
  

  

ABSTRACT 
This paper provides insight into the novel solutions used 

to build SoCs targeting increased productivity in a complex 
environment. Design of such SoCs relies on multi-team, 
multi-site cooperation and data exchange. The data 
exchange, made possible though descriptions based on The  
SPIRIT Consortium’s IP-XACT™ specification and the 
automation for its processing, forms the basis of the 
approach. Initially, the specification focused at IP reuse; 
this has now been extended to SoC subsystem exchange. 
This paper also describes state-of-the-art subsystem design 
automation and improvement opportunities, based on a 
close collaboration between NXP Semiconductors and 
Mentor Graphics. We do not cover all the aspects of reuse 
but mainly stress the concurrent engineering process. 

I. INTRODUCTION 
 

N a June 2007 EE Times article, Ron Collett, president 
and CEO of Numetrics Management Systems, Inc. 

presented his views on IP reuse, which were “based on 
1,200  benchmarked IC projects from more than 35 
companies: ‘There are good and bad news about the reuse 
situation. Over the past ten years, reuse leverage more than 
doubled, and more reuse tends to translates into less project 
effort, shorter cycle times as well as fewer spins and less 
schedule slip.’ Still on the positive side, Collett indicated 
that the average transistor count per block is growing and 
the number of blocks per chip is rising. Moving to bad news, 
Collett noted that the average team size has doubled between 
the years 2000 and 2006.” 

This is not cost-effective in today’s electronic consumer 
market where cost pressure is at its peak and margins are 
tight. Companies often attempt to lower their cost of 
production by investing in design centers in emerging 
countries, which scatters the design teams all over the world. 
In that context, efficiently exchanging and reusing 
information between the dispersed design teams is even 
more challenging. Having a common development 
environment and a consistent way of exchanging subsystems 
is key to keep up the productivity and time to market 
brought by IP reuse and flow automation[1]. 

“Collett also deplored that the semiconductor industry has 
serious schedule slip problems. About 85 percent of all IC 
projects miss their original schedule. ‘This is chaos. The 
 

 

average schedule slip is 44 percent, and high schedule slip 
means poor schedule predictability" with a direct impact on 
cost and margins. 

II. THE IP-XACT SPECIFICATION, THE MEDIA FOR 
EFFICIENT EXCHANGE OF INFORMATION 

 
We stated the need for concurrent design of subsystems 

and the exchange of design data between sites. Until 
recently there was no industry-wide answer on how to 
document IPs and ease their integration into system-on-a-
chip (SoC) products usually formed by IPs from multiple 
sources as illustrated in Figure 1. 

 
 

 
Fig 1.  The SoC development eco-system 

 
 

The SPIRIT Consortium’s IP-XACT specification 
changed the situation. Here EDA vendors, IP providers and 
SoC integrators cooperate to define the answer to describing 
IP properties in a common way and ease its integration 
[2][5]. Tools based on the IP-XACT specification, such as 
Platform Express™ from Mentor Graphics, are capable of 
providing an eco-system where one can easily exchange 
information around an SoC and rapidly produce subsystems 
and eventually the final SoC. This would have previously 
required significant integration time and effort in a 
traditional design flow. 

 
IP and design information such as interface signals and 

memory map, captured in the IP-XACT format using the 
XML language, document the IP in a standard and 
exchangeable way. The IP-XACT specification enables the 
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XML elements of the specification to be extended to 
describe information that is not covered through available 
IP-XACT semantics. 

The ability to exchange data is not enough. Productivity 
increases further if the processing of the exchanged data is 
automated. Or, to be more precise, a flow and methodology 
is needed that can process the data coming from multiple 
sources and which can effectively transform the input data 
into an SoC. This flow and methodology needs to address 
assembly, documentation generation, verification, and 
synthesis [3]. Automating the processing is important in 
order to be able to quickly handle updated versions of 
subsystems and generate consistent outputs. The IP-XACT 
specification, by providing the design context information, 
enables such an automated flow. The scope of automation is 
wide; it includes all steps from IP selection and 
configuration to ready-for-placement netlist with 
accompanying timing constraints. For instance, SoC 
assembly, verification, synthesis, and dft insertion all fall 
within that scope Future work may extend the scope to 
layout. For now, the ready-for-placement netlist with timing 
constraints provides a clear and well defined challenging 
target. 

 
The following sections describe our experience of 

managing the integration of subsystems provided by 
multiple, disperse teams. Each subsystem is created 
according the novel concepts based on the IP-XACT 
specification.  A key criteria for success is the smooth 
handover of information, allowing verification, 
documentation and implementation flows to run 
automatically. 

III. THE CONCURRENT ENGINEERING PROCESS EQUATION 
 
For reuse to be efficient, a repeatable and established 

methodology is essential. According to Collett, the problem 
lays in the difficulty to estimate design complexity and 
especially the impact of reuse. He declared: "The problem is 
that reuse expectations typically exceed reality, and there is 
a difference between the assumed effort required and the 
actual effort required. The effort behind reusing blocks is 
underestimated, and a leading cause of poor schedule 
predictability is the inability to assess the impact of IP 
modifications on project effort." 

The two key areas of focus for leading-edge 
semiconductor firms are schedule predictability and risk 
management of large platforms or projects, declared Collett. 

Although there are good evidence that reuse is working, 
development productivity is not keeping pace because of 
team size increase and poor schedule predictability. And, the 
misunderstanding interplay between reuse and the effort 
saved is a major cause of poor predictability, Collett 
summarized. 

A. Sharing subsystems across teams 
 
Teams exchange subsystems in many ways. These differ 

mainly by the amount of flexibility of the subsystem, in 
other words, how much the end-user is allowed to 
reconfigure the delivered subsystem. 
The three major use models are: 
 

1. Soft core use model 
a soft core use model is applied if the end-user 
prefers to take ownership of the product. The design 
sources are transferred with permission to be 
modified and the warranty from the IP provider is 
limited. Updating the delivery with incremental 
releases from the IP provider can get complicated if 
the end-user changes are not automatically 
reproducible. 

 
2. Firm core use model 

a firm core use model is applied if the end-user 
prefers not to take functional ownership of the 
product. The design sources are transferred, including 
a synthesized gate level netlist which meets a 
mutually agreed performance level (area and timing). 
There is no permission to functionally modify the 
design as functionality is guaranteed by the IP 
provider. The end-user needs to integrate the 
subsystem and create a chip layout, which may 
require standard cell netlist changes that maintain 
functional equivalence. Updating the delivery is not 
as difficult as with soft cores. A new netlist may 
replace an earlier version especially when pin 
compatibility is maintained. 

 
3. Hard core use model 

a hard core use model is applied if the end-user 
prefers not to take ownership of the product. The 
design sources are transferred, including a 
synthesized gate-level netlist and a layout view that 
meets a mutually agreed performance level and 
footprint. There is no permission to modify the 
hardened design. Updating the delivery is comparable 
with the firm core use case. A new layout may 
replace an earlier version especially when footprint 
compatibility is maintained. 

 
1) Data Management 

 
Receiving updated data multiple times may require a 

significant effort to correctly and efficiently apply version 
management. Two different releases of a subsystem will 
typically contain many files with the same names, with or 
without updated content, and only a few newly created or 
removed files. It is difficult to deal with this difference 
reliably at the individual file level. Therefore, it is 



  

recommended that the number of elements to be individually 
updated remains limited. This is handled by treating one or a 
few directories and their content as the elements to be 
updated as depicted in Figure 2. 

 
Fig 2, Directory representation of two subsystem structures allowing for 

easy configuration management 
 

The fact that files are not shared across different 
subsystems is also important. The integrator will need to 
agree with its suppliers which (top level) directory names 
they will use. 
 

2) Naming Conventions 
 
Commonly used languages like verilog define that the last 

compiled description overrules all earlier descriptions with 
the same name. However, in order to guarantee that all sub-
designs with the same name from different suppliers have 
identical content, name clashes for all hierarchical design 
names must be avoided. Using unique names during 
integration is not an attractive scenario. It requires name 
clash detection and modification of deliverables which later, 
for example, could hamper reporting problems to a supplier 
or violate warranties for firm and hard core use models. 
Hence it is best to make a serious attempt to avoid name 
clashes through upfront naming agreements. This requires 
subsystem providers to fully control the naming of their 
design elements. If subsystem creators apply reusable IP, 
then that IP must support configurable names. 
 

3) Use of IP-XACT 
 
Before we continue, it is important to have a common 

understanding of IP and subsystem terms: 
•  We define IP as being a basic block such as UART, 

I2C, bus matrix, etc. 
•  Assembling IPs together is creating a subsystem, 

which can be viewed as a larger IP. 
 

  The IP-XACT specification differentiates between 
component and design XML descriptions: 

• Component XML description details the hardware 
and software interface, focusing on the information 
required for integration. 

•  Design XML description details a composition of 
components, its connectivity, and the component 
configuration parameters that are specific to each 
component instance. For integration purposes a 
component view of the subsystem needs to 
accompany the design XML.  

 
To distinguish the two different component types, we 

introduce the term leaf component for component XML that 
describes a (reusable) IP and which is not a composition of 
IP described through an IP-XACT design. 
 

Configurable IP is characterized by its IP-XACT Vendor, 
Library, Name, Version (VLNV) and parameter value pairs. 
IP parameter values such as IP base address can be manually 
set by the user or automatically calculated by a generator 
using context information to compute its value. 
Configurable IP are explained in greater details in section B. 

Except in the case of the softcore IP, parameters are 
currently not available up in the hierarchy. Hence composed 
systems are not configurable when being instantiated. For 
integration of firm or hard subsystems, change of context 
will not affect parameters value. Hence, all configurable IP 
parameters must be resolved as should parameters that are 
derived from the context prior the delivery. There are 2 
options to enforce this property: 
 

1. For all IP inside a firm or hard subsystem, the 
context analysis can be switched off. This will 
ensure all parameters remain fixed. An integrator 
can potentially be confronted with issues during 
functional verification which may be too late and 
difficult to translate back to the root cause. 

 
2. The context analysis can also be executed as normal, 

where the process reports an error message as soon 
as a parameter value is derived, which is different 
compared to the original value. Preferably an error 
message is presented only if the context is 
incompatible with the subsystem. At this moment it 
is not yet well understood how to automatically 
distinguish a compatible from an incompatible 
parameter value. An error message should report to 
the system integrator which IP and parameter 
combinations are subject to value change. An 
integrator will need to decide whether to continue 
or address the issue. 

 
Having IP-XACT standardized information about 

parameters that are to be changed supports communication 
with a supplier of a subsystem. In the scenario where the 
subsystem is fixed, the IP-XACT parameters help adjust the 
context of the subsystem. 
 

Today we need to use XML component vendor extensions 
to qualify a subsystem soft/firm/hard property as the 
specification does not have dedicated XML elements to hold 



  

this information. Whether there will be a need for having an 
end-user softening capability where a hard core can be used 
as firm core or where a firm core is used as soft core is not 
clear yet, although technically this is certainly possible. The 
organizational and warranty-related consequences need be 
further investigated. 
 

B. Sharing components across subsystems 
Sharing components across teams is fundamental in the 

concurrent engineering process. One key aspect of IP is how 
one deals with its configuration. The following sections 
address what to consider when sharing IPs across 
subsystems. 
 

1) Set user configuration boundaries properly 
 

Having highly reconfigurable IP for extensively reused 
functional blocks is a must. It ensures that everyone use the 
same source of IP, and, as a consequence, raise the IP 
quality and team productivity as everyone contributes to 
make the IP bug free and repeatedly reused without 
problems. As stated earlier, we are only covering the 
concurrent engineering process and not all aspects of IP 
reuse. If we look at Figure 3 below, we can categorize IPs 
according to flexibility in parameters and interfacing. 

 

 
 

Fig 3.  IP Category in terms of configurability 
 
Highly configurable IP will mainly help the subsystem 

provider to quickly create and configure its subsystems. The 
subsystem provider, who has a deep knowledge of his/her 
subsystem, will then be able to quickly derive and generate 
different implementations and rapidly satisfy end-user 
requests. In that sense, configurable IP will primarily serve 
the subsystem provider and have little impact to the end user 
of the complete subsystem that will not have any or limited 
access to the IP configuration. 

If you take the case of an IP on the right hand-side where 
its external interface can be modified through configuration, 
one may consider not giving the end-user access to these 
parameters as it will modify the internal connections and 
even potentially modify the subsystem external interface. It 
is the duty of the subsystem provider to set the right 
boundaries of the end-user configuration. 
 

2) Ease configurable IP integration 
 

Figure 4 illustrates the degree of automation one can 
expect according to the type of IP used. Typically there are 
two things that can affect an IP configuration: 
 

1. Context information (data bus width, other IP base 
addresses) 

2. User information (optional IP features) 
 

 
Fig 4. Degree of automation versus IP category 

 
IP such as bus infrastructure matrix can get most of its 

configuration parameters from the design context and 
therefore, with a high degree of automation, will require 
fewer to no inputs from the user. In the latter case, as shown 
in Figure 4, automation is nearly impossible for parameters 
which are leaves in a dependency tree and for which a value 
is an architectural or feature choice. 
 

In a nutshell, the more design-context sensitive one’s IP 
is, the easier it will be to automate its integration into the 
subsystem. Conversely, the more user-defined one’s IP is, 
the less one will automate and thus will rely on user entry to 
make it work correctly in its subsystem. 
 

The IP-XACT specification supports both user and 
context-sensitive configuration so that IP developers can 
provide a flexible IP whilst preventing non-desired 
configuration by embedding automation to configure IP 
parameters depending on the design context. Take the 
example of an interrupt controller that adapts the size of its 
decoder according to the number of connected interrupts. 



  

The size of the interrupt bus will vary according to the 
number of interrupts in the design, and, while the internal 
behavior will be identical, the interface will differ from one 
SoC to another; the internal structure of the IP will differ as 
well, as the decoder logic will adapt to the number of 
interrupt lines to decode. The integrator’s only duty is to 
connect the different interrupt lines to the interrupt bus 
interface of the interrupt controller; the corresponding HDL 
will be generated accordingly with the corresponding 
interrupt lines and internal decoding logic. 

 

C. Use of Hierarchy Efficiently 
The primary purpose of design hierarchy is to provide a 

mechanism for reducing design complexity by partitioning a 
design into smaller, more manageable subsystems.  These 
subsystems can then be allocated to separate design teams, 
each focused on the particular issues associated with that 
part of the system. Hierarchy can also be used to demark 
layout requirements, power domain systems, test 
requirements, etc., but experience shows that visualizing 
multiple, different hierarchies on a single system adds 
considerable complexity and should be avoided wherever 
possible. 

 
1) Approaches to design hierarchy. 

 
Two approaches are common for implementing hierarchy 

in a complex design. It is worth studying each of these 
approaches because it helps identify the underlying 
requirements of  subsystem design:– 

a) A tagging approach.  
Here the whole system is structured as a large flat 

design, and a combination of tags on components and 
filtering makes the design appear as hierarchical to tools 
like viewers and HDL generators. This approach provides 
considerable flexibility in design manipulation because 
changes can be achieved by simply moving tags; 
however, it does not meet the requirements of subsystem 
design because it does not offer a mechanism for multi-
site isolated development and integration. 

b) A design cross referencing solution 
The alternative approach is that all levels of hierarchy 

become self-contained designs, and that each design is 
allowed to cross-reference other designs to build up a 
hierarchical structure. This is essentially the approach 
adopted by the IP-XACT specification in that designs 
contain components and components can have views that are 
themselves other designs. For sub-system design, this 
approach has the advantage that it scales; components can be 
combined to form designs that are wrapped as components, 
which can then be combined into larger systems. 
 

2) IP-XACT hierarchy 
 

The IP-XACT approach to hierarchy is therefore well 
suited to partitioning a large design into separate 
subsystems, which can be designed at different locations and 
then integrated. A cross-referencing solution allows 
subsystems to be multi-instantiated in a design, which is 
powerful but brings its own issues: 

a)  Consistency Issues 
Successful integration of systems requires that each sub-

design is created with a level of consistency. The IP-XACT 
specification greatly helps in this area because it describes 
interfaces, filesets, and other characteristics of the sub-
system in a consistent XML format.  However, the 
specification has very strict rules of consistency that must be 
followed precisely by all sub-design teams, chief of which is 
bus definition (busdef) standards; these must be identical 
between two communicating IPs.  Two identical bus 
definitions from different vendors, or two bus definitions 
with very slight version number differences, cannot be used 
for communication between IP blocks. 

b) Interface changes, revision control and  
synchronization issues 

A common problem with sub-system integration is the 
challenge of maintaining a consistent top-level design when 
sub-systems are being modified and supplied in various 
stages of development.  Changes that modify the interface of 
a sub-system will impact the integration level of the design; 
interfaces that are added need to be connected, interfaces 
that are removed need to be disconnected, and knock-on 
effects of these changes need to be processed. Keeping the 
whole design synchronized to changes occurring in a sub-
design is a significant integration challenge. 

c) Configurable designs issues 
Some changes to sub-designs (such as the addition of a 

new bus interface) have an immediate and obvious impact 
on integration; other changes are more subtle -- a change in 
the base address of a component will definitely change the 
memory map of the whole system and may change the 
hardware decoding of bridges outside the sub-system. To 
add to the level of complexity, the subsystem may not be 
delivered as a fixed configuration; it may be possible to 
modify certain parameters which impact the content of the 
sub-system and again synchronization of those changes in 
higher levels of hierarchy. Worst case scenario, some IPs 
(such as bridges) modify their configuration not by user 
input, but by examination of design context (e.g. a memory 
controller  may modify the number of address bits it 
provides based on the size of memory connected to it). 
Extreme care must be taken where such design context 
information is gathered from outside the sub-system. 



  

d) Hierarchical manipulation issues 
The IP-XACT specification’s representation of hierarchy 

as components with design views is a rigorous method of 
documenting existing structures and is well suited to 
delivery of sub-systems. However, being rigorous, it lacks 
some of the freedom and ease-of-use that is desirable when 
creating new designs. Restructuring hierarchy, by moving 
components from one design to another through existing 
hierarchical boundaries, will have an impact on the source 
design, the destination design, and all other designs that are 
touched by the changes to the external interfaces making 
these changes. All of these changes need to be synchronized 
between IP-XACT design files and component files for each 
hierarchical level. This is a non-trivial refractoring operation 
that does not lend itself to simple repartitioning of a whole 
system in the way that could be easily implemented in the 
labeling approach mention above. 

 
3) Implementation Experience 

 
Nx-Builder [4] and Platform Express implement hierarchy 

as a collection of designs that can instantiate components 
and other designs. Being based on an Eclipse framework, 
related designs are grouped together into a container called a 
Project.  During 2007, NXP and Mentor Graphics worked 
together to extend this concept to sub-system design. 
Projects were given the ability to reference designs existing 
in other projects, thus creating the ability for sub-systems to 
be developed as separate projects and then integrated in a 
controlled manner. This approach was adopted in preference 
to an import mechanism, which would allow designs to be 
brought together in a single project because it was felt to be 
preferable to keep each of the subsystems self-contained and 
simply refer to them from an integration project. 
 

Project cross referencing has allowed NXP to design large 
systems consisting of multiple sub-systems but has 
highlighted consistency issues and areas for further 
development. The consistency issues exist where two 
projects that are to be combined have non-identical libraries 
of components available. The areas of further development 
are in the question of configurability of sub-designs; 
allowing designers to modify soft IP while restricting the 
ability to modify hard sub-systems, or at-least identifying 
that back-end files such as synthesis and layout files, can no 
longer be reused for sub-systems that have been modified. 

IV. SUGGESTED EXTENSIONS 
 

The process of configuring (configurable) IP is addressed 
differently by all IP providers. This topic is not addressed by 
IP-XACT or any other standard today and therefore a further 
opportunity for standardization exists. 

For sub-systems there is also the topic of configurability. 
How should leaf IP parameters be exposed to designers to 
modify IP in soft subsystems, while restricting the ability to 
modify hard sub-systems, or at-least identifying that back-
end files such as synthesis and layout files can no longer be 
reused for sub-systems that have been modified? 

It will become important to understand the impact of a 
parameter value change. A parameter classification will help 
understand whether subsystems may retain configurability 
options after delivery. 

V. CONCLUSION 
 

IP-XACT has initially been used to document IP to 
introduce automation for integration of subsystems. We 
illustrate how IP-XACT has become an enabler for creating 
uniformity in the way of working for cooperating design 
teams. It facilitates and documents subsystem design data. 
An important aspect is the ability to integrate subsystems 
while retaining separation of source data which is needed for 
efficient intakes of subsequent subsystem releases. 

Making best use of the standard, the EDA tool industry 
contributes tools to increase automation for the design data 
exchange and integration process. At NXP, teams at 
different sites develop subsystems with a specialized 
functional area. Subsystems are created using reusable IP for 
modem, compression, audio and display functions. 
Application is found in all TV, car infotainment and mobile 
communication SoC flagship products. 
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