
Multicast Parallel Pipeline Router Architecture
for Network-on-Chip

Faizal A. Samman, Thomas Hollstein, Manfred Glesner,
Technische Universität Darmstadt

Institute of Microelectronic Systems
Karlstr. 15. Darmstadt, Hessen D-64283

faizal.samman, thomas.hollstein, glesner@mes.tu-darmstadt.de ∗

Abstract

This paper presents a flexible mesh router architecture
using synchronous parallel pipeline worm-switching sup-
porting unicast and multicast services. A very flexible
mechanism to manage broadcast-flow to share the commu-
nication link in on-chip network is proposed. The proposed
machanism guarantees, that all flits in multicast packets
can be accepted in their multiple destination nodes. Our
Network-on-Chip (NoC) is implemented based on modular
synthesizable VHDL objects. The Architecture is flexible to
design new NoC prototypes. Area overhead to update the
NoC from unicast to multicast with the same routing algo-
rithm is only about 15%.

1 Introduction

System-on-chip (SoC) design methodology is one of the
potential solutions for system level design. According to
the International Technology Roadmap for Semiconductors
(ITRS) [1], by the end of this decade, the transistor feature
size will be 50-nm and it operates below one volt. SoCs will
grow to 4-billion transistors running at 10 GHz. The major
challenge for SoC designer would be to provide reliable op-
eration of the interacting components. A limiting factor for
the performance, and possibly energy consumption will be
presented by on-chip physical interconnections [2].

Networks-on-Chip provide advanced intellectual prop-
erties (IP) communication concepts for Systems-on-Chip
(SoC). Sharing the wires between several communication
flows makes the use of the wires more efficient [3]. The
NoC concept has potential to provide sustainable platforms
and proposes a new paradigm in SoC architecture and mul-
tiprocessor systems[4]. Fig. 1 shows an example of a NoC
platform with a 4x4 mesh topology. There are four main

∗F. A. Samman is also with Dept. of Electrical Engineering, the Uni-
versity of Hasanuddin at Makassar, Indonesia, pursuing doctoral degree
with DAAD Scholarship. faizalas@unhas.ac.id.

Figure 1. A 2-dimension mesh 4x4 topology.

components, i.e. mesh routers, network interfaces, re-
sources (R) and communication links. Each mesh router
is connected with one resource through a network interface.
The other ports are connected with adjacent mesh routers
through communication links. Resources can be an IP core
or embedded bus-based platform with one or more process-
ing element.

The architecture and routing decision must meet band-
width requirements and should be scalable for wide range
of applications. Network topology could influence the scal-
ability and performance of the NoC. Some NoCs that have
been developed with Mesh topology are NOSTRUM [5],
RAW [6], and HiNoC [7]. OCTAGON NoC [8] uses oc-
tagon topology. Fat tree topology is used in SPIN [9],
and its extended version DSPIN [10] uses mesh distribu-
tion of clusters. Flexible regular and irregular topology is
presented in [11], while Xpipes NoC [12] supports a cus-
tomized topology.

Data transmission between resources through the inter-
mediate router nodes can be divided into synchronous and
asynchronous methods. Asynchronous NoCs are intro-
duced in CHAIN [14], and ASPIDA [15], while in MANGO
[16] asynchronous clock-less NoC is proposed. In syn-
chronous designs, global clock-trees are distributed, which
leads to electromagnetic interference effect and clock power
consumption. Asynchronous communication design is a
promising concept, but lacks of industrial standard support,
especially with respect to testability issues. Synchronous

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



Figure 2. XHiNoC Architecture.

NoCs can also support GALS (globally asynchronous, lo-
cally synchronous) concept by implementing asynchronous
input/output queues in network interfaces.

In this paper, a reconfigurable NoC with a synchronous
parallel pipeline router architecture called ”XHiNoC” is
proposed. XHiNoC stands for eXtendable Hierarchical
NoC, and is an extended version of HiNoC [7], which is
based on flexible, extendable design environment. The
XHiNoC is develop based on synthesizable modular VHDL
objects. Some flexible object modules can be selected
and combined with base modules to obtain a specific mesh
router prototypes in accordance with a desired specification,
starting from classic until advanced NoC models.

2 Related Works

In reference [17] (Chapter 5), several multicast rout-
ing approaches have been summarized from some articles.
Some special routing algorithms are proposed to handle
multicast communication request. The algorithms are more
complex than the routing algorithms dedicated for unicast
service, and the broadcast-flow between two or more pack-
ets accessing the same communication links is not discussed
in detail.

The NoC proposals of Æthereal [13] and NOSTRUM [5]
have reported that multicast service can be implemented in
their NoC architecture. However, the procedures on how
the NoCs do the multicast routing and service have not
been presented in detail. Connection-oriented multicast-
ing in wormhole-switched NoC has been presented in [18]
where virtual channels are utilized. Rather than using vir-
tual channel to avoid packet stall, Our XHiNoC uses an ef-
ficient broadcast conflict management and link share with

Figure 3. The XHiNoC packet format for (a)
unicast, (b) multicast.

interleaved packets based on identity-tag management tech-
niques.

3 XHiNoC Multicast Router Architecture

The general router architecture for XHiNoC is presented
in Fig. 2. For the sake of simplicity, only west port mod-
ules are presented in the Figure. The architecture of the
NoC router can be classified into three main blocks, i.e. port
modules, a crossbar switch, and centralized link controller
and flow supervisor (LCFS). In each port, there are some
components such as FIFO buffer, routing eingine (RE), ID-
manager (IDM) unit, link state controller (LSC) and a few
logical modules. The RE comprises a router hardware logic
unit and look-up table (LUT) unit. The following subsec-
tions will describe the architecture and characteristics of the
XHiNoC for multicast services.

3.1 Packet Format

The packet format used in XHiNoC is presented in
Fig. 3. The 38-bit Packet format for Unicast is shown in
Fig. 3(a). The packet consists of header flit followed by
payload flits. Two additional 3-bit heads are Type and ID
(Identity) bits. The Type can be header, data body, and the
end of databody (last flit). The 3-D source and target ad-
dress of the packet are asserted in the header flit. Passing
a communication segment of the NoC, each packet has the
same local identity number (ID-tag) to differentiate it from
another packet. The local ID-tag of the data flits of one
packet will vary over different communication segments in
order to provide a scalable concept. Fig. 3(b) shows the
packet format for multicast services. The number m of the
embedded packet headers is the same as the number of tar-
geted m destinations.

3.2 Multicast Procedure

3.2.1 Forwarding Header Flits

A multicast packet with a certain ID-tag number contains a
few header flits. All headers are injected one-by-one from

2



the local input port. Each time a header flows through the
RE unit, the direction is written in the register of the rout-
ing table based on its ID-tag number. Therefore, a register
number could have multiple directional entries as described
in Section 3.3 and Fig. 4(a). After all headers have been
injected, the pathes for the multicast packet are setup in the
network.

3.2.2 Broadcasting Payload Flits

After forwarding all header flits, the payloads flits are ready
to be broadcasted in parallel to follow the paths, that have
been setup by the header flits. Each time a flit appears in the
FIFO output, the LUT will check its ID to find its directions
in the routing table as depicted in Fig. 4(a). Then the flit will
be broadcasted based on its multiple direction in parallel.

3.3 ID-tag-based Multicast Routing

The routing engine (RE) in the multicast-capable
XHiNoC uses a combination of router hardware logic and
look-up tables (LUTs) allocated at each port to support par-
allel pipeline routing. Packet flows are controlled based on
ID-tags. All flits of a packet have the same ID-tag on a
certain communication link. Fig. 4(c) presents two adjacent
mesh nodes with address (1,0) and (2,0). In node (1,0) there
four different packets, i.e. Packet C and D with ID 3 and
5 respectively in west FIFO, Packet A with ID 4 in south
FIFO, and Packet B with ID 4 in north FIFO. All packets
request the same outport, i.e. EAST port, but Packet C and
D are multicast packets, where Packet C request additional
direction SOUTH and LOCAL, and Packet D requests also
SOUTH direction.

The router hardware logic computes the required rout-
ing direction based on the target address information in the
packet header and the underlying routing algorithm. The
routing direction of the packet is then copied into the rout-
ing table registers of the LUT in accordance with its ID-tag
and direction. An example is shown in Fig. 4(a). Assum-
ing that the headers of Packet C and D in the west FIFO
have been evaluated. After computing the directions, Packet
C will be routed to EAST, SOUTH and LOCAL, thus the
routing direction is saved in register 3 (because the ID of
Packet C is 3) of the EAST, SOUTH and LOCAL routing
tables. Packet D will be routed to EAST and SOUTH, thus
the direction is saved in register 5 of the EAST and SOUTH
routing tables. A payload flit, which has the same ID-tag
as the previous header, will be routed (switched) based on
its ID-tag. If the target directions are more than one, the flit
will be broadcasted in parallel.

3.4 Packet Identity Management

The IDM unit will update new ID for new packet flowing
through the outport. The IDM provides ID-slot for packets,

Figure 4. (a) Routing Engine, (b) ID Manager
Unit, (c) ID-based worm-flow.

and will guarantee, that different packets will have a dif-
ferent ID-tag. For a 2-D 4x4 mesh-based NoC, the IDM
provides 8 ID-tags (8 virtual space slots) for each link. Cer-
tainly, for larger size NoC, number of available ID-tag can
be extended.

The IDM will manage the ID allocation, before a new
different packet enters the next FIFO buffer. Fig. 4(b) ilus-
trates the functionality of IDM in accordance with packet
flows in Fig. 4(c). The packets are classified based on their
ID and from which inport they come from. For a new packet
header (Packet C from west inport with ID 3), the IDM will
search for ’free’ ID. If the free ID has been found (i.e. ID
5 for example), then old ID of the packet header (ID 3) is
replaced by the new ID (ID 5), and the state of the ID is
set to ’used’. There is also a possiblity that packets com-
ing from different inports have the same ID-tag, i.e. Packet
A from south and B from north with ID 4. The IDM will
manage the ID in such as way that they will have different
IDs in the next FIFO (e.g. new ID 6 for Packet B and new
ID 7 for Packet A). The IDM will then save the information
in the register tables. For payload flits following the header
flit of the packets, their IDs will be replaced automatically
by using look-table mechanism.

If no more available ID in the IDM, new packet cannot
be forwarded into the outport. After the last flit of the packet
flows through the LUT and IDM, all informations related to
its ID-tag will be deleted from the tables. Our ID-tag based
routing mechanism will also guarantee in-order-delivery of
a packet, when adaptive routing algorithms are used.

3.5 Synchronous Parallel Pipelined Switching

The multicast XHiNoC serves packets using a parallel
pipeline wormhole switching technique which is operating

3



Figure 5. Timing of the synchronous pipeline.

synchronously. Fig. 5 represents our proposed two-stage
pipeline switching mechanism, where a few flits flows from
the west in-port in node (1,0) to an east outport in node
(2,0). Transferring the flits from the FIFO buffer to the out-
port, or from the out-port to next FIFO buffer requires two
cycles. The first cycle is request stage. After this cycle, the
RE sends direction request signals to the LCFS. The second
cycle is grant stage. After this cycle, the arbiter in the LCFS
has selected the winner to access the outport by sending a
grant Rn signal to the FIFO and a Xout signal to the MSC
module. In the next cycle, the flit will appear in the output
of the MSC module.

The MSC is a multiplexor (located in crossbar switch)
with a state machine mechanism. The switching is run in
parallel, and there is no contention to access the outport,
because the link is shared with packet interleaving scheme,
and the arbiter serves fairly the incoming flits. The LSC is
a state machine, which controls the flow of a flit from the
outport into the next FIFO buffer. If the next FIFO is full,
then the LSC will not let the flit enter the next FIFO, until
one space in the register of the next FIFO is free.

3.6 Multicast Broadcast-flow Management

3.6.1 Link Controller and Flow Supervisor

The LCFS functionalities are to control link in crossbar
switch and to supervise neighbour congestion states. The
structure of the LCFS is depicted in Fig. 6. It consists of
decoders (DecMC), arbiters, and a grant logic (GMC). The
number of each component follows the number of outports.
The LCFS receives routing direction requests from all rout-
ing engines, and a full flag from the network interface and
the neighbor nodes. The full flags are sent to the arbiters
and the direction requests are sent to the DecMC.

The DecMC unit decodes 3-bit routing direction request
signals (EAST, NORTH, WEST, SOUTH, LOCAL) from

Figure 6. Structure of the multicast LCFS.

all inports into 1-bit signals. And then the arbiter is in
charge of selecting a winner of all the requests, which has
right to access any outport. This mechanism can be realised
applying traditional round robin arbiters. If the FIFO in the
next node is full, then the arbiter will not select a winner to
access the requested ports. A GMC is in charge of granting
the FIFO, which hold the winner flit, to release the data flit
from the last register of the FIFO.

Because this LCFS is dedicated for multicast service, the
1-bit grantRn signals from GMCs and 1-bit GR signals from
arbiter are fedback into DecMC. And 1-bit encoded signals
from DecMCs are forwarded into GMC. The details of the
feedback and forward signals can be observed in Fig. 6. In
general, the functionalities of those signals are as follows.
Assuming that a flit from LOCAL port would be broad-
casted in parallel to three outports, e.g. EAST, WEST, and
NORTH. If the arbiters for EAST, WEST and NORTH out-
put selection have granted the flit from the LOCAL inport as
a winner to access all requested ports, then GMC will com-
mand the LOCAL FIFO to release the flit from its register.
Otherwise, the flit will not be released, but if any of the ar-
biters selects the flit as the winner, then the flit would be
copied into the outport, which selects the flit as the winner.
For instance, the flit wins to access the EAST and WEST
outport, but not the NORTH port, because the arbiter for
NORTH outport selects another flit from the other inport as
the winner. Then DecMC, which receives feedback signals
from the arbiter and GMCs, will reset the routing requests,
which have been granted. In this case, routing requests from
LOCAL to EAST (l2e) and LOCAL to WEST (l2w) will be
reset. The routing request from LOCAL to NORTH (l2n)
is still be set. This procedure is needed to avoid the flit be-
ing forwarded more than once into the same outport. When
the flit (after a few cycle) is selected as the winner to ac-

4



Figure 7. Broadcast-Flow Management.

cess the NORTH outport, then the flit will be released from
the LOCAL FIFO buffer. Afterwards all components work
normally.

3.6.2 Broadcast-Flow Management

If multicast packet shares the same link with another
packet, the broadcast-flow should be managed carefully.
Fig. 7 explains visually the broadcast-flow management. In
Fig. 7(a), it is assumed that the headers of Packet A and
B have setup the path, and in node (1,1) Packet A requests
NORTH and EAST outputs, while Packet B also requests
EAST output. In the next stage NORTH arbiter selects flit
A1 as the winner, while EAST arbiter selects B1 as the win-
ner to acces EAST outport. Now, flit A1, which must be
broadcasted in parallel, has a conflict with flit B1 to access
the EAST output.

The XHiNoC manages the broadcast-flow as follow. In
Fig. 7(b), flit A1 is copied to NORTH, but is still hold in
local FIFO, because it has not been forwarded to EAST.
This procedure is done by GMC unit as explained in Section
3.6.1. Then the request of flit A1 to access NORTH output is
reset, which is done by DecMC unit as described in Section
3.6.1. In the next stage (Fig. 7(c)), flit A1 is selected as the
winner to access EAST port. Now flit A1 is released from
local FIFO and is not forwarded anymore to NORTH. In
the next stage (Fig. 7(d)), the LCFS works with the same
procedure as in Fig. 7(b).

3.7 Flow and Automatic Injection Rate Control

The XHiNoC is facilitated with control mechanism for
flit flow and injection rate. The LSC unit described in Sec-
tion 3.5 will control the packet flow in the link level. It is

Figure 8. Traffic scenarios.

important to note, that although the FIFO is full, it is still
possible for another packet to insert its flit, as long as there
is still available free ID-tag, and after a few cycles, there
is again one free space in the FIFO. ISC (Injection State
Control) unit in the network interface (NI) controls auto-
matically the injection rate. If the local FIFO is full then the
ISC will not grant FIFO to accept the flit and will not also
permit the Input Queue in the NI to release the flit, until
there is free space in the local FIFO. This mechanism will
automatically reduce the injection rate.

4 Experiment Results

Our experiments are run by injecting 2 multicast pack-
ets, which have 7 destinations in 2-D 4x4 mesh topology.
Because the multicast packets have 7 targets, each packet
contains 7 header flits. Each packet consists of 128 flits,
it means, that each packet header is followed by 121 pay-
load flits. Therefore a total number of 256 flits are injected
into 2 source nodes separately, and ejected from 14 target
nodes. Each flits in the packet are numbered in-order, thus it
is easy for us to check packet-loss. Four selected traffic sce-
narios are shown in Fig. 8. The bold line box is the source
node. The white boxes are target nodes of Packet Source 1
(S1), while the gray boxes are target node of Packet Source
2 (S2). The numbers in box represent the target order of
the multicast packets. In other words, they represent the
order of headers in the multicast packet containing target
addresses.

Fig. 9 shows diagrams of the number of required cycles
to transmit header flits and last flits for four traffic scenarios
presented in Fig. 8. In traffic scenarios 1 and 2, less cycle
is required to transmit the flits, because both packets, P1
and P2 enjoy 100% of the link bandwidth. There is no link
share and no congestion. All the last flits (the 128th flit) can
be accepted in all 14 target nodes after the 278th cycle for
scenario 1 and after the 274th cycle for scenario 2.

More cycles are required to transmit P1 and P2 in the
traffic scenario 3 and 4. In these scenarios, both packets
share the link communications. In traffic scenario 3, all
links in the column of the mesh nodes are shared between
both packets. Therefore, P1 and P2 must share maximum
bandwidth of the links. The number of required cycles
to transmit the flits depends also on hop distance between
source and target nodes. Therefore, the header and the last
flits will arrive the target nodes in different time units.

5



Figure 9. Total cycle requirements.

Figure 10. The multicast router core layout.

5 Conclusion and Future Works

A new mechanism to serve multicast packet in our
XHiNoC has been introduced. The XHiNoC multicast
router has proposed a very flexible method to manage the
broadcast-flow betweeen packets to share the communica-
tion links in the network. By using the broadcast-flow man-
agement and an automatic injection rate and flow control
mechanism, all flits in multicast packets can accepted in
their multi destination nodes (no packet/flit-loss).

The layout of the XHiNoC multicast mesh router using
UMC 180nm standard-cell technology is shown in Fig. 10.
The XHiNoC can be run at 230 MHz. Total number of logic
cells is 10577. Migrating from unicast to multicast with
the same XY routing algorithm increases 15% of total logic
cells using unicast service (9201 logic cells). Five FIFO
buffers occupy 44% of total cell area.

For future works, adaptive routing algorithms would also
be implemented in our XHiNoC multicast. The XHiNoC
prototypes combining best-effort, soft and hard guaranteed-
throughput services are in progress. Adding multicast ser-
vice into those prototypes is also an interesting topic for
future investigations.

References

[1] ITRS, http://www.itrs.net, 2006.
[2] L. Benini and G. De Micheli, “Networks on Chips: A New

SoC Paradigm,” IEEE Computer, vol. 35, pp. 70-78, Jan.
2002.

[3] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-
Chip Interconnection Networks,” The 38th ACM Design Au-
tomation Conf., pp. 684-689, 2001.

[4] A. Jantsch and H. Tenhunen, Networks on Chip, Kluwer
Academic Publisher, Hingham, MA, USA, 2003.

[5] M. Millberg, E. Nilsson, R. Thid and A. Jantsch, “Guar-
anteed Bandwidth using Looped Containers in Temporally
Disjoint Networks within the Nostrum Network on Chip,”
Proc. Design, Automation and Test in Europe Conf. and Ex-
hibition (DATE’04), pp. 890-895, 2004.

[6] M. B. Taylor, J. Kim, J. Miller, et. al., “The Raw Micropro-
cessor: A Computational Fabric for Software Circuits and
General-Purpose Programs,” IEEE Micro, vol. 22, issue 2,
pp. 25-35, Mar-Apr. 2002.

[7] M. K. -F. Schäfer, T. Hollstein, H. Zimmer, M. Glesner,
“Deadlock-Free Routing and Component Placement for Ir-
regular Mesh-based Network-on-Chip,” IEEE/ACM Int’l
Conf. on CAD (ICCAD’05), pp. 238-245, 2005.

[8] F. Karim, A. Nguyen and S. Dey, “An Interconnect Archi-
tecture for Networking Systems on Chips,” IEEE Micro, vol.
22, issue 5, pp. 36-45, Sept-Oct. 2002.

[9] P. Guerrier and A. Greiner, “A Generic Architecture for
On-Chip Packet-Switched Interconnection,” Proc. Design,
Automation and Test in Europe Conf. and Exhibition
(DATE’00), pp. 250-256, 2000.

[10] I. M. Panades, A. Greiner and A. Sheibanyrad, “A Low Cost
Network-on-Chip with Guaranteed Service Well Suited to
the GALS Approach,” Proc. the 1st Int’l Conf. and Work-
shop on Nano-Networks), pp. 1-5, 2006.

[11] T. A. Bartic, J. -Y. Mignolet, V. Nollet, T. Marescaux, D.
Verkest, S. Vernalde and R. Lauwereins, “Topology adap-
tive network-on-chip design and implementation,” IEE Proc.
Computers and Digital Techniques, vol. 152, no.4, pp. 467-
472, July 2005.

[12] L. Benini and D. Bertozzi, “Network-on-chip architectures
and design methods,” IEE Proc. Computers and Digital
Techniques, vol. 152, no.2, pp. 261-272, Mar. 2005.

[13] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van
Meerbergen, P. Wielage and E. Waterlander, “Trade-offs in
the design of a router with both guaranteed and best-effort
services for networks on chip,” IEE Proc. Computers and
Digital Techniques, vol. 150, no. 5, pp. 294-302, Sep. 2003.

[14] J. Bainbridge and S. Furber, “Chain: A Delay-Insensitive
Chip Area Interconnect,” IEEE Micro, vol. 22, issue 5, pp.
16-23, Sept-Oct. 2002.

[15] M. Amde, T. Felicijan, A. Efthymiou, D. Edwards and
L. Lavagno, “Asynchronous on-chip networks,” IEE Proc.
Computers and Digital Techniques, vol. 152, no. 2, pp. 273-
283, Mar. 2005.

[16] T. Bjerregaard and J. Sparsø, “Implementation of guaran-
teed services in the MANGO clockless network-on-chip,”
IEE Proc. Computers and Digital Techniques, vol. 153, no.4,
pp. 217-229, July 2006.

[17] J. Duato, S. Yalamanchili and L. Ni, Interconnection Net-
works: An Engineering Approach, Revised Printing, San
Fransisco, USA: Morgan Kaufmann Publishers, 2003.

[18] Z. Lu, B. Yi and A. Jantsch, “Connection-oriented Multicas-
ting in Wormhole-switched Network-on-Chip,” Proc. IEEE
Comp. Society Annual Symposium on VLSI (ISVLSI’06), 6
pp., 2006.

6


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




