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ABSTRACT
The computational complexity of cellular telephone standards

has increased faster than Moore’s law. New architectural approaches
will be needed in order to meet the performance needs while stay-
ing within acceptable energy budgets. The ACT coprocessor im-
proves on the energy-delay characteristics of embedded systems
by 2 to 3 orders of magnitude, and is within 1 to 2 orders of mag-
nitude of an ASIC approach while retaining much of the gener-
ality of a general purpose processor. This paper summarizes the
ACT architecture, details have been published elsewhere, and then
presents the details of new architectural enhancements that have
proven particularly effective in improving performance. The en-
hancements are a mode addressed register file (MARF) and sepa-
rate address generation units (AGU’s) for each SRAM port and a
hardware loop unit (HLU). For the 9 DSP and telephony codes
used to evaluate this architecture, 61% of the load on an Intel
Xscale’s execution pipeline can be removed by using the MARF,
HLU, and AGU mechanisms.

1. INTRODUCTION

Moore’s law scaling of current embedded processors will be insuf-
ficient to keep up with the energy and performance needs of rapidly
evolving wireless communication applications [5]. Designers of-
ten achieve improvements in energy or delay at the expense of the
other. The energy-delay product has been proposed [3] as a bet-
ter metric for architectural merit. ASICs are typically employed
in support of compute intensive kernels since their energy-delay
characteristics are far superior to software implementations on en-
ergy efficient embedded processors. ASICs are expensive, incur
lengthy design cycles, and need to be redesigned if the algorithms
change or evolve. These 3 aspects are poor matches for the rapidly
evolving cellular telephony arena. This motivated the design of
ACT [7], which exhibits energy-delay characteristics that are 2 to
3 orders of magnitude better than the Intel XScale while retaining
much of the generality of the software based approach. ACT is one
to two orders of magnitude worse than an ASIC, but the generality
and flexibility have a significant cost benefit.

Telephony and DSP algorithms are highly iterative, stream ori-
ented, and exhibit relatively high levels of data and instruction
level parallelism (DLP and ILP) which embedded architectures
have been able to fully exploit. They exhibit high memory and
register pressure and performance is often limited by address cal-
culations. Increasing memory and register bandwidth by adding
additional ports results in a large increase in power dissipation and
still does not solve the address calculation problem. The ACT ar-
chitecture exploits two additional sources of parallelism: loop con-
trol parallelism (LCP) and address generation parallelism (AGP).

This paper presents architectural mechanisms which enhance AGP
ald LCP in the ACT coprocessor. Previous research efforts [8, 9]
have focused on less general strategies than those introduced here.

2. ARCHITECTURE

The ACT coprocessor architecture [6] is shown in Figure 1. A host
processor loads frames of data into the input memory and pulls
output frames from the output memory. The two scratch memories
are local storage resources. The input memory is dual-ported and
used in a double buffered fashion. Memories are 16-bits wide and
have 1024 entries, except for the input memory which has 2048 en-
tries. ACT handles the computationally intense real-time tasks on
the four clusters of execution units. The multiple individually ad-
dressed SRAMs provides adequate bandwidth to avoid: XU star-
vation, cache control energy, and delay uncertainty. Caches are not
particularly effective for stream based applications. ACT provides
more precise program controlled data movement. These choices
also increase the need to exploit AGP.
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Fig. 1. ACT Coprocessor Organization

Each cluster in Figure 2, consists of three integer execution
units (XUs), and two 32-entry register files, each with 1 read and
1 write port. Routing level 1 consists of a layer of 5:1 muxes with
registered outputs and allows every XU in the cluster to commu-
nicate with routing level 0 and with the other 3 clusters. Routing
level 0 also consists of a layer of 6:1 muxes and allows each cluster
to access any of the memories. The 2-level mux strategy provides
sufficient bandwidth for the execution resources and allows ACT
to operate at 300 MHz in a .25 micron TSMC process.

The ACT processor is effectively a fine-grained VLIW archi-
tecture and the program consists of horizontal microcode instruc-
tions which control register load and output enables, mux select
lines, XU opcodes, and a variety of internal control registers that
manage the address modes, register file access, loop control, and
compression strategy. The wide instruction memory is a potential
energy consumption problem. However, due to the regularity of
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the instruction patterns, there is a significant opportunity for com-
pression. These duties are handled by the decode and decompress
unit.

3. AGP AND LCP MECHANISMS

3G telephony and DSP applications are dominated by regular in-
ner loops which process streams of frame organized input signal
data. Performing address calculations in separate units increases
significantly the performance.

3.1. The hardware loop unit

The hardware loop unit (HLU) in Figure 3, controls up to four
nested loops and avoids the normal loop overheads of loop index
modification and conditional branching. Modulo scheduling [11]
is supported using a modulo counter that counts from 0 to the initi-
ation interval of the loop. Loop nests of size greater than 4 are rare
in 3G baseband algorithms. Larger loop nests can’t be fully accel-
erated since they will require compute support from the execution
clusters. The HLU contains a dynamic table to track index vari-
ables, a static table that contains program constants, and a small
function unit (FU) that supports the necessary arithmetic duties.
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Fig. 3. Hardware loop unit.

3.2. Stream AGUs
The ACT AGUs are designed to be semi-configurable and support
address generation for two types of addresses that we call sim-
ple (1D and unit stride 2D patterns) and complex (non-unit strided
2D and modulo patterns). Most 3G mobile baseband algorithms
require simple addresses, but telephony standards are evolving to
support image and video data which require complex addresses.

Each AGU, shown in Figure 4, has three integer units (ALU)
connected via a mux. Each ALU receives inputs from the hardware
loop unit, execution cluster, instruction memory, configuration ta-
ble, or from the output of another ALU in the AGU. Each AGU
also includes four general purpose addresses registers(for e.g, to
store the base address, not shown in the figure) that can be ac-
cessed in both modes. Figure 5 illustrates two dimensional data
accesses. Data is divided in sub-blocks (circle). The number of
required strides to access these data is four: two for the data in
the sub-blocks and two to access different sub-blocks. Switching
sub-blocks is done via a base address. Hence, an access requires a
base address, row size, column size, row stride, and column stride.
Assuming that the number of elements in each row and column
in each sub-block is power of 2, the address of each element in
this sub-block will be calculated as: (i << const1) + (j <<

const2) + base.
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Fig. 5. 2D Stream access format processed in one sub-block at a
time.

Opcodes, mux selects, constants, register load enables in the
simple mode are part of the instruction. For complex addresses, the
extra control bits are stored in a configuration table. Each AGU has
a four entry configuration table. This supports an arbitrary number
of simple address calculations and up to four complex patterns.



3.3. Data Reuse and Register Files

Data reuse opportunities can be seen by examining IIR/FIR filters,
and MPEG2 motion estimation. FIR filtering is used in many DSP
applications and performs the following operation:

y(n) = ΣN−1

i=0
h(i)x(n − i)

Where h is the coefficient array, x and y are the input and
output sequences. Each loop iterates over all N coefficients and
N-1 elements of array x are reused. The IIR filter used in VoIp,
for instance, has a loop carried dependency. The filter is used to
process multiple channels, each with different coefficients. For
MPEG2 motion estimation encoding, the best matching block is
searched by comparing it with a number of candidates in the ref-
erence frame. The new candidate block is formed by shifting by
a few pixels from the current candidate. Most of the current and
next block therefore overlap.

Exploiting data reuse reduces memory pressure. Previous ap-
proaches employ caches, loop transformations, and some hardware
support to improve cache cache performance. Recently, software
based mechanisms that exploit the data flow information available
to the compiler have also been used in the elite processor [10]. The
ACT approach is similar to elite but at a finer granularity. Regis-
ter files are hot spots in modern processors since they are both the
source and sink for most operations. In Imagine [12], it has been
shown that the power for a centralized register file scales quadrat-
ically with the number of ports and linearly with the number of
registers.

The ACT architecture employs two 32-entry register files in
each of the 4 clusters. Each register file is split into two adja-
cent windows shown in Figure 6. The size of the windows are
explicitly allocated by setting a tail pointer for the first window.
The second window is addressed normally as a static register file,
while the first window is accessed like a rotating register file using
simple address modes supported by the register file address gen-
eration unit (AGURF). Each AGURF holds two pointers and per-
forms modulo increment/decrement for circular addressing. If the
data in a register file needs to be accessed with a different stride
and base pointer, a new pointer can be loaded from the instruc-
tion or from the static portion of the register file. This organization
allows significant register file specialization for different computa-
tion phases, provides hardware support for rotating registers. Since
the registers are software controlled, values used in different com-
putations can be kept and reused as long as necessary.
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Fig. 6. MARF.

4. RESULTS

ACT power and performance measurements were obtained using
Synopsys Nanosim on a fully synthesized and back-annotated .25µm
Verilog- and Module Compiler based implementation. A full clock
tree and worst case RC wire loads are included in the model. All
algorithms were hand scheduled and mapped to the architecture.

Conflicts on register file write ports or in any functional units were
resolved by storing the data in the post-mux registers. This effec-
tively creates a distributed set of single entry registers files. The
circuit is then simulated in Nanosim for the duration of several
input packets. The RMS current is used to calculate energy con-
sumption. For the general purpose processor measurements, a low
power 400MHz .18µm Intel XScale (StrongARM) PXA250 sys-
tem has been used. Power numbers have been normalized to an
.18µm process. These values were scaled by the feature-size λ

using the method described by Gonzalez and Horowitz [3] at a
conservative value of 2.

The power numbers for the ASIC implementations for FIR,
TFIR, SAD, Dot Product, Vector Product and Square, SAD, matrix
multiplication and strided matrix multiplication were obtained us-
ing .25µm Verilog implementations using Nanosim. The Rake im-
plementation was taken from the literature [4]. Figure 7 illustrates
the energy-delay product of the coprocessor and XScale, normal-
ized to the ASIC.
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Fig. 7. Energy-delay with respect to ASIC (no compression)

Figure 7 shows that the ACT energy-delay product varies be-
tween one and two orders of magnitude when compared to the
XScale. The data rate (shown in Figure 8) sustained by the co-
processor, on the other hand, varies. When compared to the TFIR
ASIC, the coprocessor is able to achieve almost 1/4 the perfor-
mance of the ASIC (Note: the ASIC has 4 times as many multipli-
ers). In the FIR case, the coprocessor is capable of sustaining 1/6
the performance of the ASIC. The FIR implementation requires
data transfers between the register files in different clusters. Such
a transfer requires the use of an XU, since the register files are not
directly connected The effective data transfer rate will decrease for
filters with a higher number of taps. The excess performance of the
coprocessor for Rake provides the opportunity to work on another
task or it can be powered down. For SAD, the coprocessor and the
ASIC have almost the same data rate since the ASIC was designed
to perform four SAD operations per cycle.

The energy dissipation due to instruction memory ranges be-
tween 29% and 45% of the total dissipated power. In [6] we have
developed decompression techniques that can reduce this power
by up to 50%. For the Xscale, 44% of the application suite in-
structions are load/store, 39% are the real work, and 17% are addi-
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Fig. 8. Data Rate with respect to ASIC

tional address calculation instructions. A similar address calcula-
tion load was reported in [13]. However the load/store instructions
also contain simple address calculations, and hence these instruc-
tions must first go through the Xscale execution pipeline before
returning the effective address to the load/store pipeline. Using
the MARF, HLU, and AGU units in ACT would reduce the load
on the Xscale execution pipeline by 61%. For ACT the MARF and
AGU mechanisms increase parallelism by exploiting AGP.

5. CONCLUSIONS & RELATED WORK

Applications in the embedded domain require architectures that
are flexible, high-performance, and consume minimal power. High
performance and low power can be achieved by the use of ASICs
but not flexibility. General purpose processors are flexible but
have high power consumption and do not offer the required per-
formance level. DSP processors improved their DSP performance
by including application specific hardware support for algorithms
that are computationally intensive such the turbo decoder and the
rake receiver [1]. Other solution use FPGAs and ASICs as co-
processors for DSP processors [2]. While this approach provides
more options for mapping the application onto the architecture,
FPGAs have much lower performance and consume much higher
power than an ASIC approach. Designing an embedded processor
or a coprocessor that offers high performance, flexibility and low
power relies on the opportunity for customization for a particular
domain. ACT takes advantage of this opportunity and the benefit is
enhanced by parallel address generation capabilites of the MARF
and AGU mechanisms explored in this paper.

VLIW architectures [1] have been adopted for signal process-
ing applications for their power and performance advantages. The
register file size, number of ports, and limitations in the commu-
nication interconnect and memory bandwidth have a major effect
on performance and power dissipation. Memory bandwidth has a
big effect on performance. In [12], a bandwidth efficient stream
processor was presented, however the design was targeted for high

performance rather than low power. In [10], a vector pointer unit
has been used to for efficient register file accesses similar to the
MARF approach.

In this paper, a high performance, low power, and flexible co-
processor architecture has been presented. The AGU and MARF
units exploit AGP to improve performance, allowing 61% of the
Xscale workload to be processed in parallel.
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