Hardware Protection and Authentication Through
Netlist Level Obfuscation

Rajat Subhra Chakraborty
Dept. of Electrical Engineering and Computer Science
Case Western Reserve University
Cleveland, Ohio 44106, USA
e-mail: rsc22@case.edu

Abstract—Hardware Intellectual Property (IP) cores have
emerged as an integral part of modern System—on—Chip (SoC)
designs. However, IP vendors are facing major challenges to
protect hardware IPs and to prevent revenue loss due to IP
piracy. In this paper, we propose a novel design methodology
for hardware IP protection and authentication using netlist level
authentication. The proposed methodology can be integrated in
the SoC design and manufacturing flow to provide hardware
protection to the IP vendors, the chip designer, and the system
designer. Simulation results on ISCAS-89 benchmark circuits
show that we can achieve high levels of security through a well-
formulated obfuscation scheme at less than 10% area overhead
under delay constraint.

Index Terms — Design for security, IP piracy, hardware
authentication, hardware obfuscation, hardware protection.

[. INTRODUCTION

The increase in SoC design complexity in recent years
has made reuse-based design using hardware Intellectual
Property (IP) cores extremely common [3]. These IP cores
are in the form of synthesizable Register Transfer Level (RTL)
descriptions in Hardware Description Languages (HDLs), or
synthesized gate-level netlists. It is quite common to have
SoC designs where multiple IPs from different IP vendors are
integrated by the chip designer.

Unfortunately, recent trends of IP piracy and reverse—
engineering efforts to produce counterfeit ICs have raised
serious concerns among the IC design community [1, 2]. It
can take several forms — (a) IPs being used without paying
the requisite fees to the IP vendor [3]; (b) design houses
illegally selling IPs obtained from IP vendors to other parties;
(c) fabrication houses manufacturing and selling illegal copies
of a design without paying royalty fees to the design house [4],
or (d) companies performing post-silicon reverse-engineering
to derive the GDS-II database of an IC to manufacture
illegal ““clones” [5]. Whatever might be its form, IP piracy
affects the IP vendors, chip design houses as well as system
manufacturers adversely by depriving them of their revenue
and market—share.

In this paper we develop a low—overhead, piracy—proof
design flow for SoCs that benefit the IP vendors, the chip
designers, the system designers and end users of SoC based
products. Our approach is based on obfuscation of the design
at the gate—level. This is by modification of few selected nodes

978-1-4244-2820-5/08/$25.00 ©2008 IEEE

Swarup Bhunia
Dept. of Electrical Engineering and Computer Science
Case Western Reserve University
Cleveland, Ohio 44106, USA
e-mail: skb21@case.edu

of the design and the state transition function, followed by a
resynthesis of the design. The objective of the modification
process is to enforce undesired logic values at the primary
outputs and state element inputs unless a sequence of patterns
appears in the primary inputs. The enabling pattern or key
can vary from one instance of the IP to another. The key
effectively embeds authentication capabilities to the design,
which helps to establish the legal source of the design in case
of litigation, all the while ensuring that the degradation in the
user experience is minimal. As far as we know, this is the
first work that explores gate—level obfuscation as a method
to embed anti—piracy features in the design flow, and ensures
both obfuscation and authentication capabilities to all parties
associated with it.

The rest of the paper is organized as follows. Section
I presents previous work in this field, and indicates the
salient features of this work. In Section III, we describe the
low—overhead hardware obfuscation scheme in details, and
develop the ObfusFlow (Obfuscated Design Flow) design
methodology based on the proposed scheme. In Section IV we
present simulation results for a set of benchmark circuits that
show the effectiveness of the proposed hardware obfuscation
scheme. We conclude in Section V.

II. BACKGROUND AND SALIENT FEATURES

The issue of IP piracy and ways to mitigate it have been re-
searched extensively in recent years. Existing solutions to this
problem can be broadly classified into two main categories: a)
Obfuscation, and b) Authentication.

Obfuscation based IP Protection: The problem of Design
Obfuscation can be viewed from multiple perspectives [6,
7]. In [6], the solution proposed is to modify the HDL
(RTL) source code by removing the comments and changing
the internal net-names following a simple string—substitution
strategy. This is done in such a way that the functionality of the
system remains unchanged, but the logic description becomes
incomprehensible. In [7], the design source—code text file is
encrypted using an advanced encryption technique such as
AES, and then decrypted at the user end (using the decryption
key provided by the IP vendor). However, these approaches do
not modify the hardware structure and functionality and thus
cannot provide hardware protection at all levels of design flow.

674

Authentication based IP Protection: Several “Digital
Authentication” techniques have been proposed that aim to
protect either the rights of the IP vendor [9-11], or that
of the chip designer [4, 12-14]. Most of the approaches
directed towards benefiting the IP vendor aims to embed a
Digital Watermark in the design, which helps in authenticating
the design at a later stage. Since this digital watermark (or
signature) cannot be removed from the IP, it is easy to prove an
illegal use of such a component in litigation. Some approaches
[4, 14] propose to use a “lock—and—key” approach, such that
unless a particular input pattern (termed a “key”) is provided,
the circuit will not operate in its intended mode. However,
these approaches do not obfuscate the design and hence,
cannot prevent reverse engineering the design and unintended
use of the IP.

Salient Features of the Proposed Approach: Our approach
is different from the approaches proposed so far in the sense
that we focus on changing the functionality and structure of
the IP core (by modifying the gate-level netlist), so that it
both obfuscates the design and embeds authentication features
in it. Moreover, these features are present in the design at
every stage of the design flow, and thus the rights of all
concerned (the IP vendor, the design house, and the system
designer) are preserved, and all of them play an active role
in making the design flow a secure one. The IP is protected
from unauthorized manufacturing by the fact that the system
designer depends on input from the chip designer to use
the IC. Consequently, the manufacturing house cannot simply
manufacture and sell un—authorized copies of the IC without
the knowledge of the design house. In addition, it is transparent
to the end user who has the assurance of using a product that
has gone through a secure design flow. We prefer obfuscation
at gate—level because:

1) Obfuscation of the RTL level description of a circuit
is substantially more challenging than the gate—level
description. The characteristic lucidity and terseness of
a high-level, behavioral description of a circuit makes
any design modification much more visible than one
performed at the structural level (such as gate-level).

2) In many cases the IP is transferred in the form of a
gate—level design by the IP vendor, and hence the RTL
description of the design is not available [8].

III. THE ObfusFlow DESIGN METHODOLOGY

The proposed obfuscation approach is essentially one of
obfuscating the functionality of the IP core by structural
modifications. The structural modification is realized by mod-
ifying selected internal circuit nodes and the state transition
function (assuming a sequential circuit) in a manner that forces
undesired values at internal nodes and state element inputs,
unless a specific sequence of patterns appear at the primary
inputs that enables normal operation. After the modification,
the circuit is resynthesized to hide obvious change in the
logic structure. To modify the state transition function, we
propose to insert a simple Finite State Machine (FSM) (with
low hardware overhead) in the IP. The inserted FSM has the

PO =00
P1=01
P2=10
P3=11

Start
P0,P1,P3,RST

P0,P1,P2,P3

(a) FSM State Diagram

Input Logic Cone
of Modified Node Output Logic
/ Cone of Modified
/ Modified \Node
Nz‘)de

Primary Inputs
Primary
Outputs

PO,

(=
Pl
"

N

P

CL

System Black-box

(b) Node Modification

Fig. 1. An example of netlist level obfuscation in a sequential circuit. The
key step to accomplish the obfuscation goal is to select a set of nodes in the
circuit and modify them to provide wrong outputs until the circuit reaches
a pre—defined state on application of a sequence of patterns (referred to as
“key”) at the primary inputs.

primary inputs of the circuit as its inputs, (beside the clock
and reset signals), and has one output. The FSM defines
two distinct modes of operation of the IP core: normal and
obfuscated. At the start of operations, the FSM is reset to its
initial state (with output at logic-1) and then, depending on
the applied input it goes through a state transition sequence.
Only on receiving N particular input sequences in order, it
goes to a state where its output becomes logic—0, and it stays
in that state until reset to the initial state. Fig. 1(a) shows the
state diagram of such a FSM with N = 3 required patterns in
the enabling sequence and N + 1 = 4 states.

The output of this FSM is XOR-ed with a few selected
nodes of the circuit. Thus, initially when the FSM output
is at logic—1, the logic values at the modified nodes are
inverted and the circuit behaves differently compared to the
unmodified circuit. However, once the output of the FSM
settles to logic—0, the circuit is restored to its original behavior.
If there are M primary inputs (other than the clock, reset
and power supply), and if NV state transitions are required to
make the FSM output logic—0, the probability that a random
application of N consecutive vectors at the primary inputs
would be able to bring the IP to its normal mode is QN%,
which is exponentially small depending on the product M -N.
For example, if M = 16 and N = 16, P ~ 10~7". Hence, we
can assume that it is practically infeasible to reverse engineer
the correct functionality of the IP by functional simulation.

Choosing the Optimal Set of Nodes: The proposed design
modification scheme should provide maximum robustness to

675

Inputs: List of Internal
Nodes, Ny

Input: Gate-level Synthesized
Verilog Netlist, Overhead
Contraints, [“don’t touch list”]

Get Fan-out and Fan-in
Cones

TIteratively Rank Nodes
Modify Netlist

Calculate Obfuscation Metric

Nux n0des selected?

Fig. 2. Proposed Design Flow and Iterative Ranking Algorithm

reverse—engineering approaches at minimal hardware over-
head. To achieve this goal under given constraints, we need
to choose an optimal set of nodes to be modified, so that
maximum obfuscation is achieved at minimal overhead. We
followed a ranking procedure where nodes with larger fan—
out and fan—in cones are preferred. This is because large fan—
out and fan—in cones imply the modified node affects a large
number of internal nodes and primary outputs.

Iterative Ranking Algorithm: Once the metric has been
calculated for the nodes in a gate-level design, the nodes are
ranked following a iterative ranking algorithm. The ranking is
a multi-pass procedure, with the metric for each node being
dynamically modified based on the selection of the nodes in
the last iteration. The algorithm takes into account the overlap
of the fan—out cones of the nodes which have been already
selected, and eliminates them from the fan—out cones of the
remaining nodes. On the completion of each iteration, the top
ranking node among the remaining nodes is selected, so that
selection of N, nodes would take N, iterations. In this
way, as the iterations progress, the nodes with more non—
overlapping fan—out cones are assigned higher weight.

Design Flow based on Hardware Obfuscation: The IP
vendor applies the hardware obfuscation scheme to create the
modified gate—level netlist and re-synthesizes it into a flattened
netlist. This re-synthesis helps to structurally obfuscate the
netlist from the original unmodified one. Note that the same
technique can be adopted by a design house which designs its
own IPs. Fig. 2 shows the IP obfuscation design flow adopted
by the IP vendor. An optional don’t touch list of nodes (e.g.
nodes on the critical path) can be provided at the start of the
design flow, which are not to be modified.

The IP vendor then supplies the modified IP to the de-
sign house, along with the activating sequence. The design
house receives one or multiple IPs from IP vendors, and
then integrates them on chip. To activate different IPs, the
designer needs to include a low-overhead “controller module”
in the SoC, that will steer different initialization sequences
to the different IP blocks. This controller module has an
integrated FSM which determines the steering of the correct
input sequences in correct order to a specific IP block. The

Challenges Challenges
+ Integrate Modified IPs

* Minimize Overhead

* Accommodate Initialization
« Modify Testbench

Challenges

« No Discernable
Challenge

« Minimize Overhead
« Maximize # Obfuscated Verif. Nodes

Benefits

Benefits Benefits
~ Partora

Secure Flow

Prevents IP Piracy
Embeds Authentication Features
Controllable Robustness to Piracy

[+ Obfuscates Entire SoC
o Embeds ication Features
+ Controllable Robustness to Piracy

. IP Vendors 1
K| Chip GDS-1I

L}

> Foundry
1 Designer
[} T

&,
s,
D
@

%
e
%,

%5

Assembled

End U System System Tested 1C Test
T ser T oy
Designer Facility
Challenges Challenges Challenges
= Provide Patterns to Activate All SoCs + Involved Test Generation
+ None S Ml Ovehead « _Increase in Test Time
 Make Scheme Transparent to User Benefits
Benefits * Part of a Secure Flow
Benefits s Obfuscates Entire SoC
* Piracy-resist ' Embeds Authentication Features
Product « Controllable Robustness to Piracy

Fig. 3. Challenges and Benefits of the ObfusFlow Design Methodology

designer must also modify the test-benches accordingly to
perform block—level or chip-level logic simulations.

The manufacturing house manufactures the SoC from the
design provided by the design house, and the test engineer
performs post-manufacturing testing using the set of test vec-
tors provided by the designer. The tested ICs are passed to the
system designer along with different initialization sequences
from the design house.

The system designer integrates the different ICs in his
board-level design, and arranges to apply the initialization
patterns during “booting” or similar initialization phase. Thus,
the initialization patterns for the different SoCs need to be
stored in Read Only Memory (ROM). In most SoCs composed
of multiple IPs, several initialization cycles are typically
needed at start—up to get into the “steady—stream” state, which
requires accomplishing certain tasks such as initialization of
specific registers [15]. The system designer can easily utilize
this inherent latency to hide the effect of the initialization
sequences from the end user. The system designer in turn ben-
efits from the fact that the board is unusable until the correct
initialization patterns have been stored in the ROM. Finally,
this secure system is used in the consumer product, which
provides the end-user with the assurance that the components
have gone through a secure and piracy-proof design flow. Fig.
3 shows the challenges and benefits of the design flow from
the perspectives of different parties associated with the flow.

Authentication Features of the Design Flow: To embed
authentication features in the design, the IP vendor can design
the IP with different activation sequences for designs supplied
to different design houses. This will help to trace back to
the source from where the IP was illegally leaked in case of
litigation.

IV. RESULTS

In this section we present simulation results to show the
effectiveness of the proposed hardware obfuscation method-
ology for a set of ISCAS—89 benchmark circuits [16]. The
benchmark circuits were synthesized using Synopsys Design

676

100 . i Ar‘ea Constraint

5%
90 | . | 0%
[115%
80- : L 20%

701 : 1
60]
501 4
401

30|

Failing Verification Points (%)

20

o s526 641 s713 838 s1196 s1238 s1423 s1488 s5378 s9234

Fig. 4. Verification Failures for ISCAS—-89 Circuits

Compiler with optimization parameters set for minimum area
and mapped to a LEDA 250nm standard cell library. The
flow was developed using the TCL scripting language, and
was directly integrated in the Design Compiler environment.
Synopsys Formality was used for formal verification between
the original and the modified design. The verification points
considered by Formality constituted of the inputs of state
elements (e.g. flip-flops) and primary outputs.

A simple four—state FSM was designed for each of the
benchmarks, and integrated into them. The maximum number
of modifiable nodes N,,,. for each benchmark circuit was
determined considering four different area constraints (5%,
10%, 15% and 20%). In all cases the number of modified
nodes was less than 13% of the total number of nodes. The
benchmarks were then subjected to the hardware obfuscation
flow. A prediction of the number of verification failures
between the original and the modified design was obtained
from the tool. This value was obtained by analyzing the fan—
in logic of verification points and determining how many of
them are affected by these modifications.

Fig. 4 shows the verification failure percentage of state ele-
ments and primary outputs of the benchmarks obtained. It was
found the observed failure matches closely with the predicted
failure, with the average prediction error less than 5%. This
was in spite of the fact that the resynthesized design differed
considerably in logic structure from the original design. Table
I shows the design overheads incurred for different benchmark
circuits, for 5% and 10% area constraints overhead. From the
table, it is evident that the actual area overheads were smaller
than the imposed constraints in all cases, while the timing
overhead was negative, i.e., the timing constraint was met with
positive slack in most cases. The power overhead was within
acceptable limits in all cases.

V. CONCLUSION

We have presented a netlist-level hardware obfuscation
based anti—piracy design flow for SoCs. It involves active
participation of the IP vendor, the IC designer and the system
designer, and helps to preserve the rights of all of them. The
scheme is based on modification of the gate—level netlist of a
pre—synthesized IP core, followed by re—synthesis to obtain

TABLE I
DESIGN OVERHEAD (%) WITH THE PROPOSED OBFUSCATION SCHEME

l Overheads(%) [5% area constraint [10% area constraint ‘

l Circuit [Area [Delay [Power [Area [Delay [Power ‘
$526 3.64 0.00 7.06 8.12 0.00 16.17
s641 4.96 -3.66 8.20 9.74 -3.66 13.90
s713 4.06 -3.66 7.34 9.07 -3.66 14.69
s838 2.20 -2.39 6.92 9.00 -8.57 9.76
s1196 3.96 0.00 6.04 6.06 0.00 16.09
s1238 4.52 -0.42 6.52 9.99 -0.42 9.97
s1423 4.70 -0.78 8.02 9.61 -2.64 14.91
s1488 3.27 -2.79 3.13 8.65 -0.93 8.33
s5378 434 0.00 8.91 9.87 0.00 13.80
$9234 4.74 0.00 5.80 8.82 3.60 12.37

| Avg. [404 [137 | 679 [889 [-1.63 | 1299 |

maximum functional and structural obfuscation at minimal
overhead. Simulation results with a set of ISCAS-89 bench-
mark circuits show that this scheme is capable of providing
predictable and high levels of design obfuscation at nominal
area overhead under delay constraint. Future work would
involve further reduction in design overhead and extension
of the proposed obfuscation scheme to register transfer level
level circuit descriptions.

REFERENCES

[1]1 “VSI Alliance - IP Protection Development Working Group. The value
and management of intellectual assets, 2000.” [Online].
http://vsi.org/documents/datasheets/TOCIPPWP210.pdf

[2] R. Colin Johson, “Antipiracy scheme aims protect chip makers”. [Online].
Available: http://www.eetimes.com

[3] A.B. Kahng, et al, “Constraint-based Watermarking Techniques for
Design IP Protection, IEEE TCAD, vol. 20, no. 10, pp. 1236-1252, Oct.
2001.

[4] F. Koushanfar and G. Qu, “Hardware Metering”, Proc. DAC, 2001.

[5] D.C. Musker, “Protecting and Exploiting Intellectual Property in
Electronics”, Proc IBC Conferences, 1998.

[6] “Thicket™ Family of Source Code Obfuscators”. [Online].
http://www.semdesigns.com

[71 T. Batra, “Methodology for protection and Licensing of HDL IP”.
[Online]. http://www.us.design-reuse.com/news/?id=12745\ &print=yes

[8] “Designware USB Solutions”. [Online].
http://www.synopsys.com/products/designware/usb_solutions.html

[9] E. Castillo, et al, “IPP@HDL.: Efficient Intellectual Property Protection
Scheme for IP Cores”, IEEE TVLSIvol. 15, no. 5, pp. 578-590, May
2007.

[10] I. Cox, M. Miller, and J. Bloom, “Digital Watermarking: Principles and
Practice”, San Mateo,CA: Morgan Kaufmann, 2001.

[11] A.B. Kahng, et al, “Watermarking techniques for intellectual property
protection”, Proc. DAC, 1998

[12] F. Koushanfar and M. Potkonjak, “CAD-based Security, Cryptography,
and Digital Rights Management”, Proc. DAC, 2007.

[13] Y. Alkabani, F. Koushanfar and M. Potkonjak, “Remote Activation of
ICs for Piracy Prevention and Digital Right Management”, Proc. ICCAD,
2007.

[14] J.A. Roy, F. Koushanfar and I.L. Markov, “EPIC: Ending Piracy of
Integrated Circuits”, Proc. DATE, 2008.

[15] W.A. Moore and P.A. Kayfes, “US Patent 7213142 — System and method
to initialize registers with an EEPROM stored boot sequence (2007)”.
[Online]. http://www.patentstorm.us/patents/7213142/description.html

[16] [Online] http://www.fm.vslib.cz/~kes/asic/iscas/

677

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

