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ABSTRACT
Recent research in embedded computing indicates that packing mul-
tiple processor cores on the same die is an effective way of utilizing
the ever-increasing number of transistors. The advantage of placing
multiple cores into a single die is that it reduces on-chip commu-
nication costs (in terms of both execution cycles and power con-
sumption) between the processor cores that are traditionally very
high in conventional high-performance parallel architectures (such
as SMPs). However, on the negative side, this tighter integration
exerts an even higher pressure on off-chip accesses to the memory
system. This makes minimizing the number of off-chip accesses a
critical optimization goal.

This paper discusses a compiler-based solution to this problem
for the embedded applications that perform stencil computations.
An important characteristic of this solution is that it distinguishes
between the intra-processor data reuse and inter-processor data reuse.
The first of these captures the data reuse that occurs across loop it-
erations assigned to the same processor, whereas the second one
represents the data reuse that takes place across the loop iterations
assigned to different processors. The proposed approach then opti-
mizes inter-processor reuse by re-organizing the loop iterations of
each processor carefully, considering how data elements are shared
across processors. The goal is to ensure that the different proces-
sors access the shared data within a short period of time, so that the
data can be captured in the on-chip memory space at the time of
the reuse. This paper also presents an evaluation of the proposed
optimization and compares it to an alternate scheme that optimizes
data locality for each processor in isolation. The results obtained
by applying our implementation to eight loop-intensive benchmark
codes from the embedded computing domain show that our ap-
proach improves over the mentioned alternate scheme by 15.6%
on average.

∗This work is supported in part by NSF Career Award 0093082 and
a grant from GSRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers

General Terms
Performance

Keywords
Chip multiprocessors, stencil computation, data locality

1. INTRODUCTION
Recent research indicates that packing multiple processor cores

on the same die is an effective way of utilizing ever-increasing
number of transistors [12]. These chip multiprocessors have sev-
eral advantages over complex single processor based architectures.
On the hardware side, they are arguably easier to verify and val-
idate, and since they are usually built from simple cores, they are
more energy efficient as compared to sophisticated single processor
based systems which are clocked at very high frequencies. On the
software side, a chip multiprocessor gives the compiler writer the
opportunity for exploiting both high-level (loop, thread) and low-
level (ILP) parallelism. This support is very important for many
embedded systems that execute loop-intensive image/video/speech
processing applications [12].

An important advantage of placing multiple cores into a single
die is that it reduces the communication costs (in terms of both
execution cycles and power consumption) between the processor
cores that are incurred in conventional high-performance parallel
architectures (such as SMPs [9]). However, on the negative side,
this tighter integration exerts an even higher pressure on off-chip
accesses to the memory system. This is because in chip multipro-
cessors there are several cores that need to access the off-chip mem-
ory system, and they may have to contend for the same buses/pins
to get there. Therefore, it is critical to reduce the number of off-
chip memory accesses as much as possible, even if this causes an
increase in on-chip communication activities among parallel pro-
cessors.

Since early nineties compiler researchers focused on optimiza-
tions for cache locality and proposed several techniques along this
direction. In the context of data caches, the proposed techniques
include both loop transformations (e.g., iteration space tiling [22,
24] and loop permutation [2]) and data layout optimizations (e.g.,
dimension reindexing [14]). While one might think that these opti-
mizations or some sort of combination of them can also be used in
the context of chip multiprocessors, the problem is actually more
complex than this simple view. This is because, optimizing the
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code assigned to each processor core for locality does not guaran-
tee good data locality for shared data. For example, if two accesses
issued by two different processors for the same data element are far
apart from each other (in time), each of these accesses may need
to go to the off-chip memory to fetch the same data. Therefore,
it is important to re-organize data accesses (e.g., loop iterations in
a loop-intensive application) in such a fashion that the shared data
are accessed by the processors (that share it) within a short period
of time. This certainly increases chances for catching the data in
on-chip memory at the time of its reuse.

This paper discusses and evaluates a new data reuse framework,
specifically customized for embedded chip multiprocessors execut-
ing loop-intensive stencil applications. An important characteristic
of this framework is that it distinguishes betweenintra-processor
data reuseand inter-processor data reuse. The first of these cap-
tures the data reuse that occurs across the loop iterations assigned
to the same processor, whereas the second one represents the data
reuse that take place across the loop iterations assigned to differ-
ent processors. The proposed approach then optimizes the inter-
processor reuse by re-organizing loop iterations of each processor
carefully, considering how data elements are shared across parallel
processors. The goal is to ensure that the different processors ac-
cess the shared data within a short period of time, so that the data
can be captured in the on-chip memory space at the time of the
reuse. We can summarize the main contributions of this work as
follows:

• We show how inter-processor data reuse can be identified and
represented, given a parallelized loop nest, and discuss how the
compiler abstraction used to capture this reuse can be interpreted.

• We present a scheduling algorithm for stencil computations
that re-organizes loop iterations assigned to processors such that
inter-processor data reuse is improved, without degrading intra-
processor data reuse. In this approach, the local iteration space
of each processor is transformed using a different loop transforma-
tion.

• We present an evaluation of the proposed optimization and
compare it to an alternate scheme that optimizes data locality for
each processor in isolation (i.e., without specifically considering
shared data). The results obtained by applying our implementation
to eight loop-intensive benchmark codes from the embedded com-
puting domain show that the proposed approach improves over the
mentioned alternate scheme by 15.6% on average.

The rest of this paper is structured as follows. Section 2 briefly
discusses the related work on stencil computations and chip mul-
tiprocessors. The mathematical theory behind our approach is dis-
cussed in Section 3. Section 4 presents an experimental evaluation
of the approach and compares it to previous work. Section 5 gives
our concluding remarks and outlines the future work.

2. RELATED WORK
Stencil computation [5, 6] is a common type of computation in

embedded array-based application codes. In each iteration of a
stencil computation, an array element, referred to as theseed, is
updated based on the values of itsneighbor elements. There are
different types of stencils, e.g., 5-point stencil, 9-point stencil, etc.,
which use a different set of neighbors in updating a seed element.
Figure 1 presents some example stencils.

Optimizing stencils is very important and some companies even
built compilers customized for stencil computations [18]. Most of
the previous work focused on optimizing stencil computations tar-

Figure 1: Example stencils. The gray dots represent seed el-
ements and the black dots represents neighbor elements. (a)
5-point stencil. (b) 7-point stencil. (c) 9-point cross stencil.
(d) 9-point star stencil. (e) Eight possible directions for a two-
dimensional stencil computation.

geting high-performance distributed memory based systems. Since
communication costs are very high in such systems, reducing this
cost is critical and has been studied extensively [4, 5, 6, 7, 13, 18].
There is also prior work on improving intra-processor cache local-
ity for stencil codes [10]. None of the prior efforts has studied the
optimization of stencil computations in the context of embedded
chip multiprocessors. Our work is targeting at chip multiproces-
sors where different on-chip processors can share data through an
on-chip L2 cache and on-chip data communication could be much
cheaper than off-chip memory accesses. Our goal is to utilize such
characteristics and improve the performance of stencil computa-
tions by transforming the stencil codes for the best exploitation of
inter-processor data reuse. In addition, our technique can be inte-
grated with a general optimizing compiler framework that employs
linear loop transformations. To our knowledge, this is the first work
that specifically targets at optimizing interprocessor data reuse, by
transforming the local iteration space of each processor using a dif-
ferent transformation.

Chip multiprocessors are most promising in highly competitive
and high volume markets, for example, embedded communication,
multimedia, and networking. This imposes strict requirements on
performance, power, reliability, and costs. There exist various prior
efforts [11, 16, 17, 21] on chip multiprocessors, and they improve
the behavior of a chip multiprocessor from different aspects, for
example, memory performance, communication, reliability, etc. As
chip multiprocessors post a new challenge for compiler researchers,
they also provide new opportunities as compared to traditional ar-
chitectures. Optimizing inter-processor data reuse is one such op-
portunity which is explored in this work.

3. MATHEMATICAL THEORY

3.1 Background on Loop Representation and
Loop Transformation

A loop nest of depthl defines an iteration spaceI. Each iteration
of the loop nest is identified by its index vector~I = (i1, i2, . . . , il)

T .
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for (i=1; i<1024; i++)
for (j=1; j<1024; j++)

U[i][j]=U[i-1][j-1]+1;

Figure 2: Example loop and array accesses.

An array of dimensionn defines an array spaceA, and each el-
ement in the array is specified using an index vector
~A = (a1, a2, . . . , an)T . We assume that multi-dimensional arrays
are stored in memory in a row-major fashion (as in C and C++). We
consider affine array access functionsf : I → A, f(~I) = F ~I + ~ζ,
whereF is ann×l matrix and~ζ is an-dimensional constant vector.
As an example, the two array accessesU [i][j] andU [i − 1][j − 1]
in Figure 2 can be represented, respectively, as:„

1 0
0 1

« „
i
j

«
+

„
0
0

«
and

„
1 0
0 1

« „
i
j

«
+

„ −1
−1

«
.

Linear loop transformations can be used to optimize a loop nest
for various purposes, for example, improving cache locality. A
linear loop transformation can be represented using anl × l non-
singular matrixT for a loop nest withl loops [15, 23]. As a re-
sult of the loop transformation, each iteration (index vector) in the
original iteration space is mapped to a distinct iteration in the new
iteration space. If~I is an iteration in the original iteration space,
and is mapped to~I ′ after the transformation represented byT , then
the following equations must be satisfied:

~I ′ = T ~I and ~I = T−1~I ′. (1)

After the transformation, the new access function,f ′(~I ′), and the
original access function,f(~I), should access the same data ele-
ment. That is:f ′(~I ′) = f(~I). Considering Equation (1), we can
obtain:

f ′(~I ′) = f(~I) = f(T−1~I ′) = FT−1~I ′ + ~ζ. (2)

3.2 Algebraic Representation of Stencil Com-
putations

A stencil can be represented by astencil matrix, termed asS ,
in which the columns are the relative positions of its neighbors as-
suming that the position of the seed element is(0 0 · · · 0)T . S
is ann × k matrix for ann-dimensional array and a stencil withk
neighbors. For example, the 5-point stencil in Figure 1(a) can be
represented by a stencil2 × 4 matrixS , where:

S =

„
1 0 −1 0
0 −1 0 1

«
.

Similarly, the stencil matrix for the 7-point stencil in Figure 1(b) is:

S =

„
0 0 1 2 0 0
1 2 0 0 −1 −2

«
.

In a stencil, the neighbor elements can reside in differentdirec-
tionswith respect to the seed element. For example, in Figure 1(a),
there are four directions that hold neighbor elements of the seed,
whereas in Figure 1(d) there are eight directions with neighbors.
For a stencil on ann-dimensional array, there are a total of3n+1−1
possible directions, and each direction can be represented by an
n-entry direction vector. A direction vector is defined as a non-
zero vector in which each entry’s absolute value is no more than
one. A stencil can also be represented by astencil direction matrix,
termed asD, in which the columns represents the directions that

Figure 3: Example block distribution across a two-dimensional
processor space. (a) A code segment that performs 5-point sten-
cil computation over array U . (b) A 3 × 3 block distribution of
the array across the processors. The nine processors are repre-
sented by the vectors written inside the blocks. Shaded (gray)
areas represent the set of array elements that are shared by
neighboring processors. For example, the array elements in-
dicated by R1 are shared by processor(0 0)T and processor
(0 1)T , and the array elements indicated byR2 are shared
between processor(1 2)T and processor(2 2)T . (c) The
code segment (local iteration space) to be executed by processor
(p1 p2)

T after data distribution.

hold neighbors. For example, the stencil direction matrix of the
stencil in Figure 1(a) is

D =

„
1 0 −1 0
0 −1 0 1

«
,

which is the same as its stencil matrix. The stencil direction matrix
for the stencil in Figure 1(b) is

D =

„
0 1 0
1 0 −1

«
.

The stencil direction matrix of a stencil can be obtained by re-
moving the identical columns of||S||, whereS is the stencil matrix
(n × k), and||S|| is defined as:

∀i, j, 0 ≤ i < n, 0 ≤ j < k,

||S||(i, j) =

8<
:

1 if S(i, j) > 0;
0 if S(i, j) = 0;

−1 if S(i, j) < 0.

For example, by applying the|| || operator to the stencil matrix of
the stencil given in Figure 1(b), we obtain the following matrix:„

0 0 1 1 0 0
1 1 0 0 −1 −1

«
.

After removing the identical columns from the above matrix, we
obtain the corresponding stencil direction matrix:

D =

„
0 1 0
1 0 −1

«
.

3.3 Processor Representation and Array As-
signment

We focus on a block distribution of arrays on a multi-dimensional
processor space. In such a distribution, each processor updates a
distinct subset (in the form of a block) of the array elements. The
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position of each processor is specified using ann-entry vector for
an n-dimensional array. Figure 3(a) presents a program segment
performing 5-point stencil computation. In this program, the out-
ermostt loop controls the number of times the stencil computation
needs to be repeated so that the results converge. At the end of
each round, the results in arraytempU are copied back toU . The
(i j)T loop nest implements the actual 5-point stencil computa-
tion, and is the focus of our approach. Therefore, we will omit the
outermostt loop and the array copying part (which is not a stencil
computation) in the rest of our discussion. Figure 3(b) illustrates
a3 × 3 block distribution of the array across nine processors for a
5-point stencil. These processors are represented in our framework
using nine vectors:(0 0)T , (0 1)T , (0 2)T , · · · , (2 2)T .

After array-to-processor assignment, each processor executes a
subset of the original loop iterations. The loops to execute these it-
erations are the same for different processors, except that they have
different lower and upper bounds. This is illustrated in Figure 3(c),
which shows the part of the stencil computation in Figure 3(a) as-
signed to the processor identified with(p1 p2)

T , i.e., its local
iteration space.

We extend theabs() function, which returns the absolute value
of an integer, to the domain of vectors. That is:

~V ′ = abs(~V ) ⇒ ∀j, 0 ≤ j < n, ~V ′(j) = abs(~V (j)).

An n-entry vector is called aunit vectorif it is one of the columns
of ann×n identity matrixE. We useEj (0 ≤ j < n) to represent
a unit vector that has a ‘1’ in itsjth entry, and all ‘0’s in other
entries. For example, we haveE0 = (1 0 · · · 0)T andEn−1 =

(0 0 · · · 1)T . Two processors~P1 and ~P2 are said to be neighbors
to each other if and only ifabs( ~P1− ~P2) is a unit vector. The vector
abs( ~P2 − ~P1) is called theneighboring directionbetween~P1 and
~P2. For example, in Figure 3, processors(1 1)T and(1 2)T are
neighbors becauseabs((1 1)T − (1 2)T ) is (0 1)T , which is
a unit vector. In comparison, processors(1 1)T and(2 2)T are
not neighbors becauseabs((1 1)T −(2 2)T ) is (1 1)T , which
is not a unit vector.

3.4 Inter-Processor Data Reuse
In stencil computations, neighboring processors share data at

their boundaries. Figure 3(b) illustrates such data sharing. The
shaded (gray) areas in Figure 3(b) represent the array elements that
are shared by neighboring processors. For example,R1 captures
the array elements shared by processors(0 0)T and (0 1)T ,
andR2 indicates the array elements shared by processors(1 2)T

and(2 2)T . For processors that are not neighbors, they either do
not share data (e.g., processor(0 0)T and processor(0 2)T ), or
they share a very small amount of data (e.g., processor(0 0)T and
processor(1 1)T in a 9-point star stencil). Consequently, in our
approach, we consider data sharing only between the neighboring
processors.

While all neighboring processors share data in Figure 3(b), in the
general case, whether two neighboring processors share data or not
depends on the stencil direction matrixD as well. Figure 4(a) gives
a 3-point stencil and Figure 4(b) shows its stencil direction matrix.
Figure 4(c) illustrates the original data access pattern of an indi-
vidual processor. In this data access pattern, array data is accessed
row by row in the increasing order (from top to bottom), and the
data within each row is accessed in the increasing order (from left
to right). Figure 4(d) highlights the data sharing between proces-
sors in a3 × 3 block distribution. We can observe from this figure
that there is no data sharing between the neighboring processors in
the same column, but there is data sharing between the neighbor-

Figure 4: Data sharing and data reuse in a 3-point stencil. (a)
3-point stencil. (b) Stencil direction matrix. (c) Access pattern
of an individual processor. Array data are accessed row by row.
In each row, the data are accessed in the increasing order (from
left to right). The rows are accessed in the increasing order
(from top to bottom). The six array elements, represented by
black dots, are accessed in the order ofa1, a2, a3, a4, a5, a6. (d)
3× 3 block distribution across nine processors. The shaded ar-
eas highlights the data sharing between processors. (e) Access
pattern that exploits inter-processor data reuse. (f) Another ac-
cess pattern that exploits inter-processor data reuse.

ing processors in the same row. Such a data sharing pattern can be
expected from this stencil, since in this stencil, both the neighbors
of a seed element are in the same row and there is no data sharing
between two neighboring processors if they access different rows
of the array. Therefore, for two neighboring processors~P1 and ~P2

to share data, the direction from~P1 to ~P2, captured by~P2 − ~P1,
needs to be compatible with some direction vector in the stencil di-
rection matrixD. In mathematical terms, such a compatibility can
be formulated as follows:

( ~P2 − ~P1)
TD 6= ~0. (3)

In the above formulation,~0 represents a vector with all entries being
zero. For example, processors(0 0)T and (0 1)T share data,
since:„„

0
1

«
−

„
0
0

««T „
0 0
1 −1

«
=

`
1 −1

´ 6= ~0

On the other hand, there is no data sharing between processors
(0 0)T and(1 0)T . This is because, we have:

„„
1
0

«
−

„
0
0

««T „
0 0
1 −1

«
=

`
0 0

´
= ~0.

230



It is important to note that data sharing between processors does
not necessarily lead to inter-processor data locality. Let us consider
Figure 4(d) as an example. When processor(0 0)T accesses the
data in the region indicated byR1, processor(0 1)T is access-
ing the data in the region indicated byR2. Since they do not ac-
cess their shared data together (i.e., at the same time), there is little
data locality in this access pattern (i.e., data locality is not fully
exploited). On the other hand, in the data access patterns shown
in Figure 4(e) and Figure 4(f), neighboring processors access their
shared data together, and thus there is good inter-processor data lo-
cality in these two scenarios. Our objective is to transform the local
iteration spaces of the processors so that their new data access pat-
tern is similar to the ones shown in Figure 4(e) or Figure 4(f). We
observe that the common characteristic between the access patterns
of Figure 4(e) and Figure 4(f) is that the neighboring processors
that share data proceed in the opposite directions when accessing
each row and they proceed in the same direction when accessing
each column. For example, in Figure 4(e), processor(0 0)T ac-
cesses each row from left to right, while processor(0 1)T ac-
cesses each row from right to left. Also, both these two processors
access each column from top to bottom. Note that in this case,
accessing each row means accessing along the direction identified
by abs((0 1)T − (0 0)T ), i.e., their neighboring direction. In
general, for two neighboring processors to access their shared data
together, they need to haveoppositeaccess directions when access-
ing data along their neighboring direction, and have the same ac-
cess direction when accessing data along any other directions.

Let us now define the access directions in different dimensions
for a given array access functionf(~I). We assume that each loop it-
erator is increased by one as we move from one iteration to another.
The loops with non-unit steps can be transformed to unit-step loops
using loop normalization [1]. The access direction vector~Qk for
thekth loop can be defined as:

~Qk = f(~I + Ek) − f(~I)

= F (~I + Ek) + ~ζ − F (~I) − ~ζ
= FEk.

That is, ~Qk is the kth column of the access matrixF of f(~I).
Therefore, the access matrix off(~I) is also the access direction
matrix, in which thekth column is the access direction vector at
thekth loop. From Equation (2), we can see that the new access di-
rection matrix after the loop transformation represented by matrix
T is T−1F .

Our approach is to find a suitable loop transformation for each
processor so that we can have data reuse between the processors
that share data. Our approach proceeds as follows. First, we iden-
tify all the neighboring processor pairs. After that, for each proces-
sor pair, we determine whether they share data or not using Equa-
tion (3). As has been discussed earlier, for two neighboring pro-
cessors~P1 and ~P2 that share data, they should have the opposite
access directions along their neighboring directionabs( ~P1 − ~P2),
and they should have the same access directions in other directions.
To formulate this requirement, we define a functionExpand() :
n × 1 → n × n, which expands a direction vector into a matrix.
Mathematically, we can defineExpand() as follows:

X = Expand(~V ) ⇒ ∀i, j, 0 ≤ i < n, 0 ≤ j < n,

X(i, j) =

8<
:

1 if i = j and ~V (i) = 0

−1 if i = j and ~V (i) 6= 0
0 if i 6= j

(4)

It is easy to see that:

Expand(~V )−1 = Expand(~V );

Expand(abs(~V )) = Expand(~V ).

The functionExpand() can be used to express the requirement
of the access directions of two neighboring processors that share
data. The transformation matricesT1 (for processor~P1) andT2

(for processor~P2) should satisfy the following condition:

FT−1
1 = Expand( ~P2 − ~P1)FT−1

2 . (5)

SinceExpand(~V )−1 = Expand(~V ), the above equation is equiv-
alent to:

FT−1
2 = Expand( ~P1 − ~P2)FT−1

1 . (6)

Equation (5) captures the requirement that, after these transforma-
tions, ~P1 and ~P2 should have opposite access directions along the
neighboring direction between~P1 and ~P2, and have the same ac-
cess direction in all others.

Assume that there areV processors andW processor pairs that
share data. Therefore, we haveW equations in the form of Equa-
tion (5), andV unknowns (i.e.,V transformation matrices to be
determined) in these equations. After solving this set of equations,
we can obtain the transformation matrices needed to transform the
local iteration space of each processor so that the inter-processor
data reuse can be exploited. Figure 5 gives a sketch of our com-
piler algorithm. Note that if one of the transformation matrix is
known in Equation (5), this equation can be simplified as follows:

AT = B, (7)

whereA andB are known, andT is the unknown matrix. There ex-
ist several algorithms [3, 8] that can be used for solvingAT = B,
and we can use any of these algorithms in our approach. In the al-
gorithm shown in Figure 5, we maintain two sets of equations. The
setL contains all the equations that have two unknown matrices in
them, while the setC contains all the equations that have exactly
one unknown matrix. At each step, we try to solve an equation
which has only one unknown matrix. Once we obtain a solution for
this equation, all the equations in which both the transformation
matrices are known are removed fromC, and all the equations with
exactly one unknown matrix are moved fromL to C. WhenC be-
comes empty andL is not empty, we randomly select an equation
from L, and set one of the unknown matrices to identity matrixE
(i.e., the loop of the corresponding processor is not transformed).
If an equation has no solution, we simply ignore that equation, in
which case the inter-processor data reuse represented by this equa-
tion cannot be exploited. Assuming that the complexity of solving
Equation (7) isY and the number of equations isW , the complex-
ity of our algorithm in Figure 5 isWY .

3.5 Impact on Intra-Processor Data Reuse
There are two types of intra-processor data reuses:self-reuseand

group-reuse[22]. Self-reuse refers to the situation where the same
array reference accesses adjacent data in successive loop iterations.
Group-reuse refers to the situation where two array references ac-
cess adjacent data in successive loop iterations. In this section, our
goal is to show that transformation matrices obtained from our al-
gorithm preserve all self-reuse in the original program and preserve
the group-reuse in the most frequent cases.

Mathematically, self-reuse of an access functionf(~I) = F ~I + ~ζ
can be defined as:

f(~I + (0 0 · · · 1)T ) − f(~I) = (0 0 · · · δ)T , (8)
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1: L =the set of equations;
2: C = ∅;
3: while (L 6= ∅) {
4: randomly select an equatione0 from L;
5: T0 is one of the unknown matrices ine0;
6: T0 = E;
7: movee0 from L to C;
8: while (C 6= ∅) {
9: randomly select an equatione from C;
10: T is the only unknown matrix ine;
11: solvee;
12: if (there is solution fore) {
13: T = the solution fore;
14: remove fromC all equations withT ;
15: move all equations inL with T to C;
16: }
17: else
18: removee from C;
19: }
20: }

Figure 5: The algorithm for solving a set of equations in the
form of Equation (5). Each equation inL has two unknowns
(transformation matrices), and each equation inC has exactly
one unknown matrix. E is the identity matrix.

whereabs(δ) is a small integer number. The above equation can
be represented in matrix/vector form as follows:

F (0 0 · · · 1)T = (0 0 · · · δ)T . (9)

The group-reuse between two access functions,f(~I) = F ~I + ~ζ

andf ′(~I) = F ′~I + ~ζ′, can be defined as:

f ′(~I + (0 0 · · · 1)T ) − f(~I) = (0 0 · · · δ)T , (10)

whereabs(δ) is a small integer number. The different access func-
tions in a stencil computation have the same access matrix (i.e.,
F ′ = F ). Therefore, the above equation can be represented in a
matrix/vector form as follows:

F (0 0 · · · 1)T = (0 0 · · · δ)T + (~ζ − ~ζ′). (11)

Lemma 1: In Equation (5), if processor~P2 exhibits self-reuse after
loop transformationT2, then processor~P1 also exhibits self-reuse
after loop transformationT1.
Sketch of the proof: After the transformations, the new access
matrix of ~P1 is FT−1

1 and the new access matrix of~P2 is FT−1
2 .

Mathematically, Lemma 1 is equivalent to:

FT−1
2 (0 0 · · · 1)T = (0 0 · · · δ2)

T

⇒ FT−1
1 ((0 0 · · · 1)T ) = (0 0 · · · δ1)

T ,

where bothabs(δ1) andabs(δ2) are small integer numbers. Let
X = Expand( ~P2 − ~P1), we obtain:

FT−1
1 (0 0 · · · 1)T = XFT−1

2 (0 0 · · · 1)T

= X(0 0 · · · δ2)
T

= (0 0 · · · ± δ2)
T .

The last step can be inferred from the definition ofExpand() given
by Equation (4).2

A processor~P obtains its transformationT in two possible ways.
One way is through line 6 in the algorithm in Figure 5. In this

scenario, since the transformation matrix is the identity matrixE,
which means no transformation, self-reuse is clearly preserved. The
other way is through line 13, in whichT obtains its value by solv-
ing an equation in the form of Equation (5). By using induction,
we can easily prove from Lemma 1 that the transformation ma-
trices obtained from our algorithm preserve the self-reuses in the
original program.
Lemma 2: In Equation (5), if the last column ofF has only one
non-zero entry and processor~P2 preserves group-reuse after loop
transformationT2, then processor~P1 also preserves group-reuse
after transformation loopT1.
Sketch of the proof: In mathematical terms, Lemma 2 is equiva-
lent to:

Condition 1: The last column ofF has only one non-zero entry and
Condition 2: F (0 0 · · · 1)T = (0 0 · · · δ0)

T + (~ζ − ~ζ′) and
Condition 3: FT−1

2 (0 0 · · · 1)T = (0 0 · · · δ2)
T + (~ζ − ~ζ′)

⇒ FT−1
1 (0 0 · · · 1)T = (0 0 · · · δ1)

T + (~ζ − ~ζ′),

whereabs(δ0), abs(δ1) andabs(δ2) are small integer numbers. Since
F (0 0 · · · 1)T is the last column ofF , we can infer from the first
two conditions that:

F (0 0 · · · 1)T = (0 0 · · · ∆)T , and
(~ζ − ~ζ′) = (0 0 · · · θ)T .

Therefore, the third condition can also be expressed as:

FT−1
2 (0 0 · · · 1)T = (0 0 · · · (δ2 + θ))T . (12)

LettingX = Expand( ~P2 − ~P1), we obtain:

FT−1
1 (0 0 · · · 1)T = XFT−1

2 (0 0 · · · 1)T

= X(0 0 · · · (δ2 + θ))T

= (0 0 · · · ± (δ2 + θ))T .

The last vector above can be expressed as:


(0 0 · · · δ2)
T + (0 0 · · · θ)T for the ‘+’ case;

(0 0 · · · (−δ2 − 2θ))T + (0 0 · · · θ)T for the ‘-’ case.

Since the distance between the data elements accessed by succes-
sive iterations in a stencil computation is small, the value ofabs(θ)
is small. Therefore,abs(−δ2−2θ) is also a small number. Consid-
ering that(~ζ− ~ζ′) = ((0 0 · · · θ)T , we see that the transformation
T1 preserves the group-reuse.2

Similarly, we can prove from Lemma 2 that the transformation
matrices obtained from our algorithm preserve the group-reuse in
the original program if the last column ofF has only one non-
zero entry. Having only one non-zero entry in the last column of
F requires that the index variable of the innermost loop appears
in the access function only once. Although this seems restrictive,
almost all the known stencil computations satisfy this requirement.
Therefore, our algorithm preserves group-reuse in the most com-
mon cases.

3.6 Examples
In this section, we use two examples to illustrate how to use the

mathematical framework in Section 3.4 to transform the local it-
eration space of each processor for exploiting inter-processor data
reuse.

3.6.1 Example 1
Let us consider the stencil computation presented in Figure 3.

The stencil direction matrixD and the access direction matrixF
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Figure 6: (a) The original access pattern. (b) The new access
pattern after the loop transformations.

for this stencil are:

D =

„
1 0 −1 0
0 −1 0 1

«
andF =

„
1 0
0 1

«
.

In this figure, there are twelve neighboring processor pairs. For
each processor pair, we use Equation (3) to determine whether they
share any data or not. There are two types of neighboring directions
between the neighboring processors: row-wise and column-wise.
These two types of directions correspond to two direction vectors:
(0 1)T and(1 0)T . Applying Equation (3) to these two direc-
tions vectors, we obtain:

(0 1)

„
1 0 −1 0
0 −1 0 1

«
= (0 − 1 0 1) 6= ~0;

(1 0)

„
1 0 −1 0
0 −1 0 1

«
= (1 0 − 1 0) 6= ~0.

This means that, all the neighboring processors share data. Fig-
ure 3(b) illustrates the data sharing patterns exhibited by the pro-
cessors.

Figure 6(a) shows the original access pattern for each processor.
Since the neighboring processors do not access the shared data at
the same time, such an access pattern is not good as far as exploit-
ing inter-processor data reuse is concerned. In the next step, we
transform the program code for each processor so that the inter-
processor data reuse can be exploited; i.e., the data reuse can be
converted to data locality. We useTp1,p2 to represent the transfor-
mation matrix for processor(p1 p2)T . First, we applyExpand()
to the direction vectors, namely,(0 1)T and(1 0)T :

X1 = Expand((0 1)T ) =

„
1 0
0 −1

«
;

X2 = Expand((1 0)T ) =

„ −1 0
0 1

«
.

After that, we build a set of equations containing twelve equa-
tions for the twelve neighboring processor pairs.

FT−1
0,0 = X1FT−1

0,1 ; FT−1
0,1 = X1FT−1

0,2 ;

FT−1
1,0 = X1FT−1

1,1 ; FT−1
1,1 = X1FT−1

1,2 ;
FT−1

2,0 = X1FT−1
2,1 ; FT−1

2,1 = X1FT−1
2,2 ;

FT−1
0,0 = X2FT−1

1,0 ; FT−1
1,0 = X2FT−1

2,0 ;
FT−1

0,1 = X2FT−1
1,1 ; FT−1

1,1 = X2FT−1
2,1 ;

FT−1
0,2 = X2FT−1

1,2 ; FT−1
1,2 = X2FT−1

2,2 .

For example, for processors(0 0)T and(0 1)T , the open form

for (i=1024; i<2048; i++)
for (j=1024; j<2048; j++)

tempU[i][j]=(U[i][j-1]+U[i][j+1]
+U[i-1][j]+U[i+1][j])/4;

(a)
for (i=-2047; i<=-1024; i++)

for (j=-2047; j<=-1024; j++)
tempU[-i][-j]=(U[-i][-j-1]+U[-i][-j+1]

+U[-i-1][-j]+U[-i+1][-j])/4;
(b)

Figure 7: (a) The original program code for processor(1 1)T .
(b) The transformed code for processor(1 1)T .

of the equation is:„
1 0
0 1

«
T−1

0,0 =

„
1 0
0 −1

« „
1 0
0 1

«
T−1

0,1 .

Using the algorithm given in Figure 5, we obtain a solution to the
above set of equations:

T0,0 = T0,2 = T2,0 = T2,2 =

„
1 0
0 1

«
;

T0,1 = T2,1 =

„
1 0
0 −1

«
; T1,0 = T1,2 =

„ −1 0
0 1

«
;

T1,1 =

„ −1 0
0 −1

«
.

These transformation matrices can be used to transform the lo-
cal iteration spaces of processors. As an example, Figure 7(a)
presents the original program code for processor(1 1)T , and it
is transformed, usingT1,1, to the code given in Figure 7(b). After
the transformations, we obtain the new data access pattern shown
in Figure 6(b). Obviously, this new access pattern exploits inter-
processor data reuse much better than the one shown in Figure 6(a).
For example, in Figure 6(a), processors(0 0)T and(0 1)T do
not access the shared array elements inR1 together, while in Fig-
ure 6(b) the array elements inR1 are accessed together by these two
processors, in which case inter-processor data reuse is converted to
inter-processor data locality. Similar observations can be made for
all the other data regions shared by the neighboring processors.

3.6.2 Example 2
The code segment shown in Figure 8(a) is obtained by applying

loop-tiling to the code segment given in Figure 3(a). This stencil
computation is parallelized over four processors, and the default
data access pattern is shown in Figure 8(b). The corresponding
stencil direction matrixD and the access direction matrixF are:

D =

„
1 0 −1 0
0 −1 0 1

«
andF =

„
8 0 1 0
0 8 0 1

«
.

There are three neighboring processor pairs, and all the neigh-
boring direction vectors between them are of the form(0 1)T .
Consequently, applying Equation (3) to this directions vector, we
obtain:

(0 1)

„
1 0 −1 0
0 −1 0 1

«
= (0 − 1 0 1) 6= ~0.
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Figure 8: (a) The original stencil code for Example 2. (b) Distri-
bution across four processors and the default data access pat-
tern. The shaded (gray) areas indicate the shared data, and
the arrows represent access pattern. Captured in small squares
are the access patterns used for visiting the elements inside each
tile. (c) The new data access pattern after the loop transforma-
tions.

This means that all the neighboring processors share data. Fig-
ure 3(b) illustrates the data sharing patterns exhibited by the pro-
cessors. As before, we useTp1,p2 to represent the transforma-
tion matrix for processor identified by(p1 p2)T . First, we apply
Expand() to the direction vector(0 1)T :

X = Expand((0 1)T ) =

„
1 0
0 −1

«
.

We then build a system of three equations for the three neighboring
processor pairs. That is:

FT−1
0,0 = XFT−1

0,1 ; FT−1
0,1 = XFT−1

0,2 ; FT−1
0,2 = XFT−1

0,3 ;

Finally, using the algorithm in Figure 5, we obtain a solution to the
above set of equations:

T0,0 = T0,2 =

0
BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA ;

T0,1 = T0,3 =

0
BB@

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

1
CCA .

Figure 8(c) gives the new access pattern after applying these trans-
formations to the local iteration spaces of our four processors. Again,
the new (transformed) access patterns exploit the inter-processor
data reuse much better than the original patterns given in Figure 8(b).
These two examples show that one can exploit inter-processor data
reuse by employing a customized loop transformation matrix for
each processor in the system.

Table 1: Important simulation parameters used in our experi-
ments and their default values. Each processor has its own L1
cache and all processors share an L2 cache.

Parameter Default Value
Number of Processors 8

L1 Size 8KB
L1 Line Size 32 bytes

L1 Associativity 4-way
L1 Latency 1 cycle

L2 Size 2MB
L2 Associativity 4-way

L2 Line Size 64 bytes
L2 Latency 10 cycles

Memory Access Latency 120 cycles
Bus Arbitration Delay 5 cycles

Replacement Policy Strict LRU

Figure 9: Number of off-chip memory references.

4. EXPERIMENTAL RESULTS
To perform our experimental evaluation, we used the Simics tool-

set [19]. Simics is an instruction set simulator and operating system
emulator. It allows simulation of multiple processors connected
through an on-chip memory space, which can have multiple lay-
ers. We modified Simics to keep track of the behavior of shared
and non-shared data separately. The default values of the impor-
tant simulation parameters we used in our experiments are listed
in Table 1. The code modifications required by our approach are
automated within the SUIF infrastructure [20].

The benchmark codes used in this study are given in Table 2.
The common characteristic of these codes is that they all perform
some sort of stencil computation. The second column gives a de-
scription of each benchmark and the next one shows the amount of
input data used for executing the benchmark. The fourth column
gives the number of execution cycles for each benchmark when no
locality optimization is applied. The goal of our approach is to re-
duce the execution cycles by minimizing the number of off-chip
references. The execution cycle reductions given in the remainder
of this section are normalized values with respect to the last column
of Table 2.

Figure 9 gives the number of off-chip memory references for our
benchmarks. The bar marked “Reused” correspond to the number
of visits to the off-chip memory for a data element that has previ-
ously been on the on-chip memory space. In other words, it cap-
tures the number of references to the off-chip memory due to not
being able to exploit inter-processor data reuse while the data is in

234



Table 2: Stencil applications used in our experiments.

Benchmark Brief Input Execution
Name Description Size (KB) Cycles (M)

Gauss-Seidel Gauss-Seidel Computation 3731.4 386.9
Weather Weather Prediction 5982.2 901.1

Edge Edge Detection Algorithm 5418.5 513.2
Jacobi Jacobi Iterative Solver 1545.0 155.7

VB 2.0 Vertex Blending 7816.4 995.1
Map 1.1 Cube Mapping 2998.9 372.3

RB-SOR Red-Black Successive-Over-Relaxation 4115.6 664.8
TDer Terrain Detection 6695.1 756.9

the on-chip memory space. The bar marked “Total”, on the other
hand, gives the total number of off-chip memory references. We
observe that, on an average, nearly 56% of the off-chip references
are due to not being able to exploit the inter-processor data reuse,
which indicates an approach that can convert these misses in the
on-chip memory space to hits can be very effective in practice.

Figure 10 summarizes the savings achieved by our approach in
three groups. Note that, before applying our approach that opti-
mizes inter-processor reuse, we optimized intra-processor reuse for
each processor independently. The first bar for each benchmark
gives the percentage savings (reductions) in the off-chip memory
references that belong to the “Reused” category. The second bar
gives the percentage savings when all the off-chip references are
considered. We see that the average saving in the “Reused” and
“Total” categories are 77.6% and 42.4%, respectively. The last bar
shows the reductions in execution cycles. We observe that our ap-
proach reduces the overall execution cycles by 22.6% on the aver-
age. Figure 11 gives similar results for the alternate scheme that
optimizes locality for each processor in isolation (i.e., that opti-
mizes for intra-processor locality only). The most striking obser-
vation from this figure is that the reductions in the “Reused” cate-
gory is very low compared to our approach, and amounts to 27.1%
when averaged over all benchmark codes in our experimental suite.
This is mainly because this alternate approach does not consider the
reuse of the data shared by multiple processors. However, when we
look at the second bar for each benchmark (marked “Total”), we see
that the average savings is about 32.2% when all benchmarks are
considered. That is, although it is not very effective for the shared
data, this approach is successful in converting the remaining misses
into hits in the on-chip memory space. We also see from Figure 11
that the average reduction in execution cycles with this approach is
around 8.2%. To sum up, by comparing Figures 10 and 11, one can
see that exploiting locality for the shared data is very important for
stencil type of applications.

We now change the default number of processors used in our
experiments so far, and conduct a sensitivity analysis. Figure 12
plots the percentage improvements in execution cycles when our
approach is used. For each application in this graph, each bar cor-
responds to a processor count (from 2 to 64). Recall that the de-
fault values used so far was 8. Maybe the most important con-
clusion one might draw from these results is that the effectiveness
of our approach increases as we increase the number of proces-
sors. For example, while the average saving with 4 processors is
around 14.2%, that with 32 processors is about 34.3%. This is
because when the number of processors is increased, interproces-
sor communication (i.e., data sharing) also increases (i.e., some of
the intra-processor computation – before we increase the processor

Figure 10: Savings in the off-chip memory references and exe-
cution cycles with our approach.

Figure 11: Savings in the off-chip memory references and ex-
ecution cycles with the alternate approach that optimizes data
locality for each processor in isolation.

count – needs nonlocal data after we increase the processor count).
This in turn increases the importance of optimizing the locality be-
havior of the shared data. We do not present the results with the
alternate scheme here in detail, but want to say that our approach
consistently generated better results than the alternate scheme.

5. CONCLUSIONS AND FUTURE WORK
Minimizing the number of off-chip memory references is very

important in embedded chip multiprocessors from both the perfor-
mance and power perspectives. This paper proposes and evalu-
ates a compiler-based solution to this problem. It primarily focuses
on data shared across processors, and re-organizes loop iterations
assigned to processors in a coordinated fashion so that the reuse
distance to shared data is minimized. Our experiments with eight
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Figure 12: Reduction in execution cycles with different proces-
sor counts.

benchmark codes from the embedded computing domain indicate
significant reductions in off-chip memory accesses. We are in the
process of evaluating the impact of other locality oriented optimiza-
tions on our inter-processor reuse representation. We are also work-
ing on developing a new code parallelization strategy that leads to
better inter-processor reuse (in terms of both volume and sharing
pattern).
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