering
based on mixture models that may also be applicable to
keyframe selection. The approach is based on mixture mod-
elling of co-occurrence data, in contrast to the non-iterative
methods presented herein. Unlike TF/IDF [2], our approach
is based on similarity rather than feature (keyword) occur-
rence frequencies.

3. KEYFRAME SELECTION

To measure keyframe similarity, we first compute feature
vectors based on low-order discrete cosine transform (DCT)
coefficients. We sample frames at 1 Hz and transform the
individual RGB frames into the Ohta color space [11]. The
DCT of each transformed channel is computed and a feature
vector is formed by concatenating the resulting 25-49 low
frequency coefficients of the three channels. Other parame-
terizations may of course be used, but we have not evaluated
them here.

3.1. Similarity-based implementation

The result of the parametrization step is a vector of features
for each frame. Given a source video with N frames, de-
note the frame-indexed feature vectors V = {vi : i =
1, · · · , N}. The similarity between any two frames can be
calculated using a distance measure; here we use the co-
sine similarity measure. The similarity between a candi-

date keyframe and a video segment is the average similar-
ity between the given keyframe and all frames in the seg-
ment. Represent the segment comprised of frames l, · · · , r
by Q = {vi : i = l, · · · , r} ⊂ V. Given the similarity mea-
sure d(·, ·), the average similarity S between any candidate
keyframe j and the segment Q is

S(j,Q) =
1
|Q|

∑

vm∈Q

d(vj , vm) , l ≤ j ≤ r . (1)

S is then the average self-similarity of keyframe j. Let C be
the average cross-similarity, or the similarity of keyframe j
to all other segments in the collection: Q̄ ≡ V \Q . Define

C(j,Q) =
1
|Q̄|

∑

vm∈Q̄

d(vj , vm) , l ≤ j ≤ r . (2)

A similarity matrix S with elements S(i, j) = d(vi, vj),
as depicted in Figure 1, can be used as a look-up table to
accelerate these calculations.

A representative keyframe will have a high value of S –
it will be very similar to the other frames within the same
segment, on average. To be discriminative, the frame should
also minimize C – it should not resemble frames (and hence
the keyframes) in other segments. The difference or ratio of
the two values indicate how well a given keyframe satisfies
both criteria. Thus a subtractive figure of merit is

FS(j,Q) = S(j,Q) − C(j,Q) , (3)

while a rational figure of merit is

FR(j,Q) =
S(j,Q)
C(j,Q)

. (4)

To trade off the discrimination versus the self-similarity
measures, we may construct weighted measures, using non-
negative constants α and β as follows:

FS(j,Q) = αSS(j,Q) − βSC(j,Q) , (5)

and

FR(j,Q) =
(S(j,Q))αR

(C(j,Q))βR
. (6)

In both cases, increasing α relative to β will increase the
importance of self-similarity relative to discrimination, and
vice-versa.

To select the best representative keyframe v∗ for a seg-
ment Q, we maximize the goodness function F over all
frames in Q:

v∗ = argmax
vj∈Q

F(j,Q) (7)

For simplicity, we have considered here only single keyframes
thus far. Note that it is straightforward to extend the above
to select a best sub-segment (i.e. key-segment), or series of
frames.



3.2. Linear discriminant-based implementation

Linear discriminant analysis (LDA) is another approach to
finding discriminative keyframes. Spectral methods have
been used with considerable success for indexing text docu-
ment collections for information retrieval [12]. Linear meth-
ods can additionally exploit labelled training data to “shape”
the scatter in the reduced dimension space to enhance dis-
crimination. Fisher’s linear discriminant is an example of
such a technique [9].

After segmentation, V is partitioned into K non-
overlapping sets of contiguous frames, and hence features:

V =
⋃

k=1,··· ,K
Qk , (8)

such that each feature vector vi is an element of exactly one
segment Qk. For each of the K segments, we compute the
mean feature vector, µk and find Nk, the number of frames
in segment Qk. Let µ denote the mean feature vector com-
puted for the entire video. Then, define the within-class
scatter matrix

SW =
K∑

k=1

∑

vi∈Qk

(vi − µk)(vi − µk)T , (9)

and the between-class scatter matrix

SB =
K∑

k=1

Nk(µk − µ)(µk − µ)T . (10)

For a desired reduced rank D ≤ K − 1, the optimal trans-
formation is

W = argmax
X

|XT SBX|
|XT SW X| . (11)

W is computed using standard eigenanalysis [9].
W projects the feature data to the D × N matrix Ṽ =

WT V. This projection clusters features from the same seg-
ment, while simultaneously separating them from those of
other segments. As a result, keyframe selection is as simple
as determining the frame whose transformed feature vector
is closest to each segment’s mean feature vector. The opti-
mal keyframe for each segment is then

v∗
k = argmin

vj∈Qk

‖WT (vj − µk)‖ . (12)

LDA is well suited to our two objectives for keyframe
selection. The dimension reduction from LDA emphasizes
the representative features for each class to cluster frames
within each segment. At the same time, the projection trans-
forms the features to help distinguish between the classes.
This provides a principled approach for simultaneous di-
mension reduction and keyframe selection.

3.3. Computational remarks

A key computational consideration is the cost of updating
the keyframes as additional videos or images are added to a
collection. If additional media is added to an existing col-
lection, it could be desirable to update the keyframes to pro-
vide further discrimination. The similarity-based approach
induces O(N) complexity, where N is the total number of
images (frames), to add an additional row and column to
the similarity matrix. The linear discriminant technique is
more costly. Because W is comprised of generalized eigen-
vectors as noted above, “folding-in” techniques [12] are ap-
plicable for updating the analysis. These costs are approxi-
mately O(ND). Other computational enhancements are to
consider only a subset of all video frames when computing
or updating C. An obvious approach is to only use the set of
already-chosen keyframes {v∗

k} to recalculate C.

4. EXAMPLES

Figure 2 shows the results of discriminative keyframe selec-
tion for a collection of seven video segments, taken from a
instructional golf video. The video contained several very
similar shots, that differed only in slight details. Low-order
DCT coefficients were used for the frame parameters, and
the cosine distance measure was used. The unweighted mea-
sures of (5) and (6) were computed with α = 1, β = 0 on
the left and α = β = 1 on the right. Thus the keyframes on
the left were chosen non-discriminatively, and the keyframes
on the right were chosen discriminatively from the same
segments. The difference is apparent: the discriminatively-
chosen keyframes are distinctly different in six of the seven
segments, while the similarity-based method resulted in only
four unique keyframes. Both the subtractive and rational
measures resulted in identical output. Similar results were
obtained using LDA.

5. CONCLUSION

We have presented methods for finding keyframes that are
both relatively unique and reasonably similar to the video
segments they represent. We expect these methods to be
particularly useful for video editing or GUI applications
where it is important that keyframes are distinct, so that dif-
ferent segments are not confused.
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