
Delay-Optimal Simultaneous Technology

Mapping and Placement with Applications

to Timing Optimization

Yifang Liu

Department of ECE

Texas A&M University

College Station, TX

Email: yliu@ece.tamu.edu

Rupesh S. Shelar

Technology & Manufacturing Group

Intel Corporation

Hillsboro, OR

Email: rupesh.s.shelar@intel.com

Jiang Hu

Department of ECE

Texas A&M University

College Station, TX

Email: jianghu@ece.tamu.edu

Abstract— Technology mapping and placement have significant
impact on the delays in standard cell based very large scale
integrated (VLSI) circuits. Traditionally, these steps are applied
separately to optimize delays, possibly since efficient algorithms
that allow the simultaneous exploration of the mapping and
placement solution spaces are unknown. In this paper, we present
an exact polynomial time algorithm for delay-optimal placement
of a tree and extend the same to simultaneous technology map-
ping and placement for optimal delay in the tree. We extend the
algorithm by employing Lagrangian relaxation technique, which
assesses the timing criticality of paths beyond a tree, to optimize
the delays in directed acyclic graphs (DAGs). Experimental
results on benchmark circuits in a 70 nm technology show that
our algorithms improve timing significantly with remarkably
less run-times compared to a competitive approach of iterative
conventional timing driven mapping and multi-level placement.

I. INTRODUCTION

A. Motivation

In today’s technologies, interconnects contribute to signifi-

cant portion of the overall delay in VLSI circuits. The trend

is likely to continue, or worsen, as the technology scaling

continues, since the wire delays do not scale as well as cell

delays. The interconnect delay depends on the topology and

layer assignment, which is determined by the routing step. This

freedom available in the routing phase is often insufficient

to optimize the circuit for the required performance. The

placement and technology mapping steps also have a great

impact on the interconnect delay, since the former decides

where the locations of the driver and receivers of a net are

and the latter decides which nets exist in the design. Conse-

quently, the algorithms for layout-driven technology mapping,

timing-driven placement, and physical synthesis have received

attention from CAD researchers over the last several years.

B. Previous Work

Technology mapping problem minimizing metrics such as

total cell area for a directed acyclic graph (DAGs) is known

to be NP-hard. For relatively simple structures such as trees,

however, the problem can be solved optimally in a polynomial

time. The technology mapping algorithm to map individual

trees rooted at multi-fanout points or primary outputs in a DAG

on to a set of cells in a library was first proposed by Keutzer

[1]. The algorithm employs dynamic programming technique

and runs in polynomial time in the size of the tree, ensuring

optimality for the metrics such as total cell-area. Most of

the subsequent work employs the same technique to optimize

various cost functions involving area, delay, power possibly

subject to constraints, as in [2]. The layout-driven technology

mapping was proposed by Pedram et al., where an initial

placement of a subject graph and the assumption about the

placement of a match was employed to evaluate wire- and cell-

delays to derive a delay-optimized mapped netlist [3]. Obvious

limitation of the work is that even for a tree, the placement of

the subject graph and that of the mapped netlist can be quite

different and that there are multiple placement possibilities

for a choice at each node in the tree, whereas only one

placement, that of the center of gravity based on the locations

of choices at fanins and (unmapped) fanouts, is considered.

The limitation was partially eliminated in the subsequent work

[4], which solved the problem of simultaneous technology

mapping and linear placement of trees in polynomial time.

However, the assumption about the placement of the cells in a

tree in a single row is not practical, since the cells are allowed

to be placed in different rows in 2-dimensional (2-D) area.

To overcome this limitation, the subsequent work employed

iterative technology decomposition, mapping, and placement

[5]–[7] to place the primitive gates in a given area, perform

mapping with assumptions about the placement of a mapped

cell, and then place the mapped netlist or derive the placement

of the subject graph from the same for the next iteration. Many

industrial tools, which perform physical synthesis, are believed

to employ similar iterative mapping and placement schemes to

improve the delays locally in parts of the circuit. The limitation

of such an approach is that it neither ensures optimality

nor guarantees convergence, as a different mapping solution

leads to a new placement. Thus, the problem of simultaneous

technology mapping and 2-D placement even for trees remains

unsolved even today. Recently, Wang et al. proposed an

iterative mapping scheme [8] employing multipliers, similar

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 101

to those in Lagrangian relaxation technique, to optimize the

area/power under fixed cell-delay model; the wire-delays based

on the placement, however, are not considered.

Similar to technology mapping, placement for general

graphs to optimize useful objectives is a difficult problem

and has been well researched over the last few decades;

see [9] for the recent literature survey. The placement of

special structures such as trees, however, can be performed

in a polynomial time optimizing certain metrics. For example,

Fischer et al. presented O(n log n) algorithm for the optimal

placement minimizing the sum of weighted edge-lengths for

a tree with n leaves [10]; recent work includes a linear time

algorithm to minimize the sum of half-perimeter wirelengths

for all nets in a tree [11]. The special case of linear placement

for trees is also studied well and several exact polynomial

time algorithms exist to minimize total wirelength or the

cutwidth; for instance, Yannakakis’s algorithm [12] employed

in [4] to perform simultaneous mapping and linear placement.

However, the problem of delay-optimal placement for trees

seem to have received relatively less attention in the published

literature, despite the potential usefulness of the solution.

C. Our Contributions

Since the technology mapping and placement have great

impact on the overall delays in the circuit, exploring these two

spaces simultaneously can result in circuits with better delays

than the conventional approach of searching those sequentially,

which results in the search in a relatively small solution space.

A fundamental contribution of this work is an exact poly-

nomial time, O(nm2fmaxP 2
max), algorithm for delay-optimal

simultaneous technology mapping and 2-D placement of trees,

where n, m, fmax, and Pmax are the number of nodes in the

tree, the number of candidate locations in 2-D area, maximum

fanin over all the matches at any node, and the maximum

number of matches at any node in the tree, respectively. The

algorithm is based on the extension of an exact polynomial

time, O(nm2fmax), delay-optimal placement algorithm for

trees, which is another important contribution. To optimize

timing in directed acyclic graphs (DAGs), we propose an

iterative algorithm, based on Lagrangian relaxation (LR) tech-

nique, which employs the simultaneous technology mapping

and placement in the inner loop. The comparison of results on

ISCAS’85 benchmarks, with a cell library characterized for a

70 nm technology, due to the algorithm with those due to the

conventional iterative delay-oriented mapping in SIS [13] and

timing driven placement mPL [14] shows more than 60% slack

improvement with 7 times speed-up in runtime, on an average,

implying that the proposed algorithms are practical and can be

employed to optimize timing during physical synthesis.

The rest of the paper is organized as follows. Section II de-

scribes the formal notation employed in this article. Section III

presents an algorithm for delay-optimal placement of trees,

whereas Section IV extends the algorithm to perform delay-

optimal simultaneous technology mapping and placement.

Section V briefly describes the algorithm based on LR for

simultaneous mapping and placement for DAGs. Section VI

discusses the results due to the algorithms and compares them

with those due to the competitive approach, and Section VII

concludes the paper.

II. PRELIMINARIES

Traditionally, a technology independent Boolean network is

first decomposed into a circuit containing only primitives such

as two-input NANDs and inverters, which are then mapped on

to standard cells in a library during the technology mapping to

create a mapped netlist. Subsequently, the placement is carried

out on the mapped netlist to assign each cell a location in

a given area. The graph theoretic structure underlying either

the Boolean network or the technology decomposed circuit

or the mapped netlist is a DAG G(V, E), where a node

v ∈ V represents a standard cell in case of mapped netlist

or a primitive in case of the technology decomposed circuit.

The primary inputs and outputs of the DAG are denoted by

input(G) and output(G), respectively. Each directed edge

e(vi, vj) ∈ E represents a net whose driver (receiver) is the

standard cell represented by vi (vj). Each node vi ∈ V is

associated with the actual (required) arrival time ai (qi); the

slack for the node is computed as qi − ai. The delay between

nodes vi and vj is denoted by d(vi, vj), which comprises the

cell delay, dcell(vi), and the wire delay, dwire(e(vi, vj)). For

a primary input i to the circuit, dcell(i) is simply the actual

arrival time of that input. The delay of an input-output path

π is denoted by d(π) =
∑

(vi,vj)∈π d(vi, vj). The slack of the

path is computed as s(π) = q − d(π), where q is the required

arrival time at the output of the path. Paths with the minimum

slack are critical paths in the circuit.

III. DELAY-OPTIMAL PLACEMENT FOR TREES

(a) (b)

(c) (d)

I1

I2

O

v1

v2

v3

(2,1)

(3,1)

(2,2)

(3,2)

1

1

2

2

2

2

5

5

5

5

5

5 10

10

10

10

10

10

10

10

10

10

10

10

17

17

17

17

17

17

17

17

26

26

26

26

26

26

37

37

37

37

50

50

15

15

15

15

27

27

20

20

20

20

4

4

7

7

7

7

Fig. 1. (a) A tree with fixed i/os I1, I2, O and cells v1, v2, and v3, placeable
in 4 × 5 grid. (b) The placement-delay table for v1, where the entry in bin
(i, j) indicates the delay of the subtree rooted at v1, when v1 is placed in
(i, j). (c) The placement-delay table for v2. (d) The placement-delay table
for v3, obtained by using the optimal locations for fanins v1 and v2.

We introduce a polynomial time algorithm for the delay-

optimal placement of a tree in this section and describe its

extension to simultaneous mapping and placement in the next.

A rooted tree is a tree T (VT , ET), with one of its nodes

designated as a root. The tree may be a part of a DAG

102

G(V, E), i.e., VT ⊆ V, ET ⊆ E. The inputs to the tree, also

referred to as the leaves, have fixed locations and so does

the root of the tree. We want to place the tree in a layout

area, which is divided into bins or tiles, similar to those in

conventional global placement [14]. Specifically, we want to

assign each node v ∈ VT a bin (x, y). There are several

possible placements leading to different delays, since the wire-

and cell-delays are functions of the locations of the driver and

the receiver. Among these placements, we want to find the

one with the minimum delay. Formally, the problem of delay

minimization during tree placement can be stated as follows:

Problem definition 3.1: Given a tree T (VT , ET), and a set

of candidate locations, Zi, for each node vi, minimize

max
π∈input−root paths

d(π),

subject to

(xi, yi) ∈ Zi, ∀vi ∈ VT .

The delay-optimal tree placement problem has optimal

substructure, i.e., the delay-optimal placement for a tree rooted

at a node v contains the delay-optimal placements for subtrees

rooted at its fanins, since, otherwise we can change the

placement for the subtrees to yield delays smaller than that

due to the delay-optimal placement for the tree, leading to a

contradiction. We exploit this optimal substructure property to

come up with a tree placement algorithm based on the dynamic

programming.

A. Tree Placement Algorithm

The tree placement algorithm has two phases: first phase

of bottom-up solution generation and the second phase of

actually choosing a placement from those solutions, given the

fixed location of the root. The first phase traverses the tree

in a topological order and stores the delays due to optimal

placements for subtrees rooted at all nodes, assuming that the

roots are fixed in all possible candidate locations. It can be

explained employing the example in Fig. 1(a), where a tree

with fixed locations for inputs I1, I2, and an output O is

shown. The cells v1, v2, and v3 are to be placed in a 4×5 grid

so that delay on any path from I1 or I2 to O is minimum. For

the sake of illustration, the following assumptions are made:

inputs arrive at 0; the cell-delay for v1, v2, v3 is 1; and the

wire-delay equals the square of Manhattan distance between

nodes, which is same as the Elmore delay model with unit

resistance and capacitance per unit wire-length. Consider a

location (3, 1) for the cell v1: the delay for the subtree rooted

at v1 is sum of the arrival time at I1, dcell(I1) = 0, the wire-

delay from I1 to v1, dwire(e(I1, v1)) = (|1−3|+|1−1|)2 = 4,

and the cell delay for v1, dcell(v1) = 1. Therefore, the optimal

delay of the subtree rooted at v1, when the location of v1 is

fixed at (3, 1), is 5. Similarly, when v1 is fixed at (2, 1), the

optimal delay for the subtree rooted at v1 is 2, since the wire

delay dwire(e(I1, v1)) = (|1 − 2| + |1 − 1|)2 = 1 and the

cell-delay is also 1. There are 20 possible locations for v1 and

for each of those locations, the optimal delays for the subtree

rooted at v1 are shown in Fig. 1(b) depicting a table, referred

to as a placement-delay table. Notice that the delay values in

bins (3, 1) and (2, 1) are 5 and 2, respectively, as explained

before; the delay values in other bins are derived similarly. The

placement-delay table for v2 can be constructed in a similar

fashion and is depicted in Fig. 1(c). The tables are constructed

for nodes v1 and v2 before generating that for v3, since these

nodes occur before v3 in the topological order. Now, consider

the construction of the placement-delay table for v3. For each

position (x, y) for v3, we consider the optimum location of

v1 and v2 to compute the delay. Therefore, when v3 is placed

in (4, 1), the location chosen for v2 is also (4, 1), since that

yields the minimum delay of the path from I2 to v3, which

is 2 (1, optimal delay for the subtree at v2, when v2 is fixed

at (4, 1), + 02, wire-delay, + 1, cell-delay for v3). Similarly,

two locations (3, 1) and (2, 1) for v1 result in the least path

delay of 7. Choosing either of those leads to the same delay,

which is minimum for the path from I1 to v3, when v3 itself is

placed at (4, 1). The overall delay for the subtree rooted at v3,

when it is placed in (4, 1) is max(2, 7) = 7; this is reflected

in the bin (4, 1) in placement-delay table for v3, shown in

Figure 1(d). Other entries in the table are derived similarly.

Thus, each entry at (x, y) location in placement-delay table

for a node v corresponds to the optimal delay of the subtree

rooted at v, when v itself is fixed at (x, y), and is computed

as follows:

av(x, y) = maxi∈fanin(v){min
∀(xi,yi)locations of i

{ai(xi, yi) + dwire(e(i, v)) + dcell(v)}} (1)

The following proposition states the optimality of the delay

values stored in placement-delay table for all nodes.

Proposition 1: The delay av(x, y) is the optimal delay for

the placement of the subtree rooted at v, when v is fixed at

(x, y).

Proof: We use induction on the depth of the node. Basis

step: depth = 1. In this case, all fanins to the node v are

from fixed leaf nodes. If v is also fixed at (x, y), then there

is only one possible delay for the subtree rooted at v and

therefore, av(x, y) is trivially optimal. Induction step: depth

> 1. Assume that the proposition is true for all the nodes with

depth < k. We will prove that it is true for a node with depth k.

Consider such a node v, for which av(x, y) is given by Eq. (1).

Suppose av(x, y) is not optimal. This implies that there exist

some fanin node i, for which ai(xi, yi) is not optimal - a

contradiction, since the depth of i is < k, because of which

ai(xi, yi) is optimal. Therefore, av(x, y) must also be optimal.

After the construction of placement-delay tables, the second

phase of the algorithm proceeds, traversing the tree in a reverse

topological order to choose the locations for v3, v2, and v1.

Since the root node O is fixed in the location (2, 5), the

optimal location of v3, which results in the minimum delay

is (2, 3), yielding the delay of 14 (10, av3
(2, 3), i.e., delay

of the subtree rooted at v3, + 22, wire-delay from (2, 3) to

(2, 5)). The optimal locations of v1 and v2, which resulted

in the delay of 10 for the subtree rooted at v3 are (1, 3) and

103

(4, 3), respectively; these can be found out in a constant time

by storing additional information along with the placement-

delay table. Thus, the optimal placement for the tree is as

follows: v1(xopt, yopt) = (1, 3); v2(xopt, yopt) = (4, 3); and

v3(xopt, yopt) = (2, 3).

Algorithm 1 PlaceT ree(T)

1: for all vj in VT in topological order do

2: for all tiles (xj , yj) in candidate locations set of vj do

3: for all fanins vi of node vj do

4: Choose (xi, yi), the location for vi, which yields

the minimum value for delay d(vi, vj) + a(vi).
5: end for

6: Update arrival time:

avj
(xj , yj) = maxvi∈fanin(vj)(d(vi, vj) + a(vi))

7: Record corresponding optimal fanin locations:

∀vi ∈ fanin(vj), lopt(vi, vj , xj , yj) = (xi, yi)
8: end for

9: end for

10: for all vj in VT in reverse topological order do

11: if vj != root(T) then

12: f = fanout(vj)

13: placement(vj) = lopt(vj , f, xf , yf)
14: end if

15: end for

The pseudo-code for the tree placement is shown in Al-

gorithm 1. It processes nodes in the tree in a topological

order and for each node vj , it considers all the possible

locations (xj , yj). For each of those placements, it finds out

the placement for each fanin resulting in the minimum delay.

This operation requires O(m × |fanin(vj)|) time, since for

each node, we store the arrival times, av(x, y), indexed by

location (x, y) and these represent the optimal delays for the

placement of the subtree rooted at v, when v itself is placed

at (x, y). Considering the minimum arrival times from the

fanins, the arrival times for the delay-optimal placements of

the subtree rooted at vj are computed and stored by indexing

on the locations (xj , yj). Other auxiliary information such as

the optimal locations of fanins for each placement of vj is

also stored so that the delay-optimal placement can be created,

employing reverse topological traversal, after all the nodes

are processed. The amount of memory required to store the

optimal delay values and other auxiliary information for an

entire tree is O(nmfmax), for the tree containing n nodes,

each with m placement possibilities, and maximum fanin of

fmax. The time complexity of the algorithm is O(nm2fmax),
since it is dominated by the search for the optimal-delay

placement for each fanin of a given node.

Proposition 2: The tree placement procedure shown in Al-

gorithm 1 returns optimal-delay placement.

Proof: During the topological traversal, lopt(i, v, x, y) is

populated and it stores the delay-optimal locations for fanins

i for all possible locations (x, y) of all nodes v ∈ VT .

Considering the location of the root, which is fixed, the reverse

topological traversal, assigns the optimal locations to all nodes

from those stored in lopt(i, v, x, y) based on the location of

their fanouts.

Even though we explained the tree placement algorithm em-

ploying constant and Elmore delay models for cell- and wire-

delays, respectively, the algorithm ensures delay-optimality

with other delay models also. For instance, asymptotic wave-

form evaluation (AWE) can be employed to compute wire-

delays and without any changes, the algorithm still ensures

the optimality. Similarly, the load-dependent cell-delay models

can be used, with slight changes in the computation of delays,

without affecting the optimality.

IV. DELAY-OPTIMAL SIMULTANEOUS TECHNOLOGY

MAPPING AND PLACEMENT FOR TREES

Algorithm 2 MatchP laceT ree(T)

1: for all nodes vj in topological order do

2: for all matches gj corresponding to cells in the library

do

3: for all bins (xj , yj) ∈ Zj , set of candidate locations,

do

4: for all fanins i of pattern gj matched at node vj

do

5: Choose (gi, xi, yi) that gives the minimum value

of delay d(vi, vj) + a(vi).
6: end for

7: Update arrival time:

avj
(gj , xj , yj) = max

i∈fanin(gj)
(d(vi, vj) + a(vi))

and record corresponding solutions of all its fanins:

{(gi, xi, yi)|i ∈ fanin(gj)}
8: end for

9: end for

10: end for

Delay-optimal tree placement algorithm presented in the

previous section can be extended to perform simultaneous

technology mapping and placement. Traditionally, technology

mapping transforms a Boolean network containing primitive

gates such as 2-input NANDs and inverters into an implemen-

tation based on the set of cells in a library and is carried

out in two steps: matching and covering. For conventional

delay oriented technology mapping employing load-dependent

delay model [13], the matching phase processes each node in

a topological order and stores a piece-wise linear load-delay

curve corresponding to mapping solutions due to non-inferior

matches, found either by structural or Boolean techniques,

at that node. In the covering phase, the mapping solution

is generated by a reverse topological traversal, by selecting

the minimum delay matches for given loads. For trees, this

algorithm results in delay-optimal solution, ignoring the wire-

delays based on placement. To account for placement-based

wire-delays, the approaches in the literature such as [3], [5],

[6] either assume that the match is placed at some location

or iterate between the mapping, placement, and technology

decomposition steps. Obviously, these approaches do not claim

104

delay-optimality considering the wire-delays based on the

actual placement, even for trees.

To overcome the limitations of the previous approaches,

we propose a simultaneous mapping and placement algorithm,

which returns the delay-optimal mapped netlist and its place-

ment in a polynomial time for a tree. The algorithm relies

on the matching step to store both the mapping choices and

their delay-optimal placements, whereas the covering phase,

which is same as that in the traditional algorithm, generates

a mapping solution with a reverse topological traversal by

selecting the delay-optimal choices. Since all the mapping

choices and their delay-optimal placements are considered,

the final mapping and placement solution is optimal. The

novelty of the algorithm lies in its polynomial time and space

complexities, despite storing the delay-optimal placements for

all the mapping solutions. The algorithm makes the same

assumption, as in previous section, that the locations of the

inputs and output of a tree are fixed beforehand. The inputs

to the tree are either the primary inputs or outputs from the

multi-fanout roots of other trees in the DAG; the output is

either a primary output or serves as an input to other trees.

The pseudo-code for the matching step is shown in Al-

gorithm 2. Similar to that in conventional approaches, it

processes nodes in the tree in a topological order. For each

node vj , it considers all possible matches corresponding to the

cells in the library. For each match gj , it considers all possible

placements (xj , yj) in Zj and for each of those, it finds out the

optimal-delay due to the mapping solution and the placement

for each fanin (line 5 in the pseudo-code). This search for op-

timal delay value at each node requires O(mPmax) time, since

for each node, vj , we store optimal delay values avj
(gj , xj , yj)

indexed by a match gj and its placement (xj , yj) (line 7).

The auxiliary information about the matches at the fanins

and their locations is also indexed similarly and is employed

during the covering phase to actually build the mapped netlist

and its placement. The amount of memory required to store

the optimal delay values and other auxiliary information for

entire tree is O(nmfmaxPmax), since there are n nodes with

Pmax possible matches and m placement possibilities for those

matches. The time-complexity of the matching is dominated by

the search for the optimal delay value choice and its location

at the fanin of a match, placed at all possible locations, for

a node. Since there are n nodes with Pmax matches at most,

each of which has m placement possibilities and have fmax

fanins at most, the time complexity is O(nm2fmaxP 2
max).

V. HANDLING DAGS BY LAGRANGIAN RELAXATION

A circuit represented by a DAG may contain multi-fanout

nodes. As a result, these nodes may have conflicting choices

for delay-optimal mapping as well as placement from the

perspective of different fanouts. This limits the application of

dynamic programming to delay-optimal mapping and place-

ment on DAGs. To overcome the difficulty, we propose a

heuristic based on Lagrangian relaxation (LR): it applies the

simultaneous tree mapping and placement to minimize delays

weighted by Lagrangian multipliers iteratively; the multipliers

are updated employing sub-gradients [15], following the static

timing analysis on the mapping and placement solution in the

current iteration; the algorithm stops, if there is no significant

improvement in the slack. Our approach is similar to that

proposed by Wang et al. in [8], but differs in the objective

and in updating the multipliers. Their work applies multiplier-

based heuristic to optimize area/power with fixed cell-delay

model without considering the wire-delays based on place-

ments, whereas the objective of our approach is the slack max-

imization accounting for the wire-delays based on placement.

The time complexity of our algorithm is dominated by the

number of iterations in LR and the matching phase, whose

complexity is same as that of MatchP laceT ree(T) in the

previous section, since the simultaneous mapping/placement

is carried out on individual trees in the DAG.

VI. EXPERIMENTAL RESULTS

The algorithms described in this paper are implemented in

a C++ program on Windows platform with 3.0 GHz Pentium

IV processor. To evaluate the efficacy of the algorithms, the

experiments are run on the set of ISCAS’85 combinational

benchmark circuits with a standard cell library characterized

employing 70 nm technology parameters [16]. Typical cell

utilization is around 50% for each of the benchmarks, which

is normally the case for average synthesizable blocks in high

performance microprocessor circuits. The results due to the

following four iterative approaches, whose goal is to maximize

the worst case slack, are compared:

• Conventional: In this case, each iteration performs con-

ventional delay oriented technology mapping followed

by timing driven placement. The technology mapping

algorithm is similar to that in [13] and considers the wire-

delays based on placements, whereas the timing driven

placement is implemented by incorporating timing aware

net weighting technique [17] with mPL6 [14].

• Conventional with delay-optimal tree placement: In

each iteration, timing critical trees are optimized by

conventional technology mapping followed by the delay-

optimal tree placement algorithm described in Section III.

• Simultaneous delay-optimal tree mapping and place-

ment: In each iteration, timing critical trees are optimized

by simultaneous mapping and placement algorithm dis-

cussed in Section IV.

• LR with simultaneous tree mapping and placement:

In each iteration, timing critical cones are optimized by

the LR-based extension of simultaneous tree mapping and

placement to DAGs, presented in Section V.

The stopping criterion for all the approaches is less than

10ps slack improvement in consecutive iterations. The results

due to all the approaches are shown in Table I. As compared

to the conventional approach, Lagrangian relaxation based al-

gorithm improves the average slacks and maximum delays by

69% and 11%, respectively, with 7 times speed-up in the run-

time. Similarly, tree based simultaneous mapping and place-

ment leads to 62% and 7% improvements in the slacks and

delays, respectively, with approximately 2 orders of magnitude

105

Conventional Conventional mapping with tree placement Simultaneous tree mapping & placement LR with simultaneous mapping & placement

Circuit Delay Slack CPU Delay Slack CPU Wire Area Delay Slack CPU Wire Area Delay Slack CPU Wire Area

C432 1091 59 148 966 184 2 1.12 1.03 932 218 2 0.83 1.03 921 229 47 0.99 0.98

C499 1043 57 254 1003 97 2 1.57 1.00 933 167 2 1.01 1.13 925 175 31 1.12 1.09

C880 989 11 140 826 174 1 1.51 1.00 803 197 1 0.92 1.02 788 212 29 0.95 1.00

C1355 1240 60 193 1101 199 3 0.88 1.00 1099 201 1 0.94 1.01 1029 271 35 0.95 1.002

C1908 1465 85 290 1286 264 2 0.97 1.00 1221 329 2 0.92 0.96 1203 347 39 0.96 0.97

C2670 1229 71 564 1068 232 4 1.40 1.01 1039 261 6 1.03 1.07 1020 280 42 1.01 1.00

C3540 1760 90 637 1705 145 15 0.99 1.06 1672 178 43 1.00 1.08 1593 257 395 1.07 0.98

C5315 2011 89 1101 1894 206 12 1.01 1.00 1820 280 12 1.03 0.99 1799 301 102 1.02 1.00

C6288 5191 159 1118 5250 100 25 1.12 1.00 5169 181 14 1.00 0.81 5148 202 69 0.99 1.007

C7552 1465 85 2555 1431 119 11 1.10 1.00 1416 134 12 1.08 1.04 1307 243 165 1.06 1.008

Ave. 1748 77 700 1653 172 7.7 1610 215 9.5 1573 251 95

Norm. 1 1 1 0.95 2.2 0.011 1.10 1.04 0.92 2.8 0.014 1.02 0.99 0.90 3.26 0.136 1.01 1.003

TABLE I

COMPARISON OF CONVENTIONAL DELAY ORIENTED MAPPING FOLLOWED BY TIMING DRIVEN PLACEMENT WITH PROPOSED APPROACHES EMPLOYING

ONLY TREE PLACEMENT, SIMULTANEOUS TREE MAPPING AND PLACEMENT, AND LAGRANGIAN RELAXATION (LR) WITH SIMULTANEOUS MAPPING AND

PLACEMENT. THE MAXIMUM PATH DELAY AND THE MINIMUM SLACK ARE IN ps; CPU TIME IS IN SECONDS; TOTAL WIRE LENGTH, CELL AREA ARE

NORMALIZED WITH RESPECT TO THE CORRESPONDING QUANTITIES DUE TO THE CONVENTIONAL APPROACH.

small run-times. The improvement in runtimes over the con-

ventional approach comes from the absence of timing-driven

net-weighting and the placement of whole circuit. Moreover,

the conventional approach is likely to be more susceptible for

divergence than tree placement or simultaneous tree mapping

and placement. Even in case of LR approach, after the first iter-

ation, we allow the placement of the cells within only certain

radius, which although reduces the placement search space,

still allows the complete exploration of the mapping space

and ensures placement stability. The improvements highlight

the fact that the simultaneous exploration of the mapping and

placement spaces can lead to the timing convergence not only

faster but also with better quality than exploring the mapping

and the placement spaces separately, as in the conventional

approach. One can observe that the proposed methods have

limited impact on wirelength and cell area, although these

are not included in the problem formulation. The results

due to employing only tree placement to improve timing

show that it increases wirelength and cell area marginally,

but still improves the slacks considerably. This shows that

employing simultaneous mapping and placement may be a

better approach than applying delay oriented mapping and

placement separately, since the technology mapping which

considers the wire-delays based on placement is sensitive

to the placement of the subject graph and considering only

center of gravity placements for the matches, as opposed to all

possible placements in simultaneous mapping and placement

approaches, limits the optimization scope.

VII. CONCLUSION

In this paper, we proposed polynomial time algorithms for

delay-optimal placement as well as simultaneous technology

mapping and placement for trees. We extended the simulta-

neous mapping and placement algorithm to DAGs using La-

grangian relaxation technique. Compared to the conventional

iterative mapping and timing driven placement approach, our

methods improve the slacks by more than 60%, with 7 times

or greater speed-up, and have negligible impact on total

wirelength and cell area.

ACKNOWLEDGMENTS

The first author would like to thank his colleague, Charu

Nagpal, for the help on experimental setup with SIS. Authors

are grateful to anonymous reviewers for the valuable com-

ments.

REFERENCES

[1] K. Keutzer, “DAGON: Technology binding and local optimization by
DAG matching,” in Proc. DAC, June 1987, pp. 341–347.

[2] K. Chaudhary and M. Pedram, “A near optimal algorithm for technology
mapping minimizing area under delay constraints,” in Proc. DAC, June
1992, pp. 492–498.

[3] M. Pedram and N. Bhat, “Layout driven technology mapping,” in Proc.

DAC, June 1991, pp. 99–105.
[4] J. Lou, A. H. Salek, and M. Pedram, “An exact solution to simultaneous

technology mapping and linear placement problem,” in Proc. ICCAD,
Nov. 1997, pp. 671–675.

[5] J. Y. Lin, A. Jagannathan, and J. Cong, “Placement-driven technology
mapping for LUT-Based FPGA’s,” in Proc. ISFPGA, Feb. 2003, pp.
121–126.

[6] W. Gosti, S. R. Khatri, and A. L. Sangiovanni-Vincentelli, “Addressing
timing closure problem by integrating logic optimization and place-
ment,” in Proc. ICCAD, November 2001, pp. 224–231.

[7] D. Pandini, L. T. Pileggi, and A. J. Strojwas, “Global and local
congestion optimization in technology mapping,” IEEE Trans. CAD,
vol. 22, no. 4, pp. 498–505, Apr. 2003.

[8] X. Wang and S. Burns, “Technology mapping using a fixed delay and
variable area-power model,” in Proc. IWLS, June 2007.

[9] J. Cong, J. Shinnerl, M. Xie, T. Kong, and X. Yuan, “Large-scale circuit
placement,” ACM Trans. on Design Automation of Electronic Systems,
vol. 10, no. 2, pp. 1–42, Apr. 2005.

[10] M. Fischer and M. Paterson, “Optimal tree layout (preliminary version),”
in Proc. STOC, 1980, pp. 177–189.

[11] S. Chatterjee, Z. Wei, A. Mischenko, and R. Brayton, “A linear time
algorithm for optimum tree placement,” in Proc. IWLS, June 2007.

[12] M. Yannakakis, “A polynomial algorithm for the min-cut linear arrange-
ment of trees,” Journal of the ACM, vol. 32, no. 4, pp. 950–988, Oct.
1985.

[13] E. M. Sentovich, “SIS: A system for sequential circuit synthesis,”
Memorandum No. UCB/ERL M92/41, May 1992.

[14] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in Proc. ISPD, April 2005, pp. 185–192.

[15] M. Bazaraa, H. Sherali, and C. Shetty, Nonlinear Programming: Theory

and Algorithms, 2nd ed. Wiley, New York, NY, 2003.
[16] “Berkeley predictive technology model,” http://www-device.eecs.

berkeley.edu/∼ptm/download.html.
[17] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for

FPGAs,” in Proc. ISFPGA, February 2000, pp. 203–213.

106

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

