Towards Real-Time Enabled Microsoft Windows

Xiang (Alex) Feng
Microsoft Corporation
Redmond, WA 98052

xfeng@windows.microsoft.com

ABSTRACT

Many computer scientists recognize the adverse relationship
between Microsoft Windows, a general purpose operating
system, which by design does not support Real Time, a
specific purpose feature. However, the boundary between
a general-purpose system and a special-purpose feature has
begun to blur and Microsoft and its partners have kept work-
ing on adding real-time services to Windows. In this paper,
we will describe existing real-time solutions for Windows,
the on-going projects for the next release of Windows and
future trends lead by hardware evolution.

Categories and Subject Descriptors

D.4 [Operating Systems]: General—Microsoft Windows;
D.4.7 [Organization and Design|: [Real-time systems
and embedded systems]

General Terms
Design

Keywords

Operating Systems, Microsoft Windows, Real-Time Systems,
Embedded Systems

1. INTRODUCTION

Microsoft Windows ! is arguably the most successful com-
mercial software in history. Since the first release of Win-
dows NT 3.1 in July, 1993, there have been 700 million Win-
dows users in the world. Windows has changed the way
people work, communicate, entertain and live.

!By Windows, we are referring to the family of Windows
NT, 2000, XP and the up-coming release Vista. Because
Windows 95, 98, ME and CE have different code-bases,
hence are excluded from our discussion.

However, when we see Windows from the lens of a real-
time researcher, real-time research has little impact on the
Windows family. Because real-time system research has
traditionally focused on special-purpose operating systems.,
most of the usage has been limited to health care, military,
avionics and academic settings. Although the importance of
these systems can not be underestimated, they are simply
not as widely used as general-purpose operating systems.

The longstanding argument that that real-time features
are by nature not for general-purpose systems must be ques-

tioned as the boundary between embedded systems and general-

purpose systems continues to blur. For example, most peo-
ple agree that a set-top box is a typical embedded device.
However, with the release of Windows Media Edition TV,
it is difficult to keep traditional definitions.

Soon, we will see the continuing force of integrating work,
communication and entertainment capabilities of PCs. PCs
have become the center of offices and they will also soon be-
come the center of living rooms and possibly kitchens with
increasing demand for integrated PC capabilities. When
all these functionalities come together, performance and, to
our real-time researchers’ interest in particular, predictabil-
ity will become more and more important. Take VoIP (Voice
over IP) for example [8], a mandatory VoIP 911 bill was re-
cently introduced to enforce VoIP vendors to provide 911
emergency services to customers. This is evidence that con-
sumers are relying more and more on IT technology to de-
liver time-critical services.

At the same time, the academia also witnessed research
trends moving from a specific domain to a more general-
purpose one. Extensive research has been done from static
clock-driven scheduling to a more adaptive event/priority-
driven scheduling; among the priority-driven scheduling al-
gorithms we have studied from static fixed priority to dy-
namic deadline-driven scheduling. A recent example intro-
duces the concept of an open system [7]. In an open sys-
tem, resources are shared by different classes of applications,
some hard-real-time, others soft-real-time or even non-real-
time. Furthermore, applications and resources can dynami-
cally join and leave the system. An open system is no longer
a special-purpose system.

With all these factors considered, the era of general-purpose

Permission to make digital or hard copies of all or part of this work for real-time systems is finally coming. It will still be a slow
personal or classroom use is granted without fee provided that copies areprogress and we won’t see hard real-time enabled on Win-
not made or distributed for profit or commercial advantage and that copies dows anytime soon, but the trend will consistently progress.
bear this notice and the full citation on the first page. To copy otherwise,to 1, thig paper, 1 will first describe some background of
republish, to post on servers or to redistribute to lists, requires prior specific Mi ¢ . d’ in Section 2 Section 3 will di
permission and/or a fee. icrosoft Windows in ect10n. , next e(.:tlon will discuss
EMSOFT05,September 19-22, 2005, Jersey City, New Jersey, USA, the current efforts to make Windows (mainly NT embedded
Copyright 2005 ACM 1-59593-091-4/05/000$5.00.

142

and XP embedded) real-time. I will then in Section 4 show
the on-going changes in Windows Vista. A significant trend
will be discussed in Section 5 before the final conclusion.

2. BACKGROUND

Windows is designed to be a highly responsive, general-
purpose operating system. While fast response is absolutely
desirable, it does not necessarily meet the requirement of
real-time. Real-Time is about predictability, which in the
case of system responsiveness, is a deterministic response.
Before we discuss how to make Windows real-time, let us
look at the OS design and the scheduler in particular in
order to understand why the current Windows is not a real-
time operating system.

Like many other operating systems including Unix and
Linux, Windows has two running modes: kernel mode and
user mode. Kernel mode and user mode are separated to
prevent user applications from modifying, either maliciously
or by mistake, the OS kernel and other applications. An
oversimplified view of Windows can be found at Figure 1[11].

User Mode

User Applications System Services

Kernel Mode
OS Kernel

. .

Device Drivers Windowing System

. , .

Hardware Abstraction Layer (HAL)

Figure 1: Oversimplified Architecture of Windows

The lowest layer of the OS is the hardware abstraction
layer (HAL). Kernel and device drivers both run on the top
of HAL in the kernel mode. In theory, windowing system
should run in user mode because it is part of the system
services. But due to performance reasons, it moved to the
kernel mode as well. The user mode contains 1) user appli-
cations such as Internet Explorer and Office and 2) system
services such as network services.

Windows kernel scheduler also takes a layered approach.
Overall, the structure can be divided into two categories
as shown in Figure 2: interrupts and threads. Interrupts in-
clude 1) hardware interrupts triggering interrupt service rou-
tine (ISR) such as interrupts from hardware devices, power
fail interrupts and 2) software interrupts such as deferred
procedure call (DPC). Interrupts always have higher prior-
ities than threads, therefore the running thread will always
be preempted whenever an interrupt arrives. Interrupt re-
quest levels (IRQLs) are used to coordinate among these
interrupts, similar to the way priorities do to threads.

Thread priorities are used to schedule threads. As shown
in Figure 3, Windows currently has 32 levels of priorities
with 0 as the lowest and 31 as the highest. Interestingly

143

From high to low

Hardware Interrupts

Software Interrupts

Threads

Figure 2: Kernel Scheduling Layers

enough, the highest 16 levels from (16-31) are called real-
time levels. The name here is misleading because it doesn’t
mean that threads running on these levels will receive guar-
anteed CPU cycles. On the contrary and in the worst case,
threads running on the highest priority level, namely prior-
ity 31, may receive no processor cycles because the processor
may be busy with ISRs and DPCs, i.e., interrupts. Besides,
system threads are not running on these levels. Setting an
application thread on these levels may not necessarily help
but possibly block system threads, and thus endanger the
system stability. Due to these reasons, the real-time levels
are not widely-used. If they have to be used, then extreme
caution must be employed.

From high to low

Real-Time Levels
(31-16)

Dynamic Levels
(15-1)

System Level
0)

Figure 3: Thread Priority Levels

During implementation, the difference between real-time
levels and lower levels (called dynamic levels) is that the
scheduler will never change the priorities of threads run-
ning on real-time levels. For those threads running on lower
levels, the scheduler will occasionally boost the priorities
of some threads for a short duration simply to improve re-
sponsiveness for foreground applications or to avoid thread
starvation.

Therefore, before running on a processor, a thread has to

first wait for hardware interrupts to finish, then the software
interrupts, then the threads with higher priorities. When
the thread finally starts to run, whenever an interrupt ar-
rives, or a higher priority thread becomes ready, the thread
will be preempted and have to wait for them to complete.
The current kernel architecture is inherently not suitable for
high precision real-time applications.

ISR:

DPC:

Thread:
Scheduling Quantum —* Time

ISR/DPC Stealing CPU Cycles from

Figure 4:
Thread

3. REAL-TIME FOR NT AND XP
EMBEDDED

The original requirement for real-time naturally came from
embedded customers. Microsoft released Windows NT Em-
bedded in 1999. NT Embedded quickly attracted many em-
bedded customers because of its application compatibility
with desktop Windows. Any application written for desk-
top windows can also run on NT/XP Embedded as long as
supporting components for this application are included in
the OS image. Embedded application development used to
be notoriously hard due to lack of standards, tools and ex-
perienced developers, all of which are highly available for
desktop Windows applications. NT Embedded quickly be-
came a hit on the market.

Soon after the release of NT Embedded, customers started
to ask for real-time support. Microsoft has hence part-
nered with several third-parties to provide real-time solu-
tions. Examples include VentureCom (now Ardence)’s RTX
[2], TenaSys’ InTime [6], and Kuka Robotics’s CeWin [3].

Regardless of who provides the new real-time kernel, they
achieve real-time on Windows in a similar fashion. A new
kernel (the real-time kernel) is introduced as a device driver
in Windows or through a similar means. The new kernel
exposes a different set of APIs from desktop Windows. Real
time applications are written on this new API set and run
with on priorities. Windows, on the other hand, always runs
on the lowest priority. Namely, it runs when all real-time
processes don’t need to run. In a strict sense, none of these
solutions makes Windows real-time. They just provide an
additional OS to handle real-time applications side-by-side
with Windows.

Notice that these real-time applications are not regular
desktop Windows applications.

These solutions are used in scenarios with real-time data
acquisition (as input) and non-time-critical data visualiza-
tion (as output). Examples include medical devices, indus-
trial control and military scenarios.

In comparison, there have been many initiatives to make
Linux real-time. Two general categories of solutions have
been proposed in academia and commercially implemented.
The first one modifies the current Linux kernel or simply
replaces it with a new one. The new kernel retains and

144

Real-Time Kernel
(from third-party)
|
| i
Special API Set Windows OS
Real-Time Win32 API
Applications l
Windows
Applications
Lowest Priority

Figure 5: Real-Time Solution for Windows Embed-
ded

implements the original kernel API with a full set of sys-
tem calls. Examples using this approach include TimeSys
(Linux/RK) [10] and Red-Linux [12]. The other approach
imposes another level of kernel (called sub-kernel) on the
top of the existing Linux kernel, similar to the Windows
Embedded solutions. In this way, Linux is treated as the
lowest priority task of the sub-kernel OS. RTLinux [5] and
RTALI [4] are examples of this category.

4. WINDOWS VISTA

Windows Vista, formally codenamed ”Longhorn” is the
next version of Windows, which is scheduled for release at
the second half of 2006. One of the great improvements in
Windows Vista is on its AV quality, internally called ”glitch
free”.

Media applications can be generally categorized as soft
real-time. Desktop users often experience glitches, which
include frame drop, frame duplicates, and AV Sync issues.

The goal of glitch free is two-fold. On one hand, we aim
to eliminate glitches, including adding resilience to CPU,
IO and memory stress. On the other hand, we also need
to preserve the system stability, make sure that resources
(CPU, memory etc) are used efficiently.

Towards these goals, several new kernel features are planned
for Windows Vista:

e Multimedia Class Scheduler Service (MMCSS). MM-
CSS schedules Windows according to a machine-based
policy. Different products (OEM SKUs) may differ in
terms of the priorities that are assigned on different ap-
plications. For example, the policy allows individual
OEMs to customize the task priorities on their ma-
chines to reflect the needs of target markets.

To implement the policy, a thread scheduling service
adjusts thread priorities to reflect the intentions of
the policy. Threads associated with tasks listed in
the policy as being of higher importance receive pri-

ority boosts which allow them to share limited CPU
resources at relatively high priorities.

In the case of media application, the new scheduler
assigns higher priorities to media processes than to
other processes, while at the same time, ensure system
processes’ share to run.

e Thread-Ordering: The thread ordering service is re-
sponsible for controlling the execution timing of client
threads. Each client thread belongs to a ”thread order-
ing group”. A thread ordering group has one and only
one parent thread. The parent thread can have zero or
more dependent threads. Each dependent thread may
be a predecessor thread, meaning it must run before
the parent thread, or a successor thread, meaning it
must run after the parent thread. Each thread order-
ing group is run once per period, where the period is
defined by the parent. The possible valid periods that
the parent can specify are platform dependent but typ-
ically range from as low as 500 microseconds. At the
start of each period, the service releases all predecessor
threads. When all predecessor threads have finished
their processing for that period, the parent thread is
released. After the parent has completed its process-
ing for that period, the service releases all successor
threads.

e Real-Time Heap: Real-Time Heap is a new memory
service providing non-blocking heap functions by al-
lowing the locking of RT code pages in memory.

e Scheduled File I/0O: addresses storage conflicts, allows
bandwidth reservation, and allows prioritization. How-
ever, due to priority inversion and other resource con-
tention issues, file IO still remains non-deterministic.

Although this new features have not been finalized on
Vista, the efforts making Windows a more deterministic OS
have been exemplified.

5. BEYOND WINDOWS VISTA

A huge paradigm shift of the evolution of processors be-
yond Windows Vista will be the multi-core processor tech-
nology. To keep up with the Moore’s law, chip manufac-
tures, mainly Intel and AMD, found it harder and harder to
increase the processor frequency. Instead, they plan to con-
tinue increasing the number of cores on a processor socket.
The movement from high frequency processors to multi-core
processors is underway and will continue at least over the
next decade.

Many factors contributed to the multi-core technology:

e Heat Dissipation. The higher the processor frequency
gets, the more energy loss in the form of heat gener-
ation occurs. This leads to significant energy wast-
ing both directly and indirectly as the cooling require-
ments increase. Meanwhile, new cooling systems such
as liquid cooled ones are much more complicated than
air cooled systems, thus costing much more .

e Disparity between processors and memory: With faster
processors, the disparity between memory and pro-
cessor speeds is larger so having a larger quantity of
slower processors results in smaller Cycles Per Instruc-
tion (CPI) by reducing stall time.

145

e Parallelism: Multi-core processors with simpler instruc-
tion parallelism can lead to higher overall performance
with considerably lower power consumption and heat
generation.

e Form factor: With shrinking processor technologies,
there is more room on a processor for multiple cores
and processor caches.

Take the recently released AMD Dual Core Opteron pro-
cessor for example [1].

CPUO CPU1

L2 Cache L2 Cache

System Request Interface

Crossbar Switch

. .

Memory
Controller
A A

Figure 6: AMD Dual Core Opteron Architecture

The implications of multi-core technology are profound.
Most obviously, it is extremely important to improve appli-
cation scaling as soon as possible. This will also have a huge
impact on real-time. With more and more cores on one pro-
cessor, we will have higher predictability on a subset of cores.
Random factors including ISRs, DPCs can be directed to the
remaining cores. As long as we have exclusive access to a
certain number of cores, providing guaranteed CPU alloca-
tion will be possible. True, we still need other parts of the
system to work together, like memory and IO,.but multi-
core will enable the key parts of a computer, namely the
CPU to become real-time ready, and to lead to changes in
other computer parts including memory and I0.

6. CONCLUSION

Real-Time is hard, hard real-time is even harder. How-
ever, they are not infeasible. With customer demands on
one side and hardware evolution on the other, the horizon
of real-time Windows is expanding. At the same time, a new
set of challenging problems have thrown down the gauntlet
to operating system researchers. How should applications
be scheduled on multi-core processors to provide real-time
guarantees? How should we effectively design caches for
multi-core processors? How will multi-core lead the evolu-
tion of computer architecture? All these questions do not
have definitive answers yet they will set the trend for gen-
erations of operating systems to come.

The author is grateful to all the people that provide re-
sources, support and feedback to this paper, including Richard
Russell, Michael Fortin, Brad Waters, Darryl Havens, Andy
Glass, Stewart Tansley and Wayne Wolf.

7.

REFERENCES

Amd:http: //www.amd.com/.
Ardence:http://www.ardence.com/.

Kuka robotics:http://www.kuka.com/.
Rtai:http://www.rtai.org/.
Rtlinux:http://www.fsmlabs.com/.
Tenasys:http://www.tenasys.com/.

Z. Deng and J. Liu. Scheduling real-time applications
in an open environment. In IEEE Real-Time Systems
Symposium, pages 308-319, December 1997.

R. Mark. Mandatory voip 911 bills introduced.

http://www.internetnews.com/infra/article.php /3506741,

2005.

146

[9]

[10]

[11]

[12]

Microsoft. Real-time systems and microsoft windows
nt: http://msdn.microsoft.com. MSDN, 1995.

R. Rajkumar, L. Abeni, D. D. Niz, S. Gosh,

A. Miyoshi, and S. Saewong. Recent developments
with Linux/RK. In Proceedings of the Real Time
Linux Workshop, December 2000.

M. Russinovich and D. Solomon. Windows Internals:
Microsoft Windows Server 2003, Windows XP, and
Windows 2000. Microsoft Press, 2005.

Y.-C. Wang and K.-J. Lin. Implementing a general
real-time scheduling framework in the RED-linux
real-time kernel. In IEEE Real-Time Systems
Symposium, pages 246255, 1999.

