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ABSTRACT Categories and Subject Descriptors

Recent research in embedded computing indicates that packing mulb.3.4 [Processorg Compilers

tiple processor cores on the same die is an effective way of utilizing

the ever-increasing nur_nber of transistors. The advantage of pIacmgGeneral Terms

multiple cores into a single die is that it reduces on-chip commu-

nication costs (in terms of both execution cycles and power con- Performance

sumption) between the processor cores that are traditionally very

high in conventional high-performance parallel architectures (such KewNords

as SMPs). However, on the negative side, this tighter integration ) . . )
exerts an even higher pressure on off-chip accesses to the memory-hiP multiprocessors, stencil computation, data locality
system. This makes minimizing the number of off-chip accesses a

critical optimization goal. 1. INTRODUCTION

f TT}'S papt:er do(ljlsgussels_ a pompllLer-bas;ad SOIUt'On.ItO this pro_blem Recent research indicates that packing multiple processor cores
or the embedded applications that perform stencil computations. ,, he same die is an effective way of utilizing ever-increasing

An important characteristic of this solution is that it distinguishes number of transistors [12]. These chip multiprocessors have sev-
between the intra-processor data reuse and inter-processor data reuge, advantages over complex single processor based architectures.
The first of these captures the data reuse that occurs across loop itbn the hardware side, they are arguably easier to verify and val-
erations ?S;I‘gngdt to the Sf;]mtet p;oceslsor, whereati thle sefzondt_or?gate’ and since they are usually built from simple cores, they are
represents the data reuse that takes place across the loop Iteratiory, o energy efficient as compared to sophisticated single processor

agsignfed to different processors. The pr(_)p_osed approach th_en 0ptibased systems which are clocked at very high frequencies. On the
mizes inter-processor reuse by re-organizing the loop iterations of oftware side, a chip multiprocessor gives the compiler writer the

each processor carefully, cons_idering how data elem_ents are share pportunity for exploiting both high-level (loop, thread) and low-
across processors. The goal is to ensure that the different Procesq e (ILP) parallelism. This support is very important for many

sors access the shared_ data within a short period of time, so t_hat th'C"Embedded systems that execute loop-intensive image/video/speech
data can be captured in the on-chip memory space at the time of

; X grocessing applications [12].
the.re_use_. This paper also _presents an evaluation of the Proposed. zp important advantage of placing multiple cores into a single
optimization and compares it o an gltern_ate scheme that OpUiMIZES ;e s that it reduces the communication costs (in terms of both
data locality for each processor in isolation. The results obtained execution cycles and power consumption) between the processor
by applying our implementation to el_ght Ioop-l_ntenswe benchmark cores that are incurred in conventional high-performance parallel
codes from the embedded computing domain show that our ap-

hi h ioned al h by 15 6% architectures (such as SMPs [9]). However, on the negative side,
g:}o:ser;rggroves over the mentioned alternate scheme by 15.6%y,;q tighter integration exerts an even higher pressure on off-chip

accesses to the memory system. This is because in chip multipro-
cessors there are several cores that need to access the off-chip mem-
ory system, and they may have to contend for the same buses/pins
“This work is supported in part by NSF Career Award 0093082 and to _get there. Therefore, it is critical to reduce the n_umber of off-
a grant from GSRC. chip memory accesses as much as possible, even if this causes an
increase in on-chip communication activities among parallel pro-
Cessors.
Since early nineties compiler researchers focused on optimiza-
tions for cache locality and proposed several techniques along this
Permission to make digital or hard copies of all or part of this work for ~direction. In the context of data caches, the proposed techniques
personal or classroom use is granted without fee provided that copies areinclude both loop transformations (e.g., iteration space tiling [22,
not made or distributed for profit or commercial advantage and that copies 24] and loop permutation [2]) and data layout optimizations (e.g.,
bear this notice and the full citation on the first page. To copy otherwise, to dimension reindexing [14]). While one might think that these opti-

republish, to post on servers or to redistribute to lists, requires prior specific .. +ions or some sort of combination of them can also be used in
permission and/or a fee.

EMSOFT'05 September 1922, 2005, Jersey City, New Jersey, USA. the context of ch_lp r_nultlproc_:essors,_ th_e problem is ac_tur_:lll_y more
Copyright 2005 ACM 1-59593-091-4/05/000955.00. complex than this simple view. This is because, optimizing the
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code assigned to each processor core for locality does not guaran- 00000

tee good data locality for shared data. For example, if two accesses O O @ O O

issued by two different processors for the same data elementarefar O ®@ O @ O

apart from each other (in time), each of these accesses mayneed O O @ O O

to go to the off-chip memory to fetch the same data. Therefore, ~ o o 0 O

it is important to re-organize data accesses (e.g., loop iterations in

a loop-intensive application) in such a fashion that the shared data (@)

are accessed by the processors (that share it) within a short period

of time. This certainly increases chances for catching the datain O O O O O

on-chip memory at the time of its reuse. N X X Ne)
This paper discusses and evaluates a new data reuse framework, ~ @ © @ O

specifically customized for embedded chip multiprocessors execut- 00 ®®o

ing loop-intensive stencil applications. An important characteristic 50000

of this framework is that it distinguishes betweiatra-processor
data reuseandinter-processor data reuseThe first of these cap- (d)
tures the data reuse that occurs across the loop iterations assigned
to the same processor, whereas the second one represents the data .
reuse that take place across the loop iterations assigned to differ-Figure 1: Example stencils. The gray dots represent seed el-
ent processors. The proposed approach then optimizes the interments and the black dots represents neighbor elements. (a)
processor reuse by re-organizing loop iterations of each processoro-P0INt stencil. - (b) 7-point stencil. (c) 9-point cross stencil.
carefully, considering how data elements are shared across parallefd) 9-point star stencil. (€) Eight possible directions for a two-
processors. The goal is to ensure that the different processors acdimensional stencil computation.
cess the shared data within a short period of time, so that the data
can be captured in the on-chip memory space at the time of the ) o )
reuse. We can summarize the main contributions of this work as 9€ting high-performance distributed memory based systems. Since
follows: communication costs are very high in such systems, reducing this

o We show how inter-processor data reuse can be identified andC0St is critical and has been studied extensively [4, 5, 6, 7, 13, 18].
represented, given a parallelized loop nest, and discuss how the! Nere is also prior work on improving intra-processor cache local-
compiler abstraction used to capture this reuse can be interpreted. Ity for stencil codes [10]. None of the prior efforts has studied the

e We present a scheduling algorithm for stencil computations op_tlmlzatl_on of stencil computatl(_)ns in th_e contex_t of embedded
that re-organizes loop iterations assigned to processors such thafhip multiprocessors. Our work is targeting at chip multiproces-
inter-processor data reuse is improved, without degrading intra- SO'S where different on-chip processors can share data through an
processor data reuse. In this approach, the local iteration space®-chip L2 cache and on-chip data communication could be much
of each processor is transformed using a different loop transforma- cheaper than off-chip memory accesses. Our goal is to utilize such
tion. characteristics and improve the performance of stencil computa-

e We present an evaluation of the proposed optimization and _tlons by transforming the stencil co_d_es for the bes_t epr0|tat|on_ of
compare it to an alternate scheme that optimizes data locality for INt€r-processor data reuse. In addition, our technique can be inte-
each processor in isolation (i.e., without specifically considering 9rated with a general optimizing compiler framework that employs
shared data). The results obtained by applying our implementation"near Ioop_transformatlons. Te our kn_owledge, this is the first work
to eight loop-intensive benchmark codes from the embedded com-that specifically targets at optimizing interprocessor data reuse, by
puting domain show that the proposed approach improves over thetransforming the chal iteration space of each processor using a dif-
mentioned alternate scheme by 15.6% on average. ferent transformation. S N

The rest of this paper is structured as follows. Section 2 briefly ~ Chip multiprocessors are most promising in highly competitive
discusses the related work on stencil computations and chip mul-2nd high volume markets, for example, embedded communication,
tiprocessors. The mathematical theory behind our approach is dis-Multimedia, and networking. This imposes strict requirements on
cussed in Section 3. Section 4 presents an experimental evaluatiorP€rformance, power, reliability, and costs. There exist various prior

of the approach and compares it to previous work. Section 5 gives €fforts [11, 16, 17, 21] on chip multiprocessors, and they improve
our concluding remarks and outlines the future work. the behavior of a chip multiprocessor from different aspects, for

example, memory performance, communication, reliability, etc. As

chip multiprocessors post a new challenge for compiler researchers,
they also provide new opportunities as compared to traditional ar-
chitectures. Optimizing inter-processor data reuse is one such op-

2 RELATED WORK portunity which is explored in this work.

Stencil computation [5, 6] is a common type of computation in
embedded array-based application codes. In each iteration of a
stencil computation, an array element, referred to asHeg] is
updated based on the values of risighbor elementsThere are 3. MATHEMATICAL THEORY
different types of stencils, e.g., 5-point stencil, 9-point stencil, etc.,
which use a different set of neighbors in updating a seed element. :
Figure 1 presents some example stencils. 3.1 BaCkground on LQOp Representatlon and
Optimizing stencils is very important and some companies even Loop Transformation
built compilers customized for stencil computations [18]. Most of A loop nest of deptth defines an iteration spade Each iteration
the previous work focused on optimizing stencil computations tar- of the loop nest is identified by its index vectbe= (i1, s, . .., i) 7.
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for (i=1; i<1024; i++)

; ; e - . i=p,* s i<(p,T1)* ;i
ement in the array is specified using an index vector for (17p, *1024; i<(p, +1)*1024; i++)

for (j=1; j<1024; j++) for (t=1; t<N; t++) { R,
U[l][j]zu[l-l][]-1]+1, for (i=1; i<3073; i++) [T b T 1T
for (j=1; j<3073; j++) H [Oj [0] (O] H
tempU[i][j] = (ULi[j-1] + ULil+1] - FHIOHE I B2
Figure 2: Example loop and array accesses. + UG-G HUGHGD/A4; A— - =
}copy tempU[][] to U[][]; H [lj H H
H U Hi
An array of dimensiom defines an array spac4, and each el- (@) = .'“Rz

for (j=p,*1024; j<(p,+1)*1024; j++)

A = (a1,az,...,a,)T. We assume that multi-dimensional arrays tempU[i][j] = (ULi]lj-1] + ULil[j+1] 1
are stored in memory in a row-major fashion (as in C and C++). We + U[i-1][j] + UL+ 1[])/4; (b)
consider affine array access functighsZ — A, f(I) = FI+¢, (c)

whereF is ann x [ matrix and( is an-dimensional constant vector.
As an example, the two array accesggg[j] andU[i — 1][j — 1]

Lo | Figure 3: Example block distribution across a two-dimensional
in Figure 2 can be represented, respectively, as:

processor space. (a) A code segment that performs 5-point sten-
1 0 i 0 1 0 i 1 cil computation over array U. (b) A 3 x 3 block distribution of

< 01 ) < j )+< 0 ) and < 0 1 ) ( j >+< _1 ) the array across the processors. The nine processors are repre-

sented by the vectors written inside the blocks. Shaded (gray)

Linear loop transformations can be used to optimize a loop nest areas represent the set of array elements that are shared by

for various purposes, for example, improving cache locality. A neighboring processors. For example, the array elements in-

linear loop transformation can be represented using ari non- dicated by R; are shared by processor0 0)” and processor

singular matrixT" for a loop nest withl loops [15, 23]. As a re- (0 1)7, and the array elements indicated byR, are shared

sult of the loop transformation, each iteration (index vector) in the between processor(1 2)” and processor(2 2)T. (c) The

original iteration space is mapped to a distinct iteration in the new code segment (local iteration space) to be executed by processor

iteration space. If is an iteration in the original iteration space, (p:1 p2)” after data distribution.

and is mapped td’ after the transformation represented®ythen

the following equations must be satisfied: ) o . )
hold neighbors. For example, the stencil direction matrix of the

I'=7I and IT=T7"'TI. (1) stencil in Figure 1(a) is
After the transformation, the new access functigf{,/’), and the D ( 10 -10 )
original access functionf (1), should access the same data ele- 0 -1 01
ment. Thatis:f'(I") = f(I). Considering Equation (1), we can  which is the same as its stencil matrix. The stencil direction matrix
obtain: for the stencil in Figure 1(b) is
f@y =50 =1 1) =FT7' T+ @) D ( 0 1 o)
. . . “\1 0 -1/
3.2 Algebraic Representation of Stencil Com- o _ _ _
putations The stencil direction matrix of a stencil can be obtained by re-

moving the identical columns ¢fS||, whereS is the stencil matrix

A stencil can be represented bystencil matrix termed asS, (n x k), and||S|| is defined as:

in which the columns are the relative positions of its neighbors as-

suming that the position of the seed elemenflis 0 --- 0)T. S Vi,7,0<i<n,0<j <k,
is ann x k matrix for ann-dimensional array and a stencil with
neighbors. For example, the 5-point stencil in Figure 1(a) can be 1 ifS(,5) > 0;
represented by a steneilx 4 matrix S, where: [1S11(3, 5) = { 0 ifS(i,4) = 0;
S:<1 0 —1 0) -1 if S(,7) <O.
o -1 0 1)° For example, by applying thi|| operator to the stencil matrix of

the stencil given in Figure 1(b), we obtain the following matrix:
00 11 0 0
110 0 -1 -1/

After removing the identical columns from the above matrix, we

Similarly, the stencil matrix for the 7-point stencil in Figure 1(b) is:

0012 0 0
S—<1200—1 —2)'

In a stencil, the neighbor elements can reside in diffedaet- obtain the corresponding stencil direction matrix:
tionswith respect to the seed element. For example, in Figure 1(a),
there are four directions that hold neighbor elements of the seed, D— ( 01 0 )
whereas in Figure 1(d) there are eight directions with neighbors. 10 -1)°

For a stencil on an-dimensional array, there are a totaB3f* —1 .
possible directions, and each direction can be represented by an?’-'?’ Processor Representat|0n and Array As-

n-entry direction vector A direction vector is defined as a non- signment
zero vector in which each entry’s absolute value is no more than  We focus on a block distribution of arrays on a multi-dimensional
one. A stencil can also be represented Isyeacil direction matrix processor space. In such a distribution, each processor updates a

termed asD, in which the columns represents the directions that distinct subset (in the form of a block) of the array elements. The
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position of each processor is specified using.aentry vector for 0 0
an n-dimensional array. Figure 3(a) presents a program segment ( j ******
OO0O0O0O0

performing 5-point stencil computation. In this program, the out- -1
ermostt loop controls the number of times the stencil computaton O O O O O (b)
needs to be repeated so that the results converge. Attheendc o @ 0 @ O

e'ach' r;)und, the re_sults in arreympU are cople_d back ti_if. The 00000 a;®* a®
(: 7)" loop nest implements the actual 5-point stencil computa- b .9
tion, and is the focus of our approach. Therefore, we will omit the 00000 as_a4>
outermost loop and the array copying part (which is not a stencil (@) a;® ag°

computation) in the rest of our discussion. Figure 3(b) illustrates
a3 x 3 block distribution of the array across nine processors for a
5-point stencil. These processors are represented in our frameworl
using nine vectorst0 0)*, (0 )T, (0 2)T,---, (2 2)T. . - _

After array-to-processor assignment, each processor executes ﬁl E

<

—
O
~

subset of the original loop iterations. The loops to execute these it- [| —x
erations are the same for different processors, except that they hav ¥ =}

different lower and upper bounds. This is illustrated in Figure 3(c), _>I I(i

Lﬁ444444 1

T

which shows the part of the stencil computation in Figure 3(a) as- || —>
signed to the processor identified withy p2)7, i.e., its local y —>

K
I
i

<

ST T

P

iteration space.
We extend thexbs() function, which returns the absolute value
of an integer, to the domain of vectors. That is: 7

V' = abs(V) = V4,0 < j < n, V'(j) = abs(V(5)). () (f)

An n-entry vector is called anit vectorif it is one of the columns

of ann x n identity matrixE. We useE; (0 < j < n) to represent Figure 4: Data sharing and data reuse in a 3-point stencil. (a)
a unit vector that has a ‘1’ in itgth entry, and all ‘O’s in other 3-point stencil. (b) Stencil direction matrix. (c) Access pattern

entries. For example, we havé = (1 0 --- 0)T andE,,_, = of an individual processor. Array data are accessed row by row.

0 0---1)7. Two processor$31 and P, are said to be neighbors  In each row, the data are accessed in the increasing order (from

to each other if and only ifbs( P, — P>) is a unit vector. The vector left to right). The rows are accessed in the increasing order

5 B . . S 5 (from top to bottom). The six array elements, represented by
?SbS(FPgr exlz:iz[;Tec?rili?grr?glgpﬁzgzzg q;:'sreiglg r:r?;v(vleer;[—)’;e;r:: black dots, are accessed in the order af1, az, as, a4, as, as. (d)
2 ’ : . o 3 x 3 block distribution across nine processors. The shaded ar-
neighbors becauseéhs((1 1)T — (1 2)T)is(0 1)T, whichis - P

. . eas highlights the data sharing between processors. (e) Access
a unit vector. In comparison, processéts 1)” and(2 2)7 are gr 19 d P ()

) T g - ; pattern that exploits inter-processor data reuse. (f) Another ac-
not nelghb_ors becausds((1 1)" —(2 2)")is(1 1)7, which cess pattern that exploits inter-processor data reuse.
is not a unit vector.

3.4 Inter-Processor Data Reuse

In stencil computations, neighboring processors share data at
their boundaries. Figure 3(b) illustrates such data sharing. The ) .
shaded (gray) areas in Figure 3(b) represent the array elements thaf'd Processors in the same row. Such a data sharing pattern can be
are shared by neighboring processors. For examiplegaptures expected from this stencil, since in this stencil, both the neighbors

the array elements shared by procesgrs 0)” and (0 1)7, of a seed elemept are _in the same row and there is no data sharing
and R, indicates the array elements shared by procegdor2)” between two neighboring processors if they access different rows
and(2 2)”. For processors that are not neighbors, they either do of the array. Therefore, for two neighboring processérsand P,

not share data (e.g., proces$or 0)” and processai0  2)7), or to share data, the direction frofy to P, captured byP, — Pi,

they share a very small amount of data (e.g., procg$son)” and needs to be compatible with some direction vector in the stencil di-

processoi1 1)T in a 9-point star stencil). Consequently, in our rection matrixD. In mathematical terms, such a compatibility can
approach, we consider data sharing only between the neighboringbe formulated as follows:
processors. 5 ST =
While all neighboring processors share data in Figure 3(b), in the (P2 — ) D #0. @)
general case, whether two neighboring processors share data or nof the above formulatior represents a vector with all entries being
depends on the stencil direction matf>as well. Figure 4(a) gives  zero. For example, processdis 0)” and (0 1)7 share data,
a 3-point stencil and Figure 4(b) shows its stencil direction matrix. sjnce:
Figure 4(c) illustrates the original data access pattern of an indi- T
vidual processor. In this data access pattern, array data is accessed (( 0 ) _ ( 0 )) ( 0 0 ) — ( 1 -1 ) £0
row by row in the increasing order (from top to bottom), and the 1 0 L -1
data within each row is accessed in the increasing order (from left o the other hand, there is no data sharing between processors
to right). Figure 4(d) highlights the data sharing between proces- ()7 and(1 0)7. This is because, we have:
sors in a3 x 3 block distribution. We can observe from this figure
that there is no data sharing between the neighboring processors in 1 0 7o o0 o
the same column, but there is data sharing between the neighbor- << 0 ) N < 0 )) ( 1 -1 ) = ( 00 ) =0
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Itis important to note that data sharing between processors doeslt is easy to see that:
not necessarily lead to inter-processor data locality. Let us consider B _
Figure 4(d) as an example. When proceggor 0)7 accesses the Ezpand(V)~ " = Expand(V);

— =

data in the region indicated bi;, processo0 1) is access- Expand(abs(V)) = Expand(V).

ing the o!ata in the region |nd|cat_ed 8. Since ‘h?y do not ac- The function Expand() can be used to express the requirement
cess their shared data together (i.e., at the same time), there is I|ttleof the access directions of two neighboring processors that share
data locality in this access pattern (i.e., data locality is not fully data. The transformation matricds (for rocessorﬁ) and T
exploited). On the other hand, in the data access patterns shown ) " . p e _ 2
in Figure 4(e) and Figure 4(f), neighboring processors access their(for processoi?,) should satisfy the following condition:

shared data together, and thus there is good inter-processor data lo- FT~' — Ex (md(}; _ ﬁ)FT‘l )
cality in these two scenarios. Our objective is to transform the local ! P ? ! 2

iteration spaces of the processors so that their new data access paginceEzpand(V) ™' = Exzpand(V), the above equation is equiv-
tern is similar to the ones shown in Figure 4(e) or Figure 4(f). We glent to:

observe that the common characteristic between the access patterns . ~ - .

of Figure 4(e) and Figure 4(f) is that the neighboring processors FTy " = Ezpand(Py — P)FTy . (6)

that share data proceed in the opposite directions when accessingqyation (5) captures the requirement that, after these transforma-
each row and they proceed in the same direction when accessin ions, B, and P, should have opposite access directions along the

each column. For example, in Figure 4(e), proce$gor0)” ac- . . . . = =
cesses each row from Igft to rigﬁt Whi(le) p?ocesgmr 1))T ac- neighboring direction betweeR; and P, and have the same ac-
, cess direction in all others.

cesses each row from right to left. Also, both these two processors Assume that there aflé processors antl” processor pairs that

access each column from top to bottom. Note that in this case, hare data. Therefore. we hakié equations in the form of Equa-
accessing each row means accessing along the direction identifiecf : ’ . q . . d
ion (5), andV unknowns (i.e.,V transformation matrices to be

by abs((0 1)T — (0 0)7), i.e., their neighboring direction. In : ; , , : .
general, for two neighboring processors to access their shared datéjetermlned)_ln e equations. After _solvmg this set of equations,
together, they need to hagepositeaccess directions when access- we can obtain the transformation matrices needed to transform the

ing data along their neighboring direction, and have the same aC_Iocal iteration space of each processor so that the inter-processor

cess direction when accessing data along any other directions. data reuse can be explonte_d. Figure 5 gives a sketph of our com-
Let us now define the access directions in different dimensions piler algorlthm._ Note ‘h?“ i one_of the trans_forn_wgnon matrix 1

for a given array access functigﬂﬁf). We assume that each loop it- known in Equation (5), this equation can be simplified as follows:

erator is increased by one as we move from one iteration to another. AT = B, @)

The loops with non-unit steps can be transformed to unit-step loops

using loop normalization [1]. The access direction vediar for

the kth loop can be defined as:

whereA andB are known, and” is the unknown matrix. There ex-

ist several algorithms [3, 8] that can be used for solvitif = B,

and we can use any of these algorithms in our approach. In the al-
gorithm shown in Figure 5, we maintain two sets of equations. The

Qv = f(I:+ Ey) — fjf) o set£ contains all the equations that have two unknown matrices in
= FI+Ey)+C¢—F{)—-¢ them, while the sef contains all the equations that have exactly
= FE. one unknown matrix. At each step, we try to solve an equation

which has only one unknown matrix. Once we obtain a solution for

o . - this equation, all the equations in which both the transformation
That is, Q. is the kth column of the access matrik' of f([). matrices are known are removed fréand all the equations with
Therefore, the access matrix ¢f7) is also the access direction exactly one unknown matrix are moved frafnto C. WhenC be-
matrix, in which thekth column is the access direction vector at comes empty and is not empty, we randomly select an equation
thekth loop. From Equation (2), we can see that the new access di- from £, and set one of the unknown matrices to identity mafix
rection matrix after the loop transformation represented by matrix (j.e., the loop of the corresponding processor is not transformed).
TisT 'F. If an equation has no solution, we simply ignore that equation, in

Our approach is to find a suitable loop transformation for each which case the inter-processor data reuse represented by this equa-

processor so that we can have data reuse between the processotfn cannot be exploited. Assuming that the complexity of solving
that share data. Our approach proceeds as follows. First, we iden-Equation (7) ist” and the number of equationsli, the complex-
tify all the neighboring processor pairs. After that, for each proces- ity of our algorithm in Figure 5 i$VY".
sor pair, we determine whether they share data or not using Equa-
tion (3). As has been discussed earlier, for two neighboring pro- 3.5 Impact on Intra-Processor Data Reuse

cessorsP and P that share data, they should have the opposite  There are two types of intra-processor data reuself:reuseand

access directions along their neighboring direcﬁba(ﬁl — P), group-reusdq22]. Self-reuse refers to the situation where the same
and they should have the same access directions in other directionsarray reference accesses adjacent data in successive loop iterations.
To formulate this requirement, we define a functibmpand() : Group-reuse refers to the situation where two array references ac-
n x 1 — n x n, which expands a direction vector into a matrix. cess adjacent data in successive loop iterations. In this section, our
Mathematically, we can definBzpand() as follows: goal is to show that transformation matrices obtained from our al-

gorithm preserve all self-reuse in the original program and preserve
the group-reuse in the most frequent cases.
Mathematically, self-reuse of an access functign) = F'T + 3
4) can be defined as:

X = Ezpand(V) = Vi,5,0<i<n, 0<j < n,
1 ifi=jandV(i)=0
X(i,5) =4 —1 ifi=jandV(i)#0
0 ifity FA+00---1)T) = f()=(00--- ), ®)
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1: L =the set of equations; scenario, since the transformation matrix is the identity maffrix
2. C = 0; which means no transformation, self-reuse is clearly preserved. The
3t while (£ # 0) { _ other way is through line 13, in which obtains its value by solv-
4 randomly select an equatien from £; ing an equation in the form of Equation (5). By using induction,
5: T is one of the unknown matrices éa; we can easily prove from Lemma 1 that the transformation ma-
6: To = E; trices obtained from our algorithm preserve the self-reuses in the
7: moveeg fl’0m L to C, Original program.
8: while (€ # 0) { _ Lemma 2: In Equation (5), if the last column af has only one
o randomly select an equatierfrom C; non-zero entry and processBs preserves group-reuse after loop
10: T is the only unknown matrix im; . S5
11 solvee: transformation’?, then processoP; also preserves group-reuse
1. " (ther:a is solution fo) { after transformation looff .

: _ ; . Sketch of the proof: In mathematical terms, Lemma 2 is equiva-
13: T = the solution fofe; lent to:
14: remove fromC all equations withl’; ’
15: move all equations it with T'to C; Condition 1: The last column of” has only one non-zero entry and
16: } Condition 2: F(00 --- 1)T = (00 --- 60)T + ({ — ') and
gf else - Condition 3: FT; (00 --- )T = (00 --- 6,)" + (= ')
19 } removee rromc; = FTfl(O 0--- 1)T _ (0 0--- 51)T + (C _ Cl)v
20: } whereabs(do), abs(d1) andabs(d2) are small integer numbers. Since

F(00---1)" is the last column of", we can infer from the first

. . . ) . two conditions that:
Figure 5: The algorithm for solving a set of equations in the

form of Equation (5). Each equation in £ has two unknowns FOO---1)"=(00---A)", and
(transformation matrices), and each equation inC has exactly (¢C-¢)=(@©o0---0)T.

one unknown matrix. E is the identity matrix. ) .
Therefore, the third condition can also be expressed as:

—1 T T
whereabs(d) is a small integer number. The above equation can FI (00---1)" = (00 (52+6))". 12)

be represented in matrix/vector form as follows:

FOO---1)"=(0o0---6)". )

Letting X = Exzpand(P, — P;), we obtain:

FT7'00--- )T =XFT;'00--- )T
Lo =X(00-- (6240)"

The group-reuse between two access functigg) = F I + ¢ =00 +(82+0)7.
andf'(I) = F'T + (', can be defined as:

"T+00--- D))= f=00---87, 10
P+ =i =( ) (10) 00---8)"+00---0)T for the ‘+' case

whereabs(9) is a small integer number. The different access func- { (00 (=6, —20)T +(00--- )T forthe - case
tions in a stencil computation have the same access matrix (i.e.,
F' = F). Therefore, the above equation can be represented in aSince the distance between the data elements accessed by succes-
matrix/vector form as follows: sive iterations in a stencil computation is small, the valueba{6)
— is small. Thereforegbs(—d2 —26) is also a small number. Consid-
FOO0---1)7 = 5T - . 11 ) R )
(00 ) (00 0)" +(¢=¢) (11) ering that(¢ —¢’) = ((0 0 --- )T, we see that the transformation
Lemma 1: In Equation (5), if processd, exhibits self-reuse after 71 preserves the group-reuse. _
loop transformatior’s, then processoP; also exhibits self-reuse Similarly, we can prove from Lemma 2 that the transformation
after loop transformatiof . matrices obtained from our algorithm preserve the group-reuse in
Sketch of the proof: After the transformations, the new access (he original program if the last column df has only one non-

matrix of P, is FT.~' and the new access matrix & is F'T; " zero entry. Having only one non-zero entry in the last column of
Mathematically. Lémma 1is equivalent to: 2 F requires that the index variable of the innermost loop appears

in the access function only once. Although this seems restrictive,

The last vector above can be expressed as:

FT; 500 DT =00 6)7 almost all the known stencil computations satisfy this requirement.
= FI7((00--- 1))y =(00---01)7, Therefore, our algorithm preserves group-reuse in the most com-
. mon cases.
where bothabs(d1) andabs(d2) are small integer numbers. Let
X = Expand(P, — P,), we obtain: 3.6 Examples
FT7Y00---1)T = XFT;400---1)T In this section, we use two examples to illustrate how to use the
= X000 8)T mat_hematlcal framework in Section 3.4 to_ _tran_sform the local it-
=00 +48)7. eration space of each processor for exploiting inter-processor data
reuse.
The last step can be inferred from the definitiorEafpand() given
by Equation (4) 0 3.6.1 Example 1
A processol? obtains its transformatiofi in two possible ways. Let us consider the stencil computation presented in Figure 3.

One way is through line 6 in the algorithm in Figure 5. In this The stencil direction matri© and the access direction mattx
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for (i=1024; i<2048; i++)
for (j=1024; j<2048; j++)

_1; = tempU[i][j]=(U[i]j-1]+U[i][+1]

SRR EI TEE +U[i-1][i+U[i+1][])/4:

V—> ‘ @

———— for (i=-2047; ic=-1024; i++)

—S —s for (j=-2047;_j<:-1_02_4; j++)_ _
A=l r tempU-[-]=(U[-][--1]+U[-][-+1]
i 12 +U[-i-2][-]+U[-i+1][-D/4;

ElEIE

\ 4

(b) Figure 7: (a) The original program code for processor(1  1)%.
(b) The transformed code for processor(1  1)7.

Figure 6: (a) The original access pattern. (b) The new access
pattern after the loop transformations.

for this stencil are: of the equation is:

10 -1 10 10 =
(1 0 -1 0 (10 < )TOO:( )( )TOI.
D_<O 1 0 1)andF_(0 1). 01 0 -1 0 1

In this figure, there are twelve neighboring processor pairs. For
each processor pair, we use Equation (3) to determine whether they
share any data or not. There are two types of neighboring directionsUsing the algorithm given in Figure 5, we obtain a solution to the
between the neighboring processors: row-wise and column-wise. above set of equations:

These two types of directions correspond to two direction vectors:

(0 1T and(1 0)T. Applying Equation (3) to these two direc- Too = Toz = Too = Too — < L0 ) .

tions vectors, we obtain: 0o 1)’
10 -1 0
1 0 -1 0 - To,l = T2,1 = 0 —1 ; TLO = T1»2 = 0 1 ;
© Dy ;7 o 1)=0-101#0 . (_1 ’
1 0 -1 0 _ - L1 = 0 -1 /-
@0, .y o 1)=00-100

These transformation matrices can be used to transform the lo-

This means that, all the neighboring processors share data. Fig-cal iteration spaces of processors. As an example, Figure 7(a)
ure 3(b) illustrates the data sharing patterns exhibited by the pro- presents the original program code for procegdor 1)7, and it
Cessors. is transformed, usind 1, to the code given in Figure 7(b). After

Figure 6(a) shows the original access pattern for each processorthe transformations, we obtain the new data access pattern shown
Since the neighboring processors do not access the shared data @ Figure 6(b). Obviously, this new access pattern exploits inter-
the same time, such an access pattern is not good as far as exploitprocessor data reuse much better than the one shown in Figure 6(a).
ing inter-processor data reuse is concerned. In the next step, weFor example, in Figure 6(a), process¢és 0)” and(0 1)7 do
transform the program code for each processor so that the inter-not access the shared array elementRirtogether, while in Fig-
processor data reuse can be exploited; i.e., the data reuse can bere 6(b) the array elements Ry are accessed together by these two
converted to data locality. We ugd8, ,2 to represent the transfor-  processors, in which case inter-processor data reuse is converted to

mation matrix for processdpl p2)T. First, we applyEzpand() inter-processor data locality. Similar observations can be made for
to the direction vectors, namelf) 1)” and(1 0)7: all the other data regions shared by the neighboring processors.
X1 = Exzpand((0 1)7) = 1 (1) : 3.6.2 Example 2 o . . _
Ul The code segment shown in Figure 8(a) is obtained by applying
X, = Expand((1 0)T) = -1 0 ] Ioop-tiling to t_he code segment given in Figure 3(a). This stencil
01 computation is parallelized over four processors, and the default

data access pattern is shown in Figure 8(b). The corresponding

After that, we build a set of equations containing twelve equa- stencil direction matriX> and the access direction mattxare:

tions for the twelve neighboring processor pairs.

1 0 -1 0 8 0 1 0
FTyo = X\FToy; FTo ) = X1FTg,; b= ( 0 -1 01 ) and = ( 08 0 1 )
Fleoi _ XlFleli; FTl:li _ XlFTl}i; There are three neighboring processor pairs, and all the neigh-
Plag = 2l Moy FToy =Xl as; boring directi tors between them are of the fdm 1)
FT, 0 = XoF Ty (s FT, ) = XoFT, oring direction vectors between them are of the fqin 1)".

Tl — X, FT L Tl — X, FT. L Consequently, applying Equation (3) to this directions vector, we
0,1 — 1,1 1,1 — 2,19 [
FTy) = XoFT. ), FT,) = XoFT,,. obtain:
1 0 -1 0 =
For example, for processof® 0)” and(0 1), the open form © b < 0 -1 0 1 ) =0 -101)#0.
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for (i=1; i<384; i++) Table 1: Important simulation parameters used in our experi-

for (j=1; j<384; j++) ments and their default values. Each processor has its own L1
for (x=1; x<8; x++) cache and all processors share an L2 cache.
for (y=1; y<8; y++)
tempU[8*i+x][8*j+y] = (U[8*i+x][8*j+y-1] + | Parameter | Default Value |
+ U[8*i+x][8*j+y+1] + U[8*i+x-1][8%j+y] Number of Processork 8
+ U[8*i+x+1][8*ity])/4; L1 Size | 8KB

L1 Line Size | 32 bytes

(a)
EEEEEE EEEEEE "l e

L2 Size | 2MB
L2 Associativity | 4-way
L2 Line Size | 64 bytes
L2 Latency| 10 cycles
Memory Access Latency 120 cycles
Bus Arbitration Delay| 5 cycles
Replacement Policy Strict LRU

—
—
—

70000000
60000000 -
50000000

(b)

Figure 8: (a) The original stencil code for Example 2. (b) Distri- 40000000

bution across four processors and the default data access pat- 30000000

tern. The shaded (gray) areas indicate the shared data, and 20000000

the arrows represent access pattern. Captured in small squares 10000000 |

are the access patterns used for visiting the elements inside each 0+

tile. (c) The new data access pattern after the loop transforma- R I S BRI
t| ons. %,;1' \$®'o < Ng N @QQ Qib

&
‘ OTotal B Reused ‘

This means that all the neighboring processors share data. Fig-
ure 3(b) illustrates the data sharing patterns exhibited by the pro-
cessors. As before, we ugg,,2 to represent the transforma-
tion matrix for processor identified kgl p2)”. First, we apply

Figure 9: Number of off-chip memory references.

Expand() to the direction vectof0 1)7: 4. EXPERIMENTAL RESULTS
- 1 0 To perform our experimental evaluation, we used the Simics tool-
X = Expand((0 1)") = < 0 —1 ) . set[19]. Simics is an instruction set simulator and operating system

emulator. It allows simulation of multiple processors connected
We then build a system of three equations for the three neighboring through an on-chip memory space, which can have multiple lay-

processor pairs. That is: ers. We modified Simics to keep track of the behavior of shared
1 1 . 1 1 . and non-shared data separately. The default values of the impor-
Floo = XFToq; Floy = XEFToo; Flgy = XFTy 33 tant simulation parameters we used in our experiments are listed

in Table 1. The code modifications required by our approach are
automated within the SUIF infrastructure [20].

The benchmark codes used in this study are given in Table 2.
The common characteristic of these codes is that they all perform
some sort of stencil computation. The second column gives a de-
i scription of each benchmark and the next one shows the amount of

input data used for executing the benchmark. The fourth column
gives the number of execution cycles for each benchmark when no
locality optimization is applied. The goal of our approach is to re-
duce the execution cycles by minimizing the number of off-chip
references. The execution cycle reductions given in the remainder
of this section are normalized values with respect to the last column
Figure 8(c) gives the new access pattern after applying these trans-of Table 2.
formations to the local iteration spaces of our four processors. Again, Figure 9 gives the number of off-chip memory references for our
the new (transformed) access patterns exploit the inter-processotenchmarks. The bar marked “Reused” correspond to the number
data reuse much better than the original patterns given in Figure 8(b)of visits to the off-chip memory for a data element that has previ-
These two examples show that one can exploit inter-processor dateously been on the on-chip memory space. In other words, it cap-
reuse by employing a customized loop transformation matrix for tures the number of references to the off-chip memory due to not
each processor in the system. being able to exploit inter-processor data reuse while the data is in

Finally, using the algorithm in Figure 5, we obtain a solution to the
above set of equations:

To,o =To2 =

OO = O
o= 0O
— o oo

Toq1 =To3 =

OO0 OO O

(=R )
— o oo

0
-1
0
0

234



Table 2: Stencil applications used in our experiments.

Benchmark Brief Input Execution
Name Description Size (KB) | Cycles (M)
Gauss-Seide| Gauss-Seidel Computation 3731.4 386.9
Weather| Weather Prediction 5982.2 901.1
Edge | Edge Detection Algorithm 5418.5 513.2
Jacobi| Jacobi Iterative Solver 1545.0 155.7
VB 2.0 | Vertex Blending 7816.4 995.1
Map 1.1 | Cube Mapping 2998.9 372.3
RB-SOR | Red-Black Successive-Over-Relaxatipn 4115.6 664.8
TDer | Terrain Detection 6695.1 756.9

the on-chip memory space. The bar marked “Total”, on the other
hand, gives the total number of off-chip memory references. We
observe that, on an average, nearly 56% of the off-chip references
are due to not being able to exploit the inter-processor data reuse,
which indicates an approach that can convert these misses in the
on-chip memory space to hits can be very effective in practice.
Figure 10 summarizes the savings achieved by our approach in
three groups. Note that, before applying our approach that opti-
mizes inter-processor reuse, we optimized intra-processor reuse for
each processor independently. The first bar for each benchmark
gives the percentage savings (reductions) in the off-chip memory [ oReused mTotal mCycles |
references that belong to the “Reused” category. The second bar
gives the percentage savings when all the off-chip references areFigure 10: Savings in the off-chip memory references and exe-
considered. We see that the average saving in the “Reused” andcution cycles with our approach.
“Total” categories are 77.6% and 42.4%, respectively. The last bar
shows the reductions in execution cycles. We observe that our ap-
proach reduces the overall execution cycles by 22.6% on the aver-
age. Figure 11 gives similar results for the alternate scheme that
optimizes locality for each processor in isolation (i.e., that opti-
mizes for intra-processor locality only). The most striking obser-
vation from this figure is that the reductions in the “Reused” cate- 0% 1
gory is very low compared to our approach, and amounts to 27.1% 5% |
when averaged over all benchmark codes in our experimental suite. 0%
This is mainly because this alternate approach does not consider the & q§‘b& & 90@&& Qg\‘\ ,OQA <& Q}»@“
reuse of the data shared by multiple processors. However, when we & & e
look at the second bar for each benchmark (marked “Total”), we see
that the average savings is about 32.2% when all benchmarks are
considered. That is, although it is not very effective for the shared _. ) ) .
data, this approach is successful in converting the remaining missed 19uré 11: Savings in the off-chip memory references and ex-
into hits in the on-chip memory space. We also see from Figure 11 ecutl_on cycles with the alte_rn_ate approach that optimizes data
that the average reduction in execution cycles with this approach is /0cality for each processor in isolation.
around 8.2%. To sum up, by comparing Figures 10 and 11, one can

see that exploiting locality for the shared data is very important for .
stencil type of applications. count — needs nonlocal data after we increase the processor count).

We now change the default number of processors used in our:]—h's_ n tL;”;}'“CLeaSZSJhe |mvp\)/ortdance of optlmlz?g the I(l)callt_yhbe';
experiments so far, and conduct a sensitivity analysis. Figure 12 avior ot the share a_ta. e do not present the results with the
alternate scheme here in detail, but want to say that our approach
consistently generated better results than the alternate scheme.

Percentage Improvement

50%
45%
40%
35% -
30%
25% +-m- -
20% -1~

15% T

Percentage Improvement

‘ @ Reused B Total B Cycles ‘

plots the percentage improvements in execution cycles when our
approach is used. For each application in this graph, each bar cor-
responds to a processor count (from 2 to 64). Recall that the de-

fault values used so far was 8. Maybe the most important con- 5, CONCLUSIONS AND FUTURE WORK

clusion one might draw from these results is that the effectiveness Minimizing the number of off-chip memory references is very

of ourFapproach Ilncrerz]a_lse?has We Increase the _?huTber of proce_simportant in embedded chip multiprocessors from both the perfor-
SOrs. -or example, while the average saving wi Processors 1Smance and power perspectives. This paper proposes and evalu-

around 14.2%, that with 32 processors is about 34.3%. This is ates a compiler-based solution to this problem. It primarily focuses

because when the number of processors is increased, INterprocess yata shared across processors, and re-organizes loop iterations

sor communication (i.e., data sharing) also increases (i.e., some 0fassigned to processors in a coordinated fashion so that the reuse

the intra-processor computation — before we increase the Processofjicince to shared data is minimized. Our experiments with eight
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Percentage Improvement

D8 016 D32 D64 |

Figure 12: Reduction in execution cycles with different proces-
sor counts.

benchmark codes from the embedded computing domain indicate
significant reductions in off-chip memory accesses. We are in the
process of evaluating the impact of other locality oriented optimiza-

tions on our inter-processor reuse representation. We are also work-

ing on developing a new code parallelization strategy that leads to
better inter-processor reuse (in terms of both volume and sharing
pattern).
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