
A Structural Approach to Quasi-Static Schedulability
Analysis of Communicating Concurrent Programs ∗

Cong Liu
Department of EECS

UC, Berkeley
Berkeley, CA 94720

congliu@eecs.berkeley.edu

Alex Kondratyev, Yosinori
Watanabe

Cadence Berkeley Labs
Berkeley, CA 94704

{kalex, watan-
abe}@cadence.com

Alberto
Sangiovanni-Vincentelli

Department of EECS
UC, Berkeley

Berkeley, CA 94720

alberto@eecs.berkeley.edu

ABSTRACT
We describe a system as a set of communicating concurrent
programs. Quasi-static scheduling compiles the concurrent
programs into a sequential one. It uses a Petri net as an
intermediate model of the system. However, Petri nets gen-
erated from many interesting applications are not schedu-
lable. In this paper, we show the underlying mechanism
which causes unschedulability in terms of the structure of a
Petri net. We introduce a Petri net structural property and
prove unschedulability if the property holds. We propose
a linear programming based algorithm to check the prop-
erty, and prove the algorithm is valid. Our approach prove
unschedulability typically within a second for Petri nets gen-
erated from industrial JPEG and MPEG codecs, while the
scheduler fails to terminate within 24 hours.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application Based Systems]:
Real-time and embedded systems; D.2.2 [Software Engi-
neering]: Design Tools and Techniques —Petri nets

General Terms
Algorithms, Design, Theory

Keywords
Quasi-static scheduling, Petri nets, structural analysis

1. INTRODUCTION
The complexity of embedded systems has been increasing

dramatically. It forces designers to adopt formal models to
describe system behaviors and hide implementation details.
It is often necessary to decompose a complicated system

∗This research was partly supported by MARCO Gigascale
Systems Research Center award 2003-DT-660.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

into functional entities so that the design complexity of each
entity is manageable. Concurrent models, such as dataflow
networks [14], Kahn process networks (KPN) [12][13], and
Communicating Sequential Processes [11], are suitable for
these purposes. In a concurrent model, a system consists of a
set of processes. Each is described by a sequential program.
The processes communicate with the environment and other
processes, and run at their own speed.

However, the concurrent processes often share a physical
resource, e.g. a CPU or a bus. Hence, their implementation
often requires solving a fundamental scheduling problem,
i.e. sequencing the operations of concurrent processes un-
der certain constraints. Depending on how and when the
scheduling decision are made, scheduling algorithms could
be classified as: static, quasi-static, and dynamic. Dynamic
scheduling makes all scheduling decisions at run-time. It in-
troduces context switch overhead. Static scheduling makes
all scheduling decisions at compile-time. It reduces the con-
text switch overhead, because no run-time scheduling deci-
sion has to be made. Due to this static scheduling is re-
stricted to systems without data-dependent choices, e.g. if-
then-else. Quasi-static scheduling [7] is applied to systems
in which data-dependent choices occur. It performs static
scheduling as much as possible while leaving data-dependent
control to be resolved at run-time.

The existence of a quasi-static schedule is proved to be
undecidable for Boolean dataflow networks [6]. The most
recent advancement [7] on quasi-static scheduling uses a
Petri net [16] as an intermediate representation of the sys-
tem specification. Its scheduling flow is shown in Figure 1.
First, the concurrent programs are transformed into a Petri
net where program statements are represented by transi-
tions, and system states correspond to PN markings. Then
a heuristic algorithm searches the reachability tree of the
Petri net for a schedule. If it succeeds, the generated sched-
ule is transformed back to a sequential program. Note that
during the transformation, data-dependent choices are ab-
stracted as non-deterministic free choices. Consequently, a
scheduler considers all possible choice outcomes at any state.
The abstraction helps to provide an efficient method to find
a schedule. However, the conservative consideration makes
many interesting applications unschedulable.

1.1 Motivation and Contribution
The quasi-static scheduler searches for a schedule in a

typically infinite space bounded by some heuristic. Thus,
if a Petri net is unschedulable, the scheduler has to com-

10

PROCESS B (InPort CHAN)
{

float x,y; int i;
while(1) {

for (i=0,y=0;i<M;i++) {
READ (CHAN, x, 1);
y = y+x;

} }

PROCESS A (InPort IN,
OutPort CHAN)

{
float a,b;
while (1) {

READ (IN, a, 1);
b = f(a);
WRITE (CHAN, b, 1);

} } CHAN

IN

(a) System specification as communicating
concurrent programs.

⇒

t1

p2

p1

p3

p4

p5

p6

p7

t2

t3

t4

t5 t6

t7

(b) Petri net obtained
from the system specifi-
cation.

⇒

t4

p1p5

t5

p1p6

p1p7
t1

p1p2p7
t2

p3p7
t3

p1p4p7

t6

t7

(c) A quasi-static
schedule of the
Petri net.

⇒

PROCESS C (InPort IN)
{
float a, b, x, y; int i;
while (1) {

for (i=0,y=0;i<N;i++) {
READ (IN, a, 1);
b = f(a);
x = b;
y = y+x;

} }

IN

(d) A quasi-static
schedule of the sys-
tem specification.

Figure 1: Quasi-static scheduling flow.

plete the exhaustive search before reporting unschedulabil-
ity. Furthermore, heuristic-based schedulers can not prove
unschedulability even if they fail to find a schedule. Since
many interesting applications are unschedulable, schedula-
bility analysis before constructing a schedule is desirable.

It is common that concurrent processes representing an
application exchange messages while repeating the same com-
putation pattern in a loop. Processes participating in an
exchange might have correlated conditions for exiting their
loops. For example, two for loops might have the same num-
ber of iterations. Therefore it is not needed to consider all
possible true/false combinations of the two conditions. Ar-
rigoni [4] proposed an approach to modify the original pro-
grams so that one of the two control structures having the
same exit condition would not be modeled by a free choice.
It requires designers to manually label the correlated condi-
tions in programs, and thus is not practical. Standard static
program analysis techniques, such as abstract interpretation
[8], could be applicable. But the technique is known to be
computationally expensive, and can only deal with arith-
metic operations on variables of a system.

Our approach is different from the known ones. We ex-
plore the implication of the correlated conditions in the orig-
inal programs to their structures in the generated Petri net.
That is, we study the structure of the generated Petri net
and identify a structural property that causes unschedula-
bility. By exposing the structural correlation, we get hints
on the correlated conditions in original programs.

We observe that regular and repeated structural patterns
exist in schedules of Petri nets generated from many applica-
tions. These patterns result in infinite paths that prevent a
schedule to return to a designated set of states (initial state
in particular), which causes unschedulability. The phenom-
enon is driven by the definition of a schedule and, interest-
ingly enough, a structural property of the Petri net. Based
on this structural property, we formulate and prove a suf-
ficient condition to check unschedulability. The condition
does not involve markings of a Petri net, and can be applied
to general Petri nets. We propose an algorithm based on lin-
ear programming to efficiently check the condition. Once un-
schedulability is determined, the algorithms provides hints
on the location of correlated data-dependent conditions in
programs. This facilitates further handling and resolving

unschedulability. Our approach is shown to be effective and
efficient based on its application to Petri nets generated from
industrial JPEG MPEG codecs and comparing performance
with a heuristic-based scheduler.

1.2 Paper Organization
The rest of the paper is organized as the following. Section

2 reviews the basic definitions and notations of Petri nets.
In Section 3, we define a Petri net structural property and
prove a sufficient condition for unschedulability. Section 4
presents a linear programming based algorithm to check the
property, and prove the validness of the algorithm. Section
5 illustrate the advantages of our approach using JPEG and
MPEG codecs as the driver applications. Finally, Section 6
discusses the limitations our approach.

2. PRELIMINARIES
A Petri net is a 4-tuple (P, T, F, M0). P = {p1, p2, . . . , pm}

is a set of places. T = {t1, t2, . . . , tn} is a set of transitions.
F : (P × T)∪ (T ×P) → N is the flow relation. M0 : P → N
is the initial marking. In general, M : P → N is a marking,
which represents a state of a Petri net. N denotes the set of
nonnegative integers. Let N = (P, T, F) denote a Petri net
structure without any specific initial marking, and (N, M0)
denote a Petri net with the given initial marking.

A Petri net can be represented by a directed, weighted,
bipartite graph as shown in Figure 1(b), in which circles
denote places, bars denote transitions, and directed arcs
denote the flow relation. A marking is represented by an
assignment of black dots in places.

A transition t is enabled at a given marking M , if M(p) ≥
F (p, t) for all place p ∈ P . When a transition is enabled it
can fire. The new marking M ′ reached after the firing of t
is defined as: M ′(p) = M(p)− F (p, t) + F (t, p) for all place
p ∈ P .

A marking M is reachable from the initial marking M0

if there exists a sequence of firings that transforms M0 to
M . It is denoted by M0[σ > M , where σ represents a firing
sequence (tσ1, tσ2, · · · , tσk). The firing count vector σ̄ of a
firing sequence σ is a |T |-vector, where the ith entry denotes
the number of times that transition ti fires in σ. The set of
reachable markings from the initial marking is denoted by
R(N, M0).

11

In this paper we use nets with source transitions, i.e. with
empty pre-sets. These transitions model the behavior of the
input stimuli to a reactive system. Their set is denoted by
TS .

The incidence matrix A = [aij] is a |T |×|P |matrix, where

aij = F (ti, pj) − F (pj , ti). A vector x ∈ N|T | is called a T-
invariant if ATx = 0. A T-invariant x is said to be minimal
if there exists no T-invariant x′ 6= 0 with x′ ≤ x. It is known
that a |T |-vector x is a T-invariant if and only if there exists
a marking M and a firing sequence σ from M back to M

with σ̄ = x. For example, (1 1 1 0 1 0 1)
T
, (0 0 0 1 0 1 0)

T

are T-invariants of the Petri net in Figure 1(b) and they
are also minimal T-invariants. Let X denote the set of all
T-invariants of a Petri net. The set of transitions corre-
sponding to non-zero entries in a T-invariant x is called the
support of an invariant and is denoted by ‖x‖. We say t is
contained in x or x contains t if t ∈ ‖x‖.

A free choice set (FCS) is a maximal subset of transitions
S such that ∀t1, t2 ∈ S, F (p, t1) = F (p, t2) for all p ∈ P .
FCSs have the property that there exists no marking for
which one transition in an FCS is enabled while another is
disabled. In other words, transitions in an FCS are enabled
at the same time. For example, {t5, t6} is the only FCS of
the Petri net in Figure 1(b). Note that according to the
above definition the set of source transitions makes a single
FCS.

3. STRUCTURAL SCHEDULABILITY ANALY-
SIS

In this section, we develop the theoretic foundations of
our approach. Our definition of schedule is based on Petri
nets. Pairwise transition dependence relation is introduced
to give an intuition of the general transition dependence
relation. We prove Theorem 1 and based on that give the
sketch of the proof for Theorem 2.

3.1 Quasi-Static Schedules

Definition 1. (Quasi-static schedule)
A quasi-static schedule of a Petri net (N, M0) is a directed
graph G(V, E) satisfying the following properties:

1. V is finite and nonempty.

2. ∃µ : V → R(N, M0), and ∃r ∈ V with µ(r) = M0. For
any u, v ∈ V, (u, v) ∈ E, there exists a transition t ∈ N
such that µ(u)[t > µ(v) 1.

3. If u
t1→ v, then u

t2→ w if and only if there exists an
FCS S such that t2, t1 ∈ S.

4. For each v ∈ V , there is a path to a vertex u, where

u
t→ for each t ∈ TS.

5. For each edge (u, v) there is a cycle in G that contains
(u, v).

For the rest of paper, we use the term “schedule” to refer
to a quasi-static schedule. Property 2 states that a schedule

1Notation u
t→ v will be used to refer at transition that fires

between two schedule vertexes. We will also say that t is
enabled in u.

of a Petri net is a subgraph of its reachability tree. Prop-
erty 3 means that if an edge leaving a node is labeled by
a transition in an FCS, then this node must contain out-
put edges for every transition in the FCS. In this case, we
say that FCS is involved in the schedule, or the schedule in-
volves the FCS. Property 3 shows that schedule considers all
possible outcomes of a free choice. Property 4 denotes the
fact that any input event from the environment (denoted by
source transitions) is eventually fired from any vertex of a
schedule. Finally, property 5 guarantees liveness of any edge
of a schedule because every edge can be triggered infinitely
often. Note that the last property imposes an additional re-
quirement to a schedule definition as of compared with [7].
This confines the consideration to schedules whose graphs
are strongly connected. We feel that the above requirement
does not affect the applicability of our analysis in practice
because it is typically a strongly connected component of a
schedule which is of interest (the rest of the schedule relates
to the initial part and can be preprocessed separately).

Figure 1(c) shows a schedule of the Petri net in Fig-
ure 1(b).

Starting from vertex r one can unroll a graph G(V, E)
representing a schedule into an acyclic tree G′(V ′, E′). The
unrolling uses two mappings origin : V ′ → V and instance :
V ′ → N2. To relate vertexes of G′ with corresponding PN
markings, we assume a straightforward extension of map-
ping µ (from Definition 1) as µ(v′) = µ(origin(v′)). Sim-

ilarly we denote v′
t→ u′ iff origin(v′)

t→ origin(u′) in G.
The unfolding proceeds as the following:

Schedule unfolding

1. Initialize G′ with V ′ = E′ = ∅, CurrentInstance = 0.

2. Add root vertex r′ to G′ with origin(r′) = r and
instance(r′) = 0. Mark r′ as non-leaf node.

3. For any non-leaf vertex v′ ∈ V ′ such that v′ does not
have successors in G′ do:

(a) for each edge (v, u) such that v = origin(v′) do

i. Add vertex u′ to V ′ and edge (v′, u′) to E′.

ii. CurrentInstance++.

iii. Set origin(u′) = u and instance(u′) =
CurrentInstance.

iv. if ∃w′ ∈ V ′ such that µ(w′) = µ(u′) and there
is a path from w′ to u′ in G′ then mark u′ as a
leaf node, otherwise mark u′ as non-leaf node.

4. Return the truncated unfolding.

The check for leaf node is needed to truncate the tree.
As soon as in the construction of a tree one meets a vertex
that is related to the same marking as some of the ancestors
of this vertex in a tree, the unfolding beyond this vertex
is terminated. We call the object obtained as a result of
applying the above procedure a truncated schedule unfolding.

Lemma 1. A truncated schedule unfolding G′(V ′, E′) for
a given schedule G(V, E) is finite.

2In future objects in the unfolding of a schedule graph G will
be denoted by decorating the corresponding objects from a
schedule with ′.

12

t3

v’

r’

t1

u’

σ1

t4

σ

Figure 2: Illustration of the proof of Theorem 1.

Proof : The proof immediately follows from the finiteness
of a schedule. One can make only a finite number of steps
in the unfolding procedure before seeing the same marking
repeating with some ancestor in the tree. Repeating the
marking truncates the unfolding and keeps the generated
prefix finite. 2

3.2 Pairwise Transition Dependence Relation

Definition 2. (Pairwise transition dependence relation)
A transition t of a Petri net N is said to be dependent on
a transition t′, if ∀x ∈ X, t ∈ ‖x‖ implies t′ ∈ ‖x‖. It is
denoted by t� t′.

The pairwise transition dependence is a binary relation
on T . It is reflexive and transitive, but not symmetric in
general. t � t′ means if a T-invariant contains t, it also
contains t′.

Theorem 1. Given a Petri net N and two FCSs S1, S2

of N , where S1 = {t1, t2}, S2 = {t3, t4}, if t1 � t3, t4 � t2,
there exists no schedule of N with S1 or S2 involved.

Proof : We show that a truncated unfolding G′(V ′, E′)
with root r derived by a valid schedule G(V, E) with S1 or
S2 involved, is infinite. The latter violates Lemma 1.

The proof proceeds by showing the validity of at least one
of the two statements:

I1: G′ contains an infinite path r′ v′1
t1→ y′1 v′2

t1→
y′2 · · · , such that the firing sequence corresponding to the
path from r to vk (k = 1, 2, . . .) does not contain transition
t3.

I2: G′ contains an infinite path r′ u′
1

t4→ z′1 u′
2

t4→
z′2 · · · , such that the firing sequence corresponding to the
path from r to uk (k = 1, 2, . . .) does not contain transition
t2.

In G′ let us choose vertex v′ in which transitions from S1

or S2 are enabled and v′ the closest vertex to the root r′

with this property. This vertex exists because S1 and S2

are involved in a schedule. Without loss of generality we
may assume that S1 is enabled in v′. Then we can impose
v′1 = v′ in proving I1.

From Property 5 of a schedule definition and the unfold-
ing procedure follows that ∃w′, v′ ∈ V ′ such that the path
from v′ to w′ contains t1 and µ(w′) = µ(v′). This path
corresponds to a firing sequence σ that makes a cycle from
marking µ(v′) back to itself and hence σ̄ is a T-invariant.
t1 � t3 implies t3 ∈ σ. Therefore, σ contains a node u′ such

that u′ t3→. Let u′ be the closest descendant of v′ with t3
enabled.

ML

N

I J

K

G

H

B

E

F

A

C

D

X

Y

IN

FCS1={B, C} , FCS2={I, J} ,
FCS3= {F, G} , FCS4={L, M}.
Min. T-invariants:
{IN, A, B, I, E, G, M},
{C, D, F, H}, {C, D, L, N},
{J, K, F, H}, {J, K, L, N}.
C → {B, I , F, L},
J → {B, I , F, L},
G → {B, I , F, L},
M → {B, I , F, L}.

Figure 3: A Petri net contains FCSs in general cyclic
dependence relation.

An illustration is shown in Figure 2.
Let us consider path σ1 ⊂ σ that goes from v′ to u′. Two

cases are possible.
Case 1. If t2 ∈ σ1 then σ1 goes through vertex v′2 with

enabled t2. t1 and t2 are from the same FCS and hence t1 is
also enabled in v′2. Clearly the path from r′ to v′2 does not
contain t3 and therefore v′2 satisfies the conditions of I1 and
is a descendant of v′1. Repeat the consideration for v′2 one
can conclude about the existence of infinite path satisfying
I1.

Case 2. Suppose that t2 6∈ σ1. Then the path from r′ to
u′ does not contain transition t2. In addition t4 is enabled
in u′ (being in the same FCS as t3) and therefore one can
use u′ as u′

1 in proving I2.
Bearing in mind that t4 � t2 and applying the same ar-

guments for closing the cycle from u′
1 one can conclude that

there must exist a path δ from u′
1 to v′2 in which t2 is enabled.

If δ does not contain t3 then v′2 satisfies the conditions of
I1, which is the basis for constructing an infinite path. If δ
contains t3 then by choosing the first firing of t3 in δ, one
can obtain a vertex u′

2 in which t3 is enabled together with
t4, and u′

2 is a descendants of u′
1. This proves I2. 2

3.3 General Transition Dependence Relation
In this session, the dependence relation is generalized, and

a weaker sufficient condition to prove unschedulability is
proposed.

Definition 3. (General transition dependence relation)
A transition t of a Petri net N is said to be dependent on
a set S of transitions, if ∀x ∈ X, t ∈ ‖x‖ implies ∃t′ ∈ S
such that t′ ∈ ‖x‖. It is denoted by t� S.

Our previous definition of pairwise transition dependence
relation can be viewed as a special case of the general de-
pendence relation with |S| = 1. Note that by definition the
relation is monotonically non-decreasing, meaning if t� S,
then ∀S′, S ⊆ S′, t � S′. Two trivial cases of general de-
pendence relation are t� {t} and t� T . Figure 3 shows a
Petri net that contains transitions in a general dependence
relation.

Definition 4. (Cover of FCSs)
Given a set of FCS S = {S1, S2, . . . , Sn}, a set of transitions
Sc = {t1, t2, . . . , tn} is said to be a cover of S, if ti ∈ Si, i =

13

1, 2, . . . , n. For a given Sc denote Sc = {t | ∃S ∈ S, t ∈ S
and t /∈ Sc}.

A cover of a set of FCSs contains exactly one transition
from each FCS. Note that the number of covers of a set
of FCSs is exponential in the number of FCSs. In Figure 3,
Sc = {C, J, G, M} is a cover of {FCS1, FCS2, FCS3, FCS4},
and Sc = {B, I, F, L}.

Definition 5. (Cyclic dependence relation)
There exists a cyclic dependence relation among S, a set of
FCSs of a Petri net N , if ∃Sc, such that ∀t ∈ Sc, t� Sc.

Note that although the general dependence relation is
monotonic, the cyclic dependence relation is not monotonic
in general. It means that we can not prove the existence of
the relation among a set of FCSs by proving the existence
of the relation among its subset and vice versa.

Theorem 2. Given a Petri net N and a set S of FCSs of
N , if there exists a cyclic dependence relation among S, then
there exists no schedule of N with any FCS in S involved.

Sketch of proof : The proof can be done similar to the
proof of Theorem 1. One can show that a truncated un-
folding G′(V ′E′) obtained by a schedule G(V, E) is infinite.
This could be done by proving that G′ contains an infinite
path started from root r′, such that the path does not con-
tain any t ∈ Sc. 2

There are several observations about the theorem. First,
it provides a sufficient condition to prove unschedulability.
Second, the condition does not involve the initial marking of
a Petri net. It is a structural property of a Petri net. Third,
the theorem can be applied to general Petri nets.

4. CHECKING CYCLIC DEPENDENCE RE-
LATION

Although our theory is built upon the set of all T-invariants
of a Petri net, interestingly enough, our algorithm does not
need to compute such a set or any generating set of all T-
invariants. In this section, we propose a linear programming
based algorithm to check the existence of a cyclic depen-
dence relation among a given set of FCSs.

Given a Petri net N , its incidence matrix A, and a set S
of FCSs of N to be checked, the algorithm iterates through
all possible covers of S till one cover leads to a dependence
relation. For each cover, a feasibility problem of linear pro-
gramming is constructed. As proved in Theorem 3, a so-
lution to the feasibility problem provides a counterexample
to the dependence relation. If no solution is found, the de-
pendence relation holds. Note that whether a cover Sc leads
to a cyclic dependence relation among S can be checked in
polynomial-time.

Theorem 3. Given a Petri net N and its incidence ma-
trix A, a transition ti is dependent on a set S of transitions

if and only if @x ∈ R|T | such that A
T
x = 0, x ≥ 0, xi >

0,∀tj ∈ S, xj = 0.

Proof ”⇒”: If ti � S does not hold, by definition, there
exists a T-invariant x ∈ N|T |, such that xi ≥ 1,∀tj ∈ S, xj =
0.

”⇐”: Since the incidence matrix A is an integer matrix,
if there exists a real vector that satisfies all the constraints,

Algorithm 1 Checking cyclic dependence relation using lin-
ear programming

INPUT: A: the incidence matrix of a Petri net, S: the set
of FCSs to be checked.

OUTPUT: returns TRUE if there exists a cyclic depen-
dence relation among S, FALSE otherwise
for all cover Sc of S do

dependent ⇐ TRUE
for all ti ∈ Sc do

LP ⇐ ATx = 0 ∩ x ≥ 0
LP ⇐ LP ∩ xi > 0
for all tj ∈ Sc do

LP ⇐ LP ∩ xj = 0
end for
if LP is feasible then

dependent ⇐ FALSE
break

end if
end for
if dependent = TRUE then

return TRUE
end if

end for
return FALSE

then there exist a rational vector x also satisfying the con-
straints. Let θ be a common multiple of all the denominators
of the elements of x and let x′ = θx. By definition, x′ is a
T-invariant, and x′ ≥ 0, x′

i > 0,∀tj ∈ S, x′
j = 0. 2

5. EXPERIMENTS
In this Section we show that the sufficient condition in-

troduced in Theorem 2 holds for a wide class of real-life
industrial applications. It means that Petri nets generated
from their system specifications are not schedulable, and our
approach can be effectively applied to establish that. Note
that to prove unschedulability of a Petri net based on Theo-
rem 2, we also need to assert that each schedule involves at
least one FCS of the Petri net. We use some public available
JPEG and MPEG codecs as our test bench. The codecs used
in our experiments are modelled as Kahn process networks.

5.1 Benchmarks

MPEG-2 decoder.We use an MPEG-2 decoder [17] de-
veloped by Philips Research Laboratories. The decoder is
written in 5,000 lines of YAPI [9] code, a system specifica-
tion language based on C++. As shown in Figure 4, the
system consists of 11 concurrent processes communicating
through 45 channels. We perform schedulability analysis on
5 processes: TdecMV, Tpredict, Tisiq, Tidct, and Tadd. The
first two processes implements the spatial compression de-
coding. The last three processes implements the temporal
compression decoding and image generation. In total, the 5
processes have 10 channels, and 13 interfaces (communicat-
ing ports with other processes or the environment).

M-JPEG* encoder.We use an M-JPEG* [15] encoder also
developed by Philips. The source code is obtained through
the Sesame [1] project public release. The encoder is written
in about 2,000 lines of YAPI code. As shown in Figure 5,

14

start from a functionally correct sequential C-program of the ap-
plication. The modeling of the MPEG-2 video decoder application
started from a C-program that had originally been derived from the
MPEG decoder software from UC Berkeley. This C-code was to
be turned into a set of parallel communicating processes according
to the Kahn Process Networks model [1]. In Kahn Process Net-
works, parallel processes communicate via unbounded FIFO chan-
nels. Each process executes sequentially. Reading from channels
is blocking; writing to channels is non-blocking. The Kahn model
is timeless; there is only an ordering on the data in each channel.

SPADE offers a simple API that can be used to turn a sequen-
tial C-program into a Kahn Process Network. The API contains
the functionsread, write, and execute. With the read and write
functions, data can be read from or written to channels via process
ports. The read and write calls correspond to thecommunication
workloadof a process. The execute function can be used to instru-
ment the application code withsymbolic instructionsthat identify
the computation workload. This function itself performs no data
processing. Figure 2 shows an example of an application modeled
as a Kahn Process Network.

execute

Trace

Process
Port

read write

Process Channel

Figure 2: Application modeled as Kahn Process Network. Pro-
cesses are depicted as circles; small circles represent process ports;
the circle segments in the processes represent the use of API func-
tions.

The following code fragment illustrates the use of the API.

while(1) {
Input->read(token);
ProcessToken(&token);
Process->execute(PROCESSTOKEN);
Output->write(token, size);

}

The code fragment shows an infinite process that repeatedly reads a
token from its input port, processes the token, and sends the result
to its output port. Each time a token is processed, this is signaled
via the execute call.

The API has been implemented on top of a multi-threading
package. Upon execution of the application model, each process
runs as a separate thread. Processes synchronize via the read and
write operations on the FIFO channels. These operations have been
implemented with the help of semaphores, which synchronize the
underlying threads.

The modeling of the MPEG-2 video decoder application started
with the specification of the processes that may run in parallel as
well as the specification of the types of the tokens that are commu-
nicated by these processes. Thus, during this functional partition-
ing phase we decided on the grain sizes of the processes as well as
on the grain sizes of the tokens that get communicated by the pro-
cesses. For example, we decided to have a process Tvld that parses
an MPEG bit-stream under control of a process Thdr. The Thdr pro-
cess is aware of the high level bitstream organization and distributes
the retrieved sequence and picture properties to other processes.
The Tvld process parses picture data autonomously. It sends mac-
roblock headers into a functional pipeline that retrieves the predic-
tion data for the reconstruction of macroblocks. The coefficient

data for the error blocks is sent into a second functional pipeline
for inverse scan, inverse quantization, and IDCT. The grain size for
this coefficient data is a macroblock. A memory manager process
TmemMan was introduced to control the access to the frame mem-
ories. It takes care that a frame is used for prediction or display
only after it has been reconstructed completely. Thus, we see that
during the parallelization of the application, control processes may
appear that explicitly synchronize the operation of other processes.

During the actual coding, the sequential C-code of the decoder
was split up into processes and the communication among the pro-
cesses was made explicit by instrumenting the C-code with read
and write calls. The parallelization of the C-code required sev-
eral global data structures to be removed. Next, execute calls were
added to be able to monitor the computation workload. The Kahn
Process Network is shown in Figure 3.

decMV_prop_pred
decMV_prop_mvTinput Tvld

Thdr

Tisiq Tidct Tadd TwriteMB

Toutput

ToutputRD

Tpredict

TpredictRD

TdecMVvld_bits
vl

d_
pr

op
_s

eq
vl

d_
pr

op
_p

ic
vl

d_
pr

op
_s

lic
e

vl
d_

cm
d

is
iq

_p
ro

p_
pi

c

de
cM

V
_p

ro
p_

se
q

pr
ed

ic
t_

pr
op

_p
ic

de
cM

V
_p

ro
p_

pi
c

hd
r_

st
at

us

is
iq

_p
ro

p_
se

q
is

iq
_p

ro
p_

m
b

mb_QFS

predict_prop_pred
predict_prop_seq

mb_F mb_f mb_d

m
b_

p

idct_prop_seq
idct_prop_mb

add_prop_seq
add_prop_mb

writeMB_prop_seq
writeMB_prop_mb

memMan_prop_seq

memMan_cmd
writeMB_mem_id

predict_ref_mem_id

ou
tp

ut
_p

ro
p_

se
q

TmemMan

ou
tp

ut
_c

m
d

m
em

M
an

_r
dy

_m
em

_i
d

MPEG-2
Video

Elementary
Stream

Decoded
frames

w
rit

eM
B

_p
ro

p_
pi

c

predict_mv

predict_data

output_data

Tstore

store_data

pr
ed

ic
tR

D
_c

m
d

outputRD_cmd

Figure 3: MPEG-2 video decoder modeled as Kahn Process Net-
work.

The application model could now readily be used to analyze the
workload of MPEG-2 video decoding for different MPEG streams.
Upon execution of the model with a particular MPEG stream, the
Kahn API reports:

� For each process: which symbolic instruction is invoked how
often by the process.

� For each channel: how many tokens of which size(s) are
transferred over the channel.

The results of such aworkload analysisare presented in the form
of two tables, as exemplified by the tables below:

Process Instruction Frequency

Tidct IDCT MB 12514
Tadd SkippedMB 158
Tadd Intra MB 2037
...

Channel #Tokens #Bytes

predictdata 88218 5645952
predictmv 12514 400448
...

4 MPEG Decoder Architecture

In addition to the application model, we had to define anarchitec-
ture modelonto which the application model could be mapped. See
the flow in Figure 1. The SPADE methodology is intended for top-
down design of heterogeneous architectures and must permit effi-
cient evaluation of a range of candidate architectures. For this case
study, we decided to start from a single, but parameterized, archi-
tecture specification in order to validate that this architecture could
be evaluated correctly, conveniently, and efficiently with SPADE.
The parameterization would then allow us to do sensitivity analysis
and some design space exploration for this architecture.

For the case study to be useful, we wanted to exercise a realistic
architecture for MPEG-2 video decoding. For this we selected the
TM-2000 MPEG decoder architecture from the Philips TriMedia
Group, for which an internal databook level specification is avail-
able. The TM-2000 consists of a dedicated MPEG decoder attached
to a bus structure together with a VLIW CPU and several other ded-
icated co-processors. The parts of the architecture specification that
are relevant to MPEG decoding are depicted in Figure 4.

Figure 4: An MPEG-2 decoder modeled as a KPN.

• M-JPEG* can process each incoming video frame with a dif-
ferent set of quantization and Huffman tables, depending on
the output bit-rate and the accumulated statistics from previous
video frames. Such dynamic change of the tables is typically
not performed by traditional M-JPEG encoders.

The last two points imply that the behavior of M-JPEG* is de-
pendent on the incoming video data. The M-JPEG* encoder ap-
plication is depicted as a block diagram in Figure2.

RGB to YUV
Video stream

(YUV)
JPEG encoding

M-JPEG encoded

conversion
video stream

observed bitrate

(RGB or YUV)
Video stream

Figure 2. Block diagram of the M-JPEG* application.

4.2 Application Modeling in Spade
As we are going to map the application onto a multiprocessor

architecture, we have to expose task level parallelism and make
communication explicit. In SPADE, we use the Kahn Process Net-
works [12] model of computation for application modeling. In
the Kahn model, parallelprocessescommunicate via unbounded
FIFO channels. The Kahn model fits nicely with signal process-
ing applications as it conveniently modelsstream processingand
as it guarantees that no data is lost. Further, the execution of a
Kahn Process Network is deterministic, meaning that for a given
input always the same output is produced and the same workload
is generated, irrespective of the execution schedule.

Application modeling in SPADE is done using YAPI [13]. YAPI
is a simple API that can be used to structure C/C++ code as a
Kahn Process Network. Upon execution of an application model,
each process in the network produces a trace to capture the work-
load of that process. The following three API functions are pro-
vided1.

• A read function. This function is used to read data from a
channel via a process port. Furthermore, the function generates
a trace entryin the trace of the process by which it is invoked,
reporting on the execution of a read operation at the application
level.

• A write function. This function is used to write data to a chan-
nel via a process port. It also generates a trace entry, reporting
on the execution of a write operation.

• An execute function. This function performs no data process-
ing, but is used as an annotation of computations performed by
the process by which it is invoked. It generates a trace entry,
reporting on processing activities at the application level. The
execute function takes asymbolic instructionas an argument
in order to distinguish between different processing activities.
For example, such an instruction may correspond to a DCT
operation on an eight by eight image block.

The trace entries generated by theread andwrite functions rep-
resent thecommunication workloadof a process. The trace en-
tries generated by theexecute function represent thecomputa-
tion workloadof a process.
1Note that the YAPIselect function is not supported by SPADE.

Table−info
fra

me

YUV blocks (4:1)
Select_channel block

Y
U

V
 b

lo
ck

s
(4

:1
)

RGB block
s (

3:1)

St
at

is
tic

s,
 B

itr
at

e

bl
oc

k

H
−t

ab
le

s

block

Q blocks (4:1)

DCT b
loc

ks
 (4

:1
)

bl
oc

k

(3:1 or 4:1)
Data blocks

{(H,V),B,b} frame

(H,V)frame

B
frame

{N
T,

E
O

F,
O

T}{N
T,O

T}

Q
−tables if N

T

if
N

T

{NLP,LP}
packet

Bitstream packets

block = 8x8 pixels
pixel = integer
packet = 16 bits
H = Horizontal size of frame (in pixels)
V = Vertical size of frame (in pixels)
B = Blocks per frame

b = frame format bit = {RGB,YUV}
NT = New Tables
OT = Old Tables
EOF = End Of Frame
NLP = Not Last Package
LP = Last Package

OB−Control

Video outQuantizerVideo in

DCT

RGB2YUV

VLEDMUX

Figure 3. Structure of the M-JPEG* application model.

4.3 M-JPEG* Application Model
For modeling the M-JPEG* application we started from a pub-

lic domain JPEG codec implementation in C. First, we extracted
the encoder part from the implementation. Then we modified it
to match the M-JPEG* application. This involved the addition
of an RGB to YUV conversion and of the implementation of the
adaptation of the quantization and Huffman tables.

Next, we restructured this sequential implementation into a set
of parallel communicating processes using YAPI. This restructur-
ing involved, for example, removing global data structures, par-
titioning of the application, and insertion of calls to the YAPI
functionsread andwrite. The resulting Kahn Process Network
has the structure shown in Figure3.

The network is composed of eight processes. TheVideo in,
DCT, Quantizer, VLE (Variable Length Encoding), andVideo out

processes together form the regular M-JPEG encoding algorithm.
RGB2YUV is an additional process such that the application also
accepts RGB frames as input data; theDMUX process is added
to route the incoming data either directly to theDCT process or
via theRGB2YUV process, depending on the incoming video for-
mat. TheOB Control process takes care of the quantization and
Huffman table adaptation; it receives statistics from theVLE pro-
cess and sends updated tables to both theQuantizer and theVLE

processes.
Finally, we annotated the computations of each process using

the YAPI execute function and symbolic instructions. For ex-
ample, theVLE process has twoexecute calls; one with an in-
structionop VLE, which represents all processing needed to per-
form the variable length encoding of an 8 by 8 block, and one
with an instructionop MakeStatistics, which represents the
calculation of image statistics that are used in the adaptation of
the quantization and Huffman tables.

4.4 Workload analysis
The M-JPEG* application model can be used for workload

analysis. When it is executed, the YAPI functionsread, write,
andexecute generate information on computation and commu-
nication workload of the application. For an input sequence of 8
RGB frames of size 720×576 pixels (PAL/SDTV), the workload
numbers obtained are partly shown in Tables1 and2. Consid-
ering that all block data tokens are blocks of 8 by 8 pixels, with

Figure 5: An M-JPEG* encoder modeled as a KPN.

the system consists of 8 processes communicating through
18 channels. Video data are parsed by Process DMUX and
are sent directly to Process DCT or via Process RGB2YUV,
depending on the video format. Video parameters are send
to Process OB-Control, which controls the video process-
ing in Process DCT, VLE, and Vudeo Out. It also collects
statistics information to adjust Huffman coding tables and
quantization tables. We perform schedulability analysis on
the entire system.

XviD MPEG4 encoder.Our model of a XviD MPEG4 en-
coder is based on the KPN described in [5] and the C source
code from [3]. It was originally developed as a Sesame ap-
plication. The encoder supports two frame types: I-frame
and P-frame. It performs motion estimation analysis to de-
termine if an incoming frame will be treated as I-frame or
P-frame. Consequently two types of frame will go through
different processing paths. An I-frame will be split into
macro-blocks and encoded independently. In a P-frame, a
macro-block could be an intra-block, an inter-block, or an
not-coded-block, depending the value of Sum of Absolute
Differences (SAD). The granularity of tokens passing be-
tween processes is macroblock. The system consists of 15
processes with 40 channels.

PVRG JPEG encoder.We obtain the Stanford Portable
Video Research Group (PVRG) JPEG codec source code
from [2]. Based on JPEG baseline standard, our model con-
sists of 10 processes and 21 channels. The functional core
part consists of 4 processes implementing Discrete Cosine
Transform (DCT), quantization, Huffman coding, and con-
trol. The granularity of tokens passing between processes is
block. We preform schedulability analysis both on Petri nets
generated from the model of the encoder and its functional
core.

Runtime
Instance Place Tran. Arc FCS Analyzer Scheduler
pJPEGe1 22 22 52 4 0.04s >24hr
pJPEGe2 26 28 64 6 0.27s >24hr
pJPEGe3 26 27 64 6 0.44s >24hr
pJPEGe4 67 68 167 14 0.54s >24hr
pMJPEGe 100 98 278 17 0.75s >24hr
pMPEG2d 68 76 176 18 1.67s >24hr
xMPEG4e 72 72 184 15 0.38s >24hr

Table 1: Statistics of schedulability analysis of Petri
net models of JPEG and MPEG codecs

We also experiment different modelling decisions in this
test case. For example, the control of synchronization be-
tween concurrent processes could be managed by a single
master process, or distributed among processes.

5.2 Results
We implement our quasi-static schedulability analyzer in

C. All experiments are run on a 3.06 GHz Intel Xeon CPU
with 512 KB cache and 3.5 GB memory. Since to the best of
our knowledge there is no other quasi-static schedulability
analyzer available, we compare performance with a quasi-
static scheduler. The scheduler performs a schedulability
analysis via heuristic construction of a schedule. Based on
the test cases, our analyzer typically proves a Petri net un-
schedulable within one second, while the scheduler fails to
terminate in 24 hours. Details of the experiments are sum-
marized in Table 1.

Our schedulability analyzer is effective because there ex-
ist certain program structures in the codecs. We illustrate
it using a Huffman coding process of a JPEG encoder. Fig-
ure 6 shows a simplified description of the process. The
process first reads from a control process a header which in-
cludes all parameters necessary to perform Huffman coding
on a block. Then it iterates through all blocks of a com-
ponent in a Minimum Coded Unit (MCU). The Huffman
coding and reading from a zigzag process are performed at
the block level inside the loop. Since JPEG standard re-
quires samples of a component must use the same Huffman
coding table, and multiple component samples could be in-
terleaved within a compressed data stream, it needs to up-
date the Huffman table from time to time. Also note that
the loop has a variable number of iterations. The vertical
and horizontal sampling factors could be different for differ-
ent components and only known at run-time. All the above
requires communications inside and outside a loop structure.
The quantization process has a similar program structure to
the Huffman coding process, because samples of a compo-
nent are required to use the same Quantization table and
processing and communication data is performed at block
level. The control process synchronizes the two concurrent
processes such that a block is processed in the quantization
process and later in a Huffman coding process with the set
of parameters (e.g. vertical and horizontal sampling factors)
of the same component.

Synchronized communications inside and outside a loop
structure are common in the codecs. However, the controls
of loops are abstracted as non-deterministic free choices in
a Petri net. These two factors cause unschedulability which
can be checked efficiently by our approach.

Note that our schedulability analyzer also computes the
minimum set of FCSs that has a cyclic dependence relation,

15

PROCESS Huffman(
In_DPORT Control_headerIn,
In_DPORT Zigzag_blockIn,
Out_DPORT Output)

{
while(1) {

READ_DATA(Control_headerIn, header, 1);
Vi = getVSF(header);
Hi = getHSF(header);
Htable = getHtable(header);
for(v=0; v<Vi; v++) {

for(h=0; h<Hi; h++) {
READ_DATA(Zigzag_blockIn, block, 1);
block = HuffmanEncoding(block, Htable);
WRITE_DATA(Output, block, 1);

} } } }

Figure 6: A simplified Huffman coding process de-
scribed in FlowC.

once it proves a Petri net is unschedulable. The minimum
set of FCSs provides useful information to find the correlated
control structures.

6. LIMITATIONS
We rely on our experience with JPEG MPEG codecs and

comparison with a scheduler to claim the effectiveness and
efficiency of our approach. However, various issues limit the
applicability of our approach. In this section, we discuss
some of them and establish directions for the future work.

Dependence relation driven by firability.We defined
a dependence relation between transitions statically based
on the existence of T-invariants. However, not every T-
invariant may be firable in a Petri net. If the dependency
relation is violated because of non-firable T-invariants, our
approach would fail to establish unschedulability. Taking
into account firability of T-invariants would increase the res-
olution power of the proposed method.

Efficiency of the analysis.Although each dependence check
can be done in polynomial time, the total number of checks
to prove unschedulability is exponential in the number of
FCSs. Currently we are studying the conditions based on
checking the rank of the incidence matrix [10], which could
lead to more efficient means to prove or disprove schedula-
bility.

Necessity of the conditions for unschedulability.Theo-
rem 1 and 2 provide only sufficient conditions for unschedu-
lability. One possible research direction is to look for sub-
classes of Petri nets for which these conditions are also nec-
essary.

7. CONCLUSION
We introduced a Petri net structural property, and prove

that if the property holds among the set of FCSs of a Petri
net, there exists no quasi-static schedule. We also present
an algorithm based on linear programming to check if such
a property holds. We performed schedulability analysis on
Petri nets generated for several benchmark examples from
multi-media applications. The experiment results show that
our approach is valid and effective.

8. REFERENCES
[1] Sesame project public release. URL:

http://sesamesim.sourceforge.net.

[2] Stanford PVRG JPEG codec. URL:
http://www.dclunie.com/jpegge.html.

[3] XviD MPEG-4 video codec. URL:
http://www.xvid.org.

[4] G. Arrigoni, L. Duchini, L. Lavagno, C. Passerone,
and Y. Watanabe. False path elimination in
quasi-static scheduling. In Proceedings of the Design
Automation and Test in Europe Conference, March
2002.

[5] P. Broekhof, N. Roosen, J. Verhoef, and W. Jun.
Modeling XviD as a Kahn process network, a Sesame
application design document. URL: http:
//staff.science.uva.nl/∼andy/apps/xvid.pdf.

[6] J. T. Buck. Scheduling dynamic dataflow graphs with
bounded memory using the token flow model. PhD
thesis, University of California, Berkeley, 1993.

[7] J. Cortadella, A. Kondratyev, L. Lavagno,
C. Passerone, and Y. Watanabe. Quasi-static
scheduling of independent tasks for reactive systems.
In Proceedings of the 23rd International Conference on
Applications and Theory of Petri Nets, pages 80–100,
2002.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In 4th
ACM Symp. on Principles of Programming Languages,
Los Angeles, January 1977.

[9] E. de Kock, G. Essink, W. Smits, P. van der Wolf,
J.-Y. Brunel, W. Kruijtzer, P. Lieverse, and
K. Vissers. YAPI: Application Modeling for Signal
Processing Systems. In Proceedings of the 37th Design
Automation Conference, June 2000.

[10] J. Desel. Private communication, August 2004.

[11] C. A. R. Hoare. Communicating Sequential Processes.
International Series in Computer Science.
Prentice-Hall, 1985.

[12] G. Kahn. The semantics of a simple language for
parallel programming. In Information processing,
pages 471–475, Aug 1974.

[13] G. Kahn and D. B. MacQueen. Coroutines and
networks of parallel processes. In Information
processing, pages 993–998, Aug 1977.

[14] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow graphs for digital signal
processing. IEEE Transactions on Computers, Jan.
1987.

[15] P. Lieverse, T. Stefanov, P. van der Wolf, and
E. Deprettere. System level design with spade: an
m-jpeg case study. In Proceedings of IEEE/ACM
International Conference on Computer Aided Design,
pages 31–88, Nov 2001.

[16] T. Murata. Petri nets: properties, analysis, and
applications. Proceedings of the IEEE, 77(4):541–580,
Apr. 1989.

[17] P. van der Wolf, P. Lieverse, M. Goel, D. Hei, and
K. Vissers. An MPEG-2 Decoder Case Study as a
Driver for a System Level Design Methodology. In
Proceedings of the 7th International Workshop on
Hardware/Software Codesign, May 1999.

16

http://sesamesim.sourceforge.net
http://www.dclunie.com/jpegge.html
http://www.xvid.org
http://staff.science.uva.nl/~andy/apps/xvid.pdf
http://staff.science.uva.nl/~andy/apps/xvid.pdf

	Introduction
	Motivation and Contribution
	Paper Organization

	Preliminaries
	Structural Schedulability Analysis
	Quasi-Static Schedules
	Pairwise Transition Dependence Relation
	General Transition Dependence Relation

	Checking Cyclic Dependence Relation
	Experiments
	Benchmarks
	Results

	Limitations
	Conclusion
	REFERENCES -9pt

