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Abstract— We address the problem of efficient online computation of
the speeds of different cores of a multi-core processor to maximize the
throughput (which is expressed as a weighted sum of the speeds), subject
to an upper bound on the core temperatures. We first compute the
solution for steady-state thermal conditions by solving a linear program.
We then present two approaches to computing the transient speed curves
for each core: (i) a local solution, which involves solving a linear program
every time step (of about 10 ms), and (ii) a global solution, which
computes the optimal speed curve over a large time window (of about
100 s) by solving a non-linear program. We showed that the local solution
is insensitive to the weights assigned in the performance objective (hence
the need for the global solution). This is because a reduction in the speed
of a core can only reduce the temperature of the other cores over much
larger time periods (of the order of several seconds). The local solution
is then completely determined by the temperature constraint equations.
We show that the constraint matrix exhibits a special property - it can
be expressed as the sum of a diagonal matrix and a matrix with identical
rows. This allows us to solve the multi-core thermal constraint equations
analytically to determine the (temporally) local optimum speeds. Further,
we showed that due to this property, the steady-state speed solution selects
a set of threads to operate at maximum temperature, and turns off all
unused cores. Hence, to ensure that all available threads are scheduled,
we impose a “fairness” constraint. Finally, we show how the open-loop
speed control methods proposed above could be used together with a
feedback controller to achieve robustness to model uncertainty.

I. INTRODUCTION

The processor industry plans to aggressively scale the number of

cores every two years. Already, up to eight cores are commercially

available on a single die. This trend towards multi-core was motivated

in part by power/thermal constraints on scaling clock frequencies. By

reducing the clock frequency of each core, multi-core processors have

been able to stay within the same power envelope, while achieving

performance scaling by exploiting thread-level parallelism (TLP).

However, there are several challenges that must be addressed to

sustain this multi-core strategy [1]. One of them involves the growing

importance of dynamic thermal management (DTM) strategies.

Consider an eight-core processor. During the course of operation,

the number of threads deployed (and hence the number of active

cores) will vary, which results in a wide range of die temperatures.

This presents a new choice to system architects and package design-

ers. They can design an expensive package that supports all cores

running at full speed, or a cheaper package that uses DTM techniques

to reduce the speeds when more than a critical number of cores (say

70% of them) are active. Allowing some throttling at higher loads

enables the processor to operate at higher speeds at lower loads.

Intel’s Dynamic Accelaration Technology for dual-core processors

already allows a core’s speed to be increased if the other core is
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inactive, so that the available power budget can be fully utilized.

The above argument points to the challenges and opportunities in

extending this technology for many-core processors [2].

As DTM techniques become more common, it is important to

extract maximum throughput under thermal constraints. In general,

this requires solving large optimization problems at run-time. Such

open-loop solutions must then operate in concert with multi-input

multi-output feedback controllers to provide a robust optimal control

strategy. Further, any overhead required to perform the above com-

putation must be less than the performance improvement it provides.

As the processor load can change during every operating system

scheduling time slice (about 10 ms), it is important to determine

the optimum speed combination with less than 1% overhead (i.e. in

less than 0.1 ms). In this work, we present an analytical solution that

can be computed very efficiently every 10 ms. We also propose a

global solution that whose amortized overhead is very small.

A. Related work

A number of researchers have investigated distributed throttling

schemes for multi-core processors [3]–[7] using cycle-accurate sim-

ulators. Most of them [3], [4] tried to maximize performance under

a power budget. But this does not guarantee optimality under a

thermal constraint since each core’s power is only affected by its own

speed. The temperature however, is affected by speeds of all cores.

Moreover, even when thermal constraints were considered [5]–[7], the

speed of each core was determined by an independent PID controller.

This is, in general, sub-optimal as such a controller can only locally

track a reference temperature threshold. It cannot perform a global

optimization, as this requires predicting the temperature response

of each core into the future. Further, such controllers cannot easily

adapt when the load on the processor changes suddenly, as it requires

changing their plant models.PID controllers for maximizing processor

throughput under DTM were proposed in [8] for a single core

processor. It can be shown that for a single speed control, minimizing

the temperature error T −Tmax also maximizes throughput.

For a multi-core processor with identical cores and threads, [9]

assumed a single global speed control, and solved for the optimal

speed s∗ by setting T (s∗) = Tmax. However, the threads running

on different cores usually have different power characteristics, and

the cores themselves may dissipate different amounts of power due

to process variations [10] and leakage dependence on temperature

(LDT). Further, the threads can have different instructions per clock

(IPC). The instruction throughput is then a weighted sum of the clock

speeds. Additionally, one could assign weights to threads based on

priority, or any other performance criterion. Hence, the optimal core

speeds are, in general, not identical, and can only be computed by

modeling the effect of each of them on the temperature of all other

cores. In general, this requires robust optimal multi-input multi-output

(MIMO) control techniques like model predictive control, which
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combines the optimizing abilities of an open-loop control scheme

with the robustness that comes from feedback. In this work, we focus

on developing efficient open-loop techniques to solve the multi-core

speed optimization problem (let’s call it problem P1). In Section V-D,

we discuss how such a scheme could be combined with feedback.

In [11], problem P1 was solved using convex optimization tech-

niques, but takes a few hours to compute [11], and is hence

computed offline for a given MPSoC workload. A heuristic for P1

was proposed in [12], which assumes that only a single core is

at the maximum temperature, and then attempts to calculate the

amount by which to reduce its speed or that of its neighbors to meet

thermal constraints. But, with each core trying to achieve maximum

performance, it is very likely that more than one core is at the

maximum temperature. Further, both of these works did not model

the non-linear dependence of leakage on temperature. Assuming

leakage values at maximum temperature significantly underpredicts

the optimal throughput. Analytical solutions for optimal speed control

of a single-core processor, subject to thermal constraints, have been

proposed in [13]–[15]. Our work addresses the problem for multi-core

processors and numerically computes the speed curves of each core

to maximize a weighted sum of the integrals of the speed curves over

a given time window. Also, [13], [14] used a very simple lumped RC

thermal model, and [15] used a model that ignored lateral thermal

resistances and lumped the package. Our work uses the Hotspot

thermal model, and yet, in some cases, provides analytical solutions.

B. Main contributions

• We formulate the steady-state multi-core performance optimiza-

tion problem under thermal constraints as a linear program. Our

thermal model is the Hotspot equivalent circuit model, and our

power model uses a linear approximation for LDT. We show

that the solution is such that the thermal budget is fully utilized

among a subset of threads, while the others are assigned zero

speeds. Hence, we impose a “fairness” constraint that ensures

that each active core has a minimum speed equal to a fraction

of the mean of all other active cores.

• We solve the local transient version of the above problem

as a linear program. Here, the objective is to maximize the

performance subject to thermal constraints over a small time

interval (of the order of the die thermal time constant). We show

that the solution to the above problem tends to be determined

purely by the thermal constraint, and not the weights in the

objective function and explain why. We show how the thermal

constraint equations can be solved analytically, and this provides

an efficient and accurate online solution technique.

• To address the limitation of the local solution of being insensitive

to weights, we propose an exponentially decreasing speed curve

that goes from full speed towards the steady-state solution

determined before. We solve a non-linear program (NLP) to

determine the rates of decrease of the exponential curve for each

core. The NLP achieves maximum throughput over a given time

window (which is of the order of the package time constant)

subject to thermal constraints. To solve the NLP online, we

propose an approximate version of the Hotspot model, which

makes it possible to express the die temperatures as an analytical

function of the time-varying speed curves.

• We propose a simple feedback controller to demonstrate how the

proposed open-loop solutions can be used together with feedback

to provide a solution that is robust to model error.

• We implement the proposed speed control policies in Matlab

using data from Hotspot and PTScalar for our power and thermal

models. We show that the local solution can be computed within

1 ms, and the global solution, within 1 s, for a processor with

nine cores. We found that for cases with large variance in the

objective function weights, the global solution achieves up to

4% larger throughput than the local solution. The open-loop

solutions required less than 10% correction from the feedback

controller due to model approximations.

II. MODELS, ASSUMPTIONS, AND NOTATION

A. Performance model

Consider a multi-core processor with n cores. We assume each

core i can independently control its speed si. Here, speed refers to

the DTM control mechanism like the clock gating duty cycle, fetch

throttling duty cycle, clock frequency, etc. For these mechanisms, the

dynamic power is a linear function of the speed. We do not model

dynamic voltage scaling in this work for the following reasons: (i) the

majority of multi-core processors today use fetch throttling and clock

gating for DTM as they can be activated with smaller overhead, (ii)

the margin for voltage scaling is already small and supply voltages

are not expected to scale much in future technology generations [16].

We assume the speed can be varied continuously over [0,1].
For simplicity, we assume each core can only run a single thread

at a time (i.e. no SMT). For processors with many cores, having

simple single-context cores is expected to be more power efficient

[1]. We also assume that a thread runs on the same core it was

initially assigned to until it completes. A core is said to be active

if it is executing a thread and inactive otherwise. Inactive cores are

assumed to be placed in a low power mode rather than simply idling.

Given a set of nt threads, the length n core activity vector a defines

the mapping of threads to cores. If ai > 0, the thread whose index

is ai is mapped to core i. If ai = 0, core i is inactive. We define

the throughput of a multi-core processor as a weighted sum of the

speeds of each core S = ∑n
i=1 wisi. For an active core i, the weight is

a positive value that can indicate the average instructions per clock

(IPC), priority, or any other performance criterion that is different for

different threads. For an inactive core i, wi = 0. For IPC weights, the

above weighted sum is the number of instructions per second.

B. Power and thermal models

A given combination of core speeds (denoted by a vector s) will

result in a corresponding spatial and temporal distribution of power

consumption. The spatial variations at a given time instant are due to

differences in circuit type, size, activity, and even temperature among

functional units and cores. The temporal variations on a given core are

due to the nature of the code being executed (CPU-bound vs memory-

bound), or a context switch. Denoting the power and temperature of

all functional units on the chip as Pc and Tc, we note that Pc =
f (s,Tc, t), where the dynamic power depends on the speed and time,

and the static power only on the temperature. We use the non-linear

temperature-dependent leakage models from [17] to model Pc(Tc).
We compute a linear upper bound and use these models to find the

open-loop speed control vectors. The feedback controller however,

uses a plant model with non-linear leakage-temperature models, and

can correct errors resulting from the linear approximation.

The temperature vector is related to the power vector through a

dynamic relationship that requires knowledge of the thermal interface

material, package, and convection vectors (collectively called Tp)

in addition to Tc. We note that these non-die blocks dissipate zero

power. Now, representing the combined chip-package power and

temperature vectors as P and T, respectively, we can describe their

relation as a state-space differential equation [18], [19] dT/dt =
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A T + B P(s,T, t). We use the Hotspot thermal equivalent circuit

model [18] to obtain the state-space matrices A and B for a given

multi-core floorplan. For a floorplan with m functional units per core,

the Hotspot circuit has nm nodes/blocks each, in the die and thermal

interface material layer (TIM), and 14 blocks in the package, for

a total of N = 2nm + 14 blocks. Note that our thermal system has

N temperature states, and N power inputs (of which only nm are

non-zero). Hence, both A and B are N ×N.

C. The system power vector

Assuming a linear approximation for LDT, we now express the

system power vector P as a linear function of the speed vector s
and the temperature vector T. The dynamic power of each block

when its corresponding core is running at full speed is defined as

P(max)
d . This vector is of size N, and consists of zeros for the nm+14

package and TIM blocks. It is also zero for any chip blocks in inactive

cores. The actual dynamic power for chip block i is then given by

Pd,i = P(max)
d,i ∑n

i=1 xi js j, for all i = 1, . . . ,nm, and j = 1, . . . ,n, where

xi j = 1 if block i belongs to core j, and 0 otherwise. For i > nm,

xi j = 0 for all j. This can be expressed in matrix notation as Pd(s) =
diag

(
P(max)

d

)
X s, where X is the matrix of xi j values and is of size

N×n, and the diag() of a vector v is diagonal matrix whose diagonal

elements are equal to v.

The leakage power vector for chip units can be expressed as Pc,s =
Pc,s,0 + Gc,sTc. Here, Gc,s is a diagonal matrix with the non-zero

elements representing the slopes of the power-temperature curve, and

having units of thermal conductance. The leakage power and slope

values correspond to active leakage for blocks in active cores and

standby leakage otherwise. Padding the length nm power vectors and

the slope matrix matrix with zeros (since non-die blocks dissipate

no power), we get the length N system leakage power vector Ps =
Ps0 +GsT. We then have the new system thermal equation dT/dt =
Â T+B (Pd(s)+Ps0), where Â � A+B Gs. This presents the power-

thermal relationship once again in the standard state space form.

III. PROBLEM FORMULATION

A. The steady-state speed control problem

Given a multi-core processor with nt threads, a weight vector

w, power coefficient vectors P(max)
d ,Ps0,Gs, find the speed vector

s that maximizes the steady-state throughput w′ s (where w′ denotes

the transpose of w) subject to the constraint that the steady-state

temperature of each die block is no greater the threshold temperature

Tmax, and that the core speeds are all in [0,1].

max
sss

w′ sss, (1)

s.t. dTss/dt = 0 = Â Tss +B(Pd(sss)+Ps0) , (2)

Ti,ss ≤ Tmax ∀ i ∈ {1, . . . ,nm}, (3)

0 ≤ sss ≤ 1. (4)

It can be shown that the state matrix Â is always invertible, so that

we can write Tss = −Â−1B(Pd(sss)+Ps0). Now, Pd(s) is a linear

function. Selecting the first nm rows from the above equation, we

can express (2) and (3) together as a linear constraint of the form

Csss ≤ d. We then obtain a linear program with n decision variables,

nm linear constraints, and 2n simple bounds on the decision variables.

B. The transient speed-control problem

The transient speed control problem involves finding the time-

varying speed curves of each processor to maximize the average

throughput over a finite time window subject. It is subject to

constraints on the die temperature at speed at every time instant.

max
s(t)

1

t f

∫ t f

0
w′ s(t) dt, (5)

s.t. dT(t)/dt = Â T(t)+B(Pd(s(t))+Ps0) ,T(0) = T0 (6)

Ti(t) ≤ Tmax ∀ i ∈ {1, . . . ,nm},0 ≤ t ≤ t f , (7)

0 ≤ s(t) ≤ 1 ∀ 0 ≤ t ≤ t f . (8)

This is a problem in optimal control [20], and can only be solved

numerically using techniques like dynamic programming. Due to the

large control space (n speed variables) and state space (N temperature

variables), such an approach would quickly explode, and would be

unsuitable even for an offline computation. We present two strategies

that are more amenable for online computation.

1) Local solution: Here, the time window [0, t f ] is divided into

time steps whose length ts is of the order of the die thermal time

constant. The speed curve for each core is assumed to be constant

over this time period. Further, it is assumed that the temperature

response to this step speed vector is monotonic over each time step.

Since the initial temperature vector is guaranteed to be thermally

feasible, we then only need to ensure that the temperature at the end

of the time step meets the thermal constraint. We can formally state

the local transient problem over the time duration ((k−1)ts,kts] as

max
s

w′ s, (9)

s.t. T(kts) = eÂts T((k−1)ts)

+Â−1
(

eÂts − IN×N

)
B(Pd(s)+Ps0) , (10)

Ti(kts) ≤ Tmax ∀ i ∈ {1, . . . ,nm} (11)

0 ≤ s ≤ 1, (12)

where IN×N is the identity matrix. In (10), we have used the matrix

exponential eÂts to analytically solve the differential equation system

(6) over the kth time step. The matrix exponential is fixed for a

given set of threads allocated to a given set of cores, and hence

does not need to be frequently recomputed. As with the steady-state

solution, we can show that (10) and (11) constitute a set of nm linear

constraints on the speed vector s, so that the above problem reduces to

a linear program of the same size as that of the steady-state problem.

2) Global solution: The local solution operates over short time

durations to ensure the monotonicity of the temperature response. But

this is sub-optimal solution over the long-term. The global solution

computes in advance the speed curve over a large time window.

Although this could be solved as a large linear program, it would have

ntns unknowns, where ns is the number of time steps (which could

be as large as 10,000). A recent work on single-core speed control

on thermal constraints [15] showed that the optimal speed curve has

the following property. It operates at the maximum speed until the

temperature reaches the threshold. Then, it uses an exponential curve

to asymptotically approach the steady-state thermally feasible speed.

Based on the above insight, we assume that the optimal speed curve

for multi-core processors operates all cores at maximum speed until

one of them reaches the temperature threshold. Once this happens,

the speeds of all cores are exponentially decreased towards the

steady solution s∗ss. Supposing one of the cores reaches thermal

emergency at time 0, we then have for an active core i, si(t) =
si0e−t/τi + s∗i,ss[1− e−t/τi ], where the τi’s are unknown parameters.

We denote this dependence on t and τ as s(τ, t). We then solve the

following NLP to determine these parameters, and impose the thermal
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constraints at several time instants t1, t2, . . . , tp.

max
τ

f (τ) =
1

t f

∫ t f

0
w′ s(τ, t) dt, (13)

s.t. T(tk) = g(T0,τ, tk) (14)

Ti(tk) ≤ Tmax ∀ i ∈ {1, . . . ,nm},k ∈ {1, . . . , p}. (15)

The objective function can be expressed in closed-form as f (τ) =
∑n

i=1

[
wi

(
s∗i,sst f +

(
si,0 − s∗i,ss

)(
1− e−t f /τi

))]
. In the extended ver-

sion of this paper, we present an approximate thermal model where

the temperature vector can be expressed analytically as a function of

the unknown parameters τ . This allows us to solve the above NLP

efficiently (in about one second).

IV. PROPERTIES OF THE THERMAL CONSTRAINT MATRIX

A. Constrain only the hottest block in each core

Since the thermal upper bound is the same for all die blocks,

we are effectively constraining only the hottest die block(s). If

we could identify these blocks beforehand, we can retain only the

corresponding rows in the constraint matrix. This can be done by

profiling workloads and observing the set of (say) k hottest blocks.

In practice, this set is small. For example, [8] found that the integer

register was the hottest unit for a number of SPECInt benchmarks.

This way, we can reduce the number of thermal constraint equations

to as low as nt (from nm). These can be compactly written as

us+v ≤ Tmax, where u and v are of size nt ×n and nt ×1.

B. Global and local components of the constraint equations

We now use an approximate power and thermal model to show

that each row of the matrix u can be divided into a global component

(common to all rows) and a local component (specific to each row).

Figure 1 shows a simple thermal equivalent circuit. Each block i
on the die is modeled as a current source pi (that represents its

power consumption) and a thermal resistance Rdie,i. Let the block

power be expressed as the sum of dynamic and static components

pi = p(max)
d,i sci + ps,i, where ci is the index of the core to which

block i belongs. Each die block has a corresponding thermal interface

material (TIM) block, which is modeled as another thermal resistance

Rint,i. The package and cooling system blocks are modeled as a single

lumped thermal resistance Rp. Let us define Ri � Rdie,i +Rint,i, and let

Ck be the set of blocks that belong to core k. The total dynamic power

of core k is given by Pd,k = skP(max)
d,k , where P(max)

d,k = ∑i∈Ck
p(max)

d,i .

Similarly, the total static power of core k is given by Ps,k = ∑i∈Ck
ps,i.

Ti =
(

p(max)
d,i sci + ps,i

)
Ri +Rp

n

∑
k=1

(
P(max)

d,k sk +Ps,k

)
(16)

= u(local)
i sc,i +

n

∑
k=1

u(global)
k sk + vi, (17)

Rint,iRdie,i

Rdie,j

Rint,j RpPj

Pi

Tj

Ti

Tp

Die TIM Package

Block
j

Block
i

Fig. 1. Thermal model that shows global/local temperature components.

where u(local)
i = p(max)

d,i Ri, u(global)
k = P(max)

d,k Rp and vi = ps,iRi +
Rp ∑n

k=1 Ps,k. The local component u(local)
i sc,i depends only on the

speed of the local core sci , while the global component ∑n
k=1 u(global)

k sk
is independent of i, and is hence the same for all cores.

We numerically verified that for a quad-core processor thermal

model, the u vector can be approximated as the sum of a diagonal

matrix and a matrix with identical rows as suggested above. Such

an approximation resulted in a worst-case error of at less than 1.6%

and 1.9% respectively, for the steady-state and transient problems.

Further, we observed that the for the transient problem, the non-

diagonal elements of u (and hence the elements of u(global) are much

smaller than for the steady-state case. This is because the package

temperature does not vary significantly over the local solution’s time

step. So, the global component is not strongly dependent on the speed.

V. EFFICIENT SOLUTION TECHNIQUES

A. The steady-state solution and fairness

By constraining only the hottest units, the size of the linear

program presented in Section III-A reduces considerably. Further,

as the steady-state solution is computed only about once every 100 s

as part of the global solution, the computation time is not as critical

as it is for the local solution. However, we now show that the optimal

solution to the steady-state problem has an undesirable property.

Lemma 1: Let Ti,ss be the hottest die temperature of core i for the

optimal steady-state solution. If Ti,ss < Tmax, s∗i,ss is either 0 or 1.

The proof is presented in the extended version of the paper. This

result implies that the optimum steady-state solution selects a set of

cores to operate at either full speed or at a speed that achieves the

maximum temperature. It is possible that some of the active cores

(with Ti,ss < Tmax) could be completely turned off, since no cores

can exist with both a thermal slack and a speed slack. A thread with

low weight could receive a steady-state speed of zero, because it is

better (in terms of throughput) to allocate the available thermal budget

among higher weight threads. In fact, this could occur even when all

cores have equal weight if the cores have sufficiently different power

characteristics. Then, the solution tends to prefer lower power threads.

To avoid this, we propose the following “fairness” constraint: for

each active core i, the speed at any instant si(t) must be no less than

a certain fraction f of the mean of the speeds of the other active

cores. The addition of this constraint results in a solution with lower

throughput. By adjusting the value of f over [0,1), we can achieve

a trade-off between fairness and throughput.

B. Analytical solution to the local transient problem

The problem formulation in Section III-B.1 requires solving a lin-

ear program with nt decision variables, and about 3nt constraints. This

is still inconvenient for repeated online computation. We now show

that the optimal solution to this problem is determined completely by

the constraint matrix, so that it is sufficient to solve the corresponding

set of linear equations to determine the optimal solution.

Lemma 2: Let Ti(ts) be the hottest die temperature of core i at the

end of the time step ts. For time steps of the order of the die thermal

time constant or less, we have that if Ti(ts) < Tmax, then s∗i = 1.

The proof is presented in the extended version of the paper. As

a consequence of this result, the optimum solution to the local

transient problem selects a set of active cores to operate at maximum

die temperature. Any other active core operates at full speed. This

way, the only unknown speeds are of those cores that have binding

thermal constraints. One can then compute the optimum speed vector

by assuming all cores are at the maximum temperature, and if the

resulting speed of any core exceeds 1, it is simply set to 1.

540



The thermal constraint equations can be written as us + v ≤
Tmax. We can also simplify u ≈ u(local) + u(global). Since, the local

component is a diagonal matrix and the global one has identical rows,

we can denote u(local)
i � u(local)

i,i and u(global)
i � u(global)

j,i ∀ j. With some

algebra, it can be shown that the above set of equations can be solved

analytically to obtain the optimum speeds of each core as follows.

First, we compute the speed of an arbitrary reference core r as

sr =
Tmax − vr +∑n

i=1 ai(vi − vr)
(

u(global
i /u(local)

i

)

u(local)
r

[
1+∑n

i=1 ai

(
u(global

i /u(local)
i

)] , (18)

where ai = 1 if core i is active, and zero otherwise. Then, the speeds

of the other active cores are computed in terms of sr as

si =
[
u(local)

r sr − (vi − vr)
]
/u(local)

i , ∀ i∈ {1, . . . ,n},and ai = 1. (19)

Finally, we do s∗i = min(si,1) for all active cores.

C. The global transient solution

We formulated the global transient speed control problem as an

NLP in Section III-B.2. To solve it efficiently online, the thermal

constraints must be expressed analytically in terms of the decision

variables τ . This is not possible with the Hotspot thermal model.

However, if we can reduce the number of state variables from

N temperatures to a single temperature, we can indeed compute

the response analytically. Now, the heatsink-convection equivalent

capacitance Chs-conv is more than 10 times larger than those in the

spreader, TIM, and die. So, we lump the resistances and capacitances

in the heatsink-convection layer, and neglect all other capacitances.

Since the global solution only needs to constrain the temperature

at times of the order of seconds, neglecting these faster dynamics

introduces little error. The detailed derivation of the die temperature

as a function of both, the time and the parameters of the speed curve

τ , can be found in the extended version of the paper. We verified

numerically that for a quad-core processor thermal model, the worst-

case and mean transient prediction errors (of the approximate model

w.r.t. the Hotspot model) are about 9.0◦C and 2.7◦C respectively, and

the steady-state error is about 1◦C. These errors are sufficiently small

that they can be corrected using a feedback controller.

D. A simple feedback controller

The above open-loop solutions assume a linear approximation for

LDT, a simplified thermal model, or both. Further, it is difficult

to obtain power information at the functional unit level, and even

detailed thermal models could be inaccurate. Hence, if the proposed

open-loop solutions were directly implemented in a real multi-core

system, we could have: (i) a temperature underprediction, which

means there is thermal slack available for one or more cores to

increase their speeds, or (ii) a temperature overprediction, which will

activate the processor’s fall-back throttling mechanism; this is usually

a fast acting but less power-efficient technique like clock gating.

We propose a simple feedback mechanism shown in Figure 2 to

illustrate how feedback can help avoid the effects of temperature

misprediction, but retain the optimizing ability of the open-loop

control. The controller scales the open-loop solution s∗OL by a scalar

value k to minimize the error between the maximum measured

die temperature and the thermal threshold. This factor k is found

by performing a binary search over the typical operating range of

this parameter (around [0.5,1.5]). In practice, more sophisticated

controllers (ex. PID control, MIMO control, model predictive control)

will be required and offer potentially higher throughputs, but they are

beyond the scope of this paper. We use the control scheme proposed

Feedback
Controller

Multi-core
Processor+

Open-loop
controller

�

s*OL(t)

s*CL(t)

max

Tmax

Tdie(t)
Tdie

(max)(t)

k(t)e(t)

Fig. 2. Feedback controller used in combination with open-loop control.

Benchmark bzip2 crafty gcc twolf
IPC 1.05 0.81 0.56 1.52
Total dynamic power (normalized) 1.00 0.98 1.00 0.86
Total static power (normalized) 0.88 0.88 1.00 1.00

Speed solution at end of time window using IPC weights
s∗local 0.73 0.60 0.59 0.69
s∗global 0.95 0.22 0.22 0.95

Throughput relative to single core at full speed with IPC = 1
Throughput (local) 2.72
Throughput (global) 2.83 (4% improvement)

TABLE I

BENCHMARK STATISTICS AND MULTI-CORE SPEED SOLUTION.

in Figure 2 to demonstrate that the amount of correction (quantified

by k) required is less than ±10% for the proposed open-loop schemes.

VI. EXPERIMENTAL RESULTS

A. Simulation setup

Our work focuses on the power/thermal behavior of multi-core

processors. Simulating them at the cycle-accurate level to capture

long-term thermal behaviors is very time-consuming (several hours or

days). Hence, our approach is to perform simulation at a granularity

of around 10 ms. This is of the order of the die time constant, and

the operating system scheduler time slice, and is the least time step at

which power and temperature change significantly. We use the block-

based model in Hotspot 4 [18] as our thermal model with a multi-core

version of the Alpha 21264 floorplan. For a given floorplan, Hotspot

computes the state space matrices A and B described in Section II-B

at the functional unit level. We choose the thermal threshold Tmax

as 110◦C, and set the convection thermal resistance in Hotspot to

0.35 ◦C/W. We obtain power traces for different SPEC CPU2000

benchmarks using PTScalar [17], which is a cycle-accurate power

simulator which outputs dynamic power and temperature-dependent

leakage power values based on 65 nm technology. These power traces

are then scaled down depending on the number of cores used in the

simulation. We implement our control strategies in Matlab.

B. Comparison of (temporally) global and local control techniques

Previous studies like [5], [7] have established that having (spatially)

local control over core speeds provides greater throughput than having

a single global control. Here, we compare the benefit of using a

long-term solution (which accounts for weights in the throughput

function) versus a short-term solution (which only cares about thermal

constraints). Table I shows a set of four SPEC benchmarks, and

statistics related to their IPC’s and their relative power consumption.

Each of these threads was mapped to a separate core of a quad-core

processor. We then computed the local and global transient solutions

using IPCs as weights for a time window of 300 s. The resulting speed

curves are shown in Figures 3 and 4. Initially, all cores run at full
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Fig. 3. Local transient speed solution with IPCs as weights.
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Fig. 4. Global transient speed solution with IPCs as weights.

speed. At time t = 0, one of the cores hits Tmax. The global solution

achieved a 4% greater throughput (relative to a single core operating

at full speed with an IPC of 1) than the local one. The local solution

differentiates between cores based only on their powers, whereas the

global solution also considers the IPC weights.

Note that the global speed curve is not monotonically decreasing

as assumed. This is because of the action of the feedback controller,

which corrects for the temperature misprediction due to the approxi-

mate thermal model. The resulting correction was less than 5%. Also,

the global speed curve runs gcc and crafty at a low speed of around

0.22 in steady state. This is because we used a fairness constraint with

f = 0.3, so these threads got at least 30% of the mean of all other

threads. Without these constraints, their steady-state speeds would

have been zero. The local solution is computed in 1 ms per time

step. We believe an optimized implementation in C can be made to

run within 0.1 ms. The global solution requires about 3 s to compute

the global solution and solve the NLP. By restricting this computation

to every 100 s, the overhead is about 3%, which can again be reduced

with an optimized C implementation.

VII. CONCLUSION

Dynamic thermal management will play a dominant role in the

operation of future many-core processors due to the larger operating

range of die temperatures, and the high cost of worst-case thermal

design. To maximize throughput under thermal constraints, multi-

core’s must use speed controllers that combine open-loop optimizing

controllers with robust feedback controllers. This allows them to in-

telligently allocate the available thermal budget among non-identical

cores and threads. We formulate linear and non-linear program

formulations for this open-loop problem. We present theoretical

results and practical observations that help reduce the complexity of

these solutions. We demonstrate that our solutions can be computed

in times suitable for online implementation, and with little correc-

tions from the feedback controller. The global solution provides a

small improvement in throughput over the local solution with little

additional cost. The improvements increase with the variance in the

performance weights among threads. The proposed techniques are the

first to address this problem with online solutions while accounting

for leakage dependence on temperature and thermal transients.
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