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Abstract
SSTA has received a considerable amount of attention in recent

years. However, it is a general rule that any approach can only be
as accurate as the underlying models. Thus, variation models are
an important research topic, in addition to the development of sta-
tistical timing tools. These models attempt to predict fluctuations
in parameters like doping concentration, critical dimension (CD),
and ILD thickness, as well as their spatial correlations. Modeling
CD variation is a difficult problem because it contains a system-
atic component that is context dependent as well as a probabilistic
component that is caused by exposure and defocus variation.
Since these variations are dependent on topology, modern-day
designs can potentially contain thousands of unique CD distribu-
tions. To capture all of the individual CD distributions within sta-
tistical timing, a transistor-specific model is required. However,
statistical CD models used in industry today do not distinguish
between transistors contained within different standard cell types
(at the same location in a die), nor do they distinguish between
transistors contained within the same standard cell. In this work
we verify that the current methodology is error-prone using a
90nm industrial library and lithography recipe (with industrial
OPC) and propose a new SSTA delay model that on average
reduces error of standard deviation from 11.8% to 4.1% when the
total variation (σ/μ) is 4.9% – a 2.9X reduction. Our model is
compatible with existing SSTA techniques and can easily incorpo-
rate other sources of variation such as random dopant fluctuation
and line-edge roughness.

1.  INTRODUCTION
In modern-day Integrated Circuit (IC) design, process parame-

ter variations are becoming an increasing concern. As we scale
below 90nm, manufacturing effects such as lithography exposure
and defocus variation, random dopant fluctuation (RDF), line-
edge roughness (LER), and dishing are causing increasing
amounts of variation in every aspect of design. Considering that
the sources of these variations are random processes, a probabilis-
tic methodology could potentially be more accurate than its deter-
ministic counterpart. For this reason, researchers have been
exploring statistical approaches in various areas of modern IC
design for years. Of these approaches, Statistical Static Timing
Analysis (SSTA) is one of the most prominent and has attracted a
significant amount of attention over the past decade. SSTA itself is
a broad research topic that encompasses everything from the tim-
ing analysis algorithm (which includes atomic delay operations
like SUM and MAX) to the underlying models that strive to cap-
ture IC variation.

While there has been a great deal of work devoted to the SSTA
algorithm [1–5], to our knowledge little improvement has been
made in the delay models used within SSTA. This poses a poten-
tial problem, since the overall SSTA accuracy is fundamentally
limited by the accuracy of the underlying models. Without suffi-
cient accuracy, the benefits of switching from deterministic timing
to SSTA are uncertain. Of the three main variation parameters –
Critical Dimension (CD), doping concentration, and Inter-layer
dielectric (ILD) thickness – CD variation modeling is particularly
difficult because it contains both a systematic component that is
context dependent, as well as a probabilistic component that is
caused by exposure and defocus variation in the lithography sys-
tem. These variations in exposure and defocus create unique, tran-
sistor-specific distributions. Current SSTA frameworks, however,
do not model these differences in device distributions. Instead, CD
variation is handled identically across the entire standard cell
library. This type of CD model is error-prone for two reasons:

• The model assumes that a single CD distribution applies to
all standard cells in the library, regardless of cell type.

• The model assumes that the same, single CD distribution
applies to all transistors within a standard cell.

These two assumptions lead to errors in SSTA because the
resulting model does not account for the fact that different transis-
tors (at the same location in a die) can have different CD distribu-
tions. For instance, Figure 1 contains a sample standard cell layout
(the drawn and printed image polysilicon, as well as the diffusion
layers are shown) with 12 transistors. The current CD model
assumes that all 12 transistors vary identically, which means that
changes in CD, or ΔCD, for each transistor can be represented by
the same random variable (RV). However, in reality, each transis-
tor CD is dependent on its neighboring geometries; the distance
from neighboring gates, the distance to poly-to-contact landings
(shown in Figure 1.B), and the line-end overhang (shown in Fig-
ure 1.A) will all affect an individual CD distribution. These layout
characteristics not only modify the nominal CD for each device,
but they also impact the variability of CD and its sensitivity to
changes in lithography exposure and defocus. Thus, capturing
ΔCD with a single RV is inaccurate. However, modeling each
transistor CD as an independent RV is also incorrect, since expo-
sure, defocus, and context similarities lead to similarities (and cor-
relation) between CD distributions. Therefore, to accurately
represent CD in a design, we would prefer a separate RV for each
transistor that would not only contain the moments (μ, σ, etc.) of
its actual CD distribution, but would also preserve its correlation
to other transistors.

To verify the impact of topology on both nominal CD and CD
sensitivity to changes in exposure and defocus, Figure 2 is
included, which plots CDi (for some transistor, i, in the standard
cell from Figure 1) as a function of lithography exposure. In Fig-
ure 2, four of the twelve CDi’s (T1, T2, T6, and T9) are shown.
When the actual distribution of exposure is input into the CDi
function, the resulting CD distribution for transistor i has a unique
mean and standard deviation, but is highly correlated to the other
11 distributions. The average CD (at each exposure setting) for the
cell is also plotted and represents the single distribution CD
model. Even though this is a simple example (the only transistors
used to compute the average CD come from one standard cell and
the only variation included is the lithography exposure variation),
the single CD model still incurs an average error in standard devi-
ation (σ) of ~9% when total variation (σ/μ) is ~4%. The zoomed
in portion of Figure 2 emphasizes the difference in nominal CD
for the transistors in the cell, as well as the difference in sensitivity
(the difference in curvature) to changes in exposure.

Figure 1. Standard Cell Layout – Poly & Diffusion Layers Only
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While there has been a significant amount of research on devel-
oping new lithography-aware characterization tools and determin-
ing how lithography impacts physical and electrical device
parameters [6–8], to our knowledge no one has proposed an accu-
rate, Transistor-Specific SSTA delay model. In [6], the authors
developed a lithography simulation flow which they used to
improve case-based analysis over current timing. While they
showed improvement over static timing analysis (STA), it was not
clear how their characterization could be extended to SSTA. An
improved gate length extraction was proposed in [7] and used to
improve timing accuracy in non-uniform device gates. Choi et al.
in [8] designed a tool aimed at incorporating numerous sources of
variation, such as proximity effects, lens aberrations, and Chemi-
cal-Mechanical Polishing (CMP). However, all the previous
approaches have focused on improving STA, and are therefore
applicable in the deterministic sense.

In this work we propose a novel CD and delay model for SSTA
that captures the cell-level and transistor-level lithography effects
by incorporating all of the systematic and probabilistic compo-
nents due to exposure and defocus variation. Using a 90nm indus-
trial library and lithography recipe (with industrial OPC), we
verify our model against results obtained from a custom lithogra-
phy-aware simulator. Then we compare the amount of error in our
model to the amount of error in the current SSTA delay model. We
found that by using our CD and delay model, you can achieve a
~3X reduction in the error of standard deviation. Our approach
uses Principal Component Analysis (PCA) to minimize the num-
ber of components used in our CD model so that we can effec-
tively capture any CD distribution in our library with only 2
components. This CD model is then used in our proposed SSTA
delay model. By utilizing PCA to reduce the number of compo-
nents, the characterization runtime is on the same order as the cur-
rent technique. Additionally, our model is compatible with
existing SSTA frameworks [1,2] and we can easily incorporate
other variation sources such as RDF and LER.

The remainder of this paper is organized as follows: Section 2
discusses the previous approach in more detail, while Section 3
describes our proposed model. Then Section 4 illustrates the
results obtained in our standard cell characterization and delay
model generation, and Section 5 concludes the paper.

2.  PREVIOUS APPROACH
Current SSTA methodologies perform all statistical operations

on propagation delays in order to determine the final distribution
for timing [1,2]. However, the propagation delay for a single gate
is actually a function of a number of parameters that are affected
by variation (e.g. gate length and threshold voltage). In this work,
we focus on gate length variation. It is well known that propaga-
tion delay can be modeled as a linear or quadratic function of gate
length, as shown in (1) and (2), respectively. These models typi-
cally provide a simple, but accurate, representation of delay in
terms of gate length. From the models in (1) and (2), only α, β

(and λ), and the distribution for Lg are needed to calculate the
delay variation.

(1)

(2)

In this work we chose to model delay as a quadratic function of
gate length, as in (2), since quadratic models are capable of cap-
turing some nonlinearity. Therefore, the delay models mentioned
in the remainder of the paper are quadratic.

While (2) seems simplistic at first glance, its actual implemen-
tation within timing analysis (TA) is slightly more complicated,
thus, a brief description of present-day delay modeling and CD
modeling follows.

2.1.  Delay Model
Equation (2) is a straightforward representation of the depen-

dence of Delay on one input parameter, Lg. However, in reality
delay is also dependent on the output loading of the gate and the
slope or slew rate of the input signal. Additionally, a gate usually
has more than one input-pin, and the time it takes for an input
transition to propagate to the output can vary from input-pin to
input-pin. Present-day timing analysis is able to manage these
dependencies by utilizing data in the form of a lookup table. This
lookup table is typically built during library characterization in the
early stages of a standard cell library’s lifetime. For every combi-
nation of output load and input slew, the characterization tool fits
the input-to-output propagation delays as a function of gate
length. Thus, for some gate in the library that has P input pins and
S output-load/input-slew pairs, there will be  values of
each coefficient, α, β, and λ (the factor of two appears because
there is a rising and falling transition associated with each pin).
Example pseudo-code for delay model characterization is
included in Figure 3. The characterization flow is also illustrated
in Figure 4.

Figure 2. Standard Cell Gate CD vs. Exposure

Figure 3. Delay Model Characterization Pseudo-code

foreach (Standard Cell)
foreach (Input Pin)

foreach (Output Loading)
foreach (Input Slew)

1. Perform transient sweep of Lg and 
measure delay.

2. Fit delay as a function of Lg.
end (Input Slew)

end (Output Loading)
end (Input Pin)

end (Standard Cell)

Figure 4. Delay Model Characterization

Delay α βLg+=

Delay α βLg λLg
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2.2.  CD Model
The other component needed to include CD variation within

SSTA is a CD model, or a model for Lg in (2). As stated in Section
1, for any gate in the library at the same location, current SSTA
frameworks typically model CD as a single RV and all devices
within a standard cell vary identically. Process engineers deter-
mine this distribution by fabricating different test structure geom-
etries, and measuring the samples across a number of dies and
wafers. These measurements are then treated as the discrete sam-
ples that comprise the single distribution of gate length – Lg. Once
Lg is known, this model can also be extended to include spatial
correlation in CD. Our SSTA implementation of this model is
referred to as the “Single-CD Library” model and is discussed in
more detail in Section 4.1.1.

3.  PROPOSED TRANSISTOR-SPECIFIC MODEL
The probabilistic and systematic components of lithography

variation due to exposure and defocus exist because of the role
they play in the manufacturing process. Exposure and defocus in a
lithographic system determine the amount of photoresist that is
developed. Therefore, any deviation in exposure or defocus will
lead to over- or under-development of the photoresist. This causes
geometries to differ in stability and roughness, as well as deviate
from the intended size [9–11]. The over- or under-development at
a certain area of the die will cause probabilistic shifts in mean CD,
however, the direction and magnitude of those shifts is dependent
on neighborhood or context, which is systematic in nature. To
illustrate this problem, we took the same standard cell (with OPC)
in Figure 1 and ran a printed-image simulation at nominal expo-
sure and defocus. The standard cell layout, optical proximity cor-
rection (OPC) recipe, and lithography system setup were all
obtained from an industrial 90nm process. All geometries began
with the same drawn CD, however, even when lithography
printed-image simulation was run at nominal exposure and defo-
cus settings, context dependencies arose. Table 1 contains the per-
centage deviation of each CD from the maximum CD (the CD for
the transistor labeled “T1” in Figure 1). From this table it is clear
that even at nominal settings where OPC is typically most effec-
tive, within-cell context dependencies emerge that lead to devia-
tions in CD of ~4%. As stated in Section 1, these within-cell CD
deviations are caused by a number of layout characteristics like
geometry-to-geometry distance, line-end overhang, and distance
to contact landings. Since there are hundreds of standard cells in a
typical library and each cell will have different orientations/spac-
ings of geometries, the need for a lithography-aware CD model is
apparent.

Present-day, non-lithography-aware CD models can be viewed
as the most rudimentary variation model: only one random vari-
able is needed. The most complex model, on the other hand,
would involve having an RV for each transistor in the library. In
the 90nm library that we used, this would mean that SSTA would
have to keep track of thousands of random variables for CD varia-
tion alone, which is unacceptable. However, in our work we
hypothesized that since there are two main underlying compo-
nents of CD variation, exposure and defocus, CD could be mod-
eled as a function of ~2 components. Furthermore, when we
performed printed-image simulations (over the entire range of
exposure and defocus) on all of the standard cells in our library,

we discovered that most of the transistor CD distributions were
highly correlated (>0.9), as expected, since the distributions were
created by two common variation sources. These experiments
suggested that a compression technique, such as Principal Compo-
nent Analysis (PCA) [12], would allow us to reduce the number of
RV’s by >3 orders of magnitude, while still preserving the actual
correlations that arise due to the common variation sources and
layout commonalities.

To test our theory, we used lithography-aware simulations (dis-
cussed in Section 3.3) to generate CD distributions for every
device in our library (all transistors within every standard cell).
These distributions were then treated as distinct RV’s and decom-
posed using PCA. We determined that ~99.9% of the total vari-
ance of each RV could be captured with the first two principal
components. This fact is further illustrated in Figure 5, which
shows a scatterplot of the first 60 PCA coefficients (out of a total
of ~200) for an arbitrary transistor in our library. As can be seen,
the first two components are orders of magnitude larger than the
remaining components. This means that instead of using ~200
RV’s to accurately model CD variation for every device in our
library, we only need 2.

The PCA compression technique is used as the basis of our
Transistor-Specific (Xtor-Spfc) CD and delay models. They are
described next in Section 3.1. Section 3.2 outlines the entire Xtor-
Spfc characterization flow, while Section 3.3 briefly discusses the
custom lithography-aware simulator used in our experiments.

3.1.  Transistor-Specific CD and Delay Models
Since we use PCA in our CD model, CD can be analytically

expressed as:

(3)

In (3), Ljk is the CD distribution of a particular transistor, j, con-
tained in the kth standard cell of the library. Specifically,  is
the mean CD of the device (determined during Litho-Aware simu-
lation), ajk and bjk are the first two PCA coefficients, and X1 and
X2 are the principal components, which are standard, normal
RV’s. The coefficients, ajk and bjk, are calculated as described in
(3);  is the standard deviation of the device CD, vjk,1 and vjk,2
are the jkth element in the first and second eigenvectors, respec-
tively, while λ1 and λ2 are the first and second eigenvalues. For a
more detailed theoretical description of PCA we refer the reader to
[12]. This model is referred to as the Xtor-Spfc CD model for the
remainder of the paper.

The Xtor-Spfc CD model is used directly in (2) to generate our
Xtor-Spfc delay model. To determine which Ljk is actually used in
the delay model, we merely choose the transistor associated with
the specific pin-to-pin transition in question. For instance, if we’re

Table 1. Percentage Deviation from Max CD
(Nominal Exposure & Defocus)

% Deviation from 
Max CD (T1)

% Deviation from 
Max CD (T1)

T1 0% T7 0%
T2 4% T8 2%
T3 4% T9 2%
T4 4.4% T10 3%
T5 4% T11 2%
T6 2% T12 3.4%

Figure 5. Normalized CD Distribution PCA Coefficients
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characterizing the rising delay transition of a minimum-sized
inverter, then the Ljk that we use in the model is the PMOS CD
distribution (assuming single input switching). If the device hap-
pens to have multiple fingers, then we choose any one of the
devices (since all devices are highly correlated).

3.2.  Transistor-Specific Characterization
The proposed Transistor-Specific model characterization flow

is presented in Figure 6. It uses the Litho-Aware simulator,
depicted in Figure 7 and described in Section 3.3, to determine the
CD distributions for all of the transistors contained in every stan-
dard cell in our library. Then it runs PCA on the entire set of CD
distributions (each CD distribution represents a distinct RV) and
calculates (3), our Xtor-Spfc CD equation, based on the first two
principal components. Not only are these CD equations used
directly within SSTA in determining the delay distributions, but
they are also used to generate gate length samples used in the
HSPICE delay sensitivity characterization (the Ljk’s are used as
the Lg’s in the pseudo-code in Figure 3). Because the CD distribu-
tions, the Ljk’s, are independent of the output loading and input
slew, we only need to run the Xtor-Spfc model generation once
per standard cell. When all of the CD distributions have been sim-
ulated for every cell in the library, a limited set of samples is cho-
sen to obtain an accurate quadratic fit for delay. As a result, the
runtime of the proposed Xtor-Spfc model is of the same order as
existing approaches.

It is important to note that in practice, exposure and defocus in a
lithographic system gradually varies from one die location to the
next. As a result, both exposure and defocus variations tend to
affect closely spaced devices in a similar manner, making them
more likely to have comparable CD’s than those placed far apart.
Therefore, it is important to capture spatial dependencies between
the CD variation of two devices in addition to characterizing the
proximity dependence of layout. Process engineers currently uti-
lize test structures to determine the correlations that exist in a
given process. Similarly, our model could use a test-structure-
based method of extracting correlation. The test structures them-
selves would consist of a few representative standard cells chosen
from our design library. These library cells would be replicated
across the die and then fabricated at a manufacturing facility.
Much like existing procedures, our RV’s X1 and X2 would be
extracted from the manufactured data at each location in a die,
across all dies, allowing both the intra- and inter-die correlation to
be calculated.

3.3.  Litho-Aware Simulation
Our Transistor-Specific characterization is built around a num-

ber of industry IC design tools. A flow chart for the simulator is

shown in Figure 7. The Litho-Aware simulator receives a graphic
data system (GDS) layout file as the main input, which contains
the drawn layout of the intended design. In our library character-
ization, all standard cell polysilicon has industrial OPC’s, but the
tool is also capable of adding corrections prior to running the
printed image simulation. Next, it conditionally places neighbor-
ing geometries adjacent to all edges of the circuit under simulation
so that context dependencies can be analyzed. Then, using Mentor
Graphics’ Calibre, a printed image simulation is performed on
either the original GDS or the modified, context-inclusive GDS.
The simulated printed image is then written to a new GDS file,
which is input to an extraction tool. We use Calibre again, as well
as an industrial extraction tool, to extract the spice netlist and
obtain actual gate length values. After running our tool, there are
two outputs at the user’s disposal: the printed image GDS and the
extracted netlists.

4.  RESULTS
During our library characterization, we first analyzed the gate

length and delay distributions, and then explored the accuracy of
three delay models: the Single-CD Library (SCDL), Cell-Specific
(Cell-Spfc), and Transistor-Specific (Xtor-Spfc) models. Both the
SCDL and Xtor-Spfc models were discussed previously in Sec-
tions 2.2 and 3.1, respectively. The Cell-Spfc model is a variant of
the SCDL model and is described in Section 4.1.2. The accuracy
of each of the models was found by comparing its standard devia-
tion for delay to our “Golden” result. The Golden result for each
standard cell is a discrete distribution that consists of 10,000 delay
samples. Each delay sample corresponds to a printed image simu-
lation that has been extracted and characterized in HSPICE at a
particular exposure/defocus setting. Each exposure/defocus pair is
sampled from the joint-normal, bivariate distribution of exposure
and defocus. As stated earlier, this work utilized an industrial
90nm process and an industrial lithography recipe (with industrial
OPC). Since 90nm is a stable process, and variation is expected to
increase as we move from 65nm to 45nm and beyond, we per-
formed our library characterization, model generation, and analy-
sis twice. In the first iteration, exposure and defocus were varied
according to typical 90nm process values, but in the second itera-
tion we increased variability so as to mimic the effects of moving
from a 90nm lithographic process to 65nm. The scaling factors
used to increase variability were obtained from [13]. For the
remainder of this work, we refer to the typical 90nm variation as
“90nm” or small variation and the scaled 90nm variation as
“pseudo-65nm” or large variation. The authors would like to note
that this experimental procedure was chosen due to the fact that
the 65nm data needed for this work (standard cells, device models,
and process data) was unavailable when this research was con-
ducted. Thus, future work includes running our experiments again
at next-generation process nodes when the data becomes avail-
able.

The remainder of this section is divided as follows: Section 4.1
begins by describing our experimental setup. Then, Section 4.2
discusses the general trends observed in the CD and delay distri-

Figure 6. Proposed Transistor-Specific Delay Model 

Figure 7. Lithography-Aware Simulator



butions, and includes a brief discussion of observed within-cell
context dependencies. Lastly, Section 4.3 includes our model
comparisons for both variability cases. Note that in either case we
did not include neighborhood characterization between cells
because industry sources informed us that polysilicon geometries
would be more or less regular from the 45nm process node
onward, reducing neighborhood effects [13]. Thus, we leave
neighborhood analysis as future work. 

4.1.  Experimental Setup
Our experimental results compare three different gate delay

models: the SCDL, Cell-Spfc, and Xtor-Spfc models. Refer to
Section 3 for the details pertaining to our proposed Transistor-
Specific models.

4.1.1.  Single-CD Library Model
For this work, we required a representative model that would

demonstrate the amount of error incurred by ignoring within-cell
and cell-to-cell lithography effects. This model is based on the
current SSTA approach discussed in Section 2.2 and is referred to
as the Single-CD Library model, or SCDL, for the remainder of
the paper. Essentially, our custom Litho-Aware simulator
(described in Section 3.3) samples a joint-normal, bivariate distri-
bution of exposure and defocus and determines all of the transistor
CD distributions for every standard cell in the library. Next, all of
the samples from the transistor CD distributions are collected into
one RV. This RV, L, represents the single CD distribution men-
tioned in Section 2.2, and we use the moments of L to derive Lg.

(4)

Here, μL and σL are the mean and standard deviation, respectively,
of the single gate length distribution, L, and X1 is a standard, nor-
mal RV (with zero mean and unit variance). Finally, the delay dis-
tribution for each cell is calculated by substituting Lg into (2).

4.1.2.  Cell-Specific Model
In addition to the Transistor-Specific model proposed in Section

3, we also explored a variant of the SCDL model, which we refer
to as the “Cell-Specific” (Cell-Spfc) model. This model uses the
same basic procedure described in Section 4.1.1, except for one
key difference: instead of collecting CD distributions from the
entire library into one RV, CD distributions from each cell are col-
lected into a local gate length distribution. For example, assume
for the moment that the cell we are characterizing is a minimum-
sized, 2-input NAND gate with a total of four transistors: NMOS1,
NMOS2, PMOS1, and PMOS2. After Litho-Aware simulation, all
of the CD distribution samples for these four transistors are col-
lected into one RV, LNAND2, and we then calculate Lg,NAND2 as
seen in (5).

(5)

Therefore, in the Cell-Spfc model, each standard cell within the
library will have a different Lg,CELL, but similar to the SCDL
model, all transistors within the same cell will have identical
Lg,CELL’s. These distinct Lg,CELL’s are then substituted into (2) on
a cell-by-cell basis.

4.2.  CD and Delay Distributions
Using our characterization tool, we analyzed 22 different stan-

dard cells under varying amounts of exposure and defocus. We
discovered that with the pseudo-65nm process variation setup, our
library had an average gate length distribution 3σ/μ of ~18% and
an average delay distribution 3σ/μ of ~15%. Additionally, we ver-
ified the effect that layout topology had on the CD and delay dis-
tributions. Our experiments proved that both the CD and delay
distributions were different for transistors within the same cell, as
well as for transistors from two different cell types. For example,
Figure 8 contains the probability density function (PDF) for a 4-
finger, 2-input NOR gate (composed of 16 transistors total).
Included in the plot are 3 of the 16 CD distributions: two NMOS

and one PMOS. All three transistors are normalized to the PMOS
device. From this figure, it is apparent that each of these distribu-
tions differ in mean and standard deviation by a few percent,
thereby confirming that ignoring within-cell variation is inaccu-
rate. The amount of inaccuracy is quantified in the following sec-
tion.

4.3.  Model Comparison
As mentioned previously, the three models discussed in Section

4.1 are compared in this section and each model fits delay as a
quadratic function of CD, as in (2). We found that when compar-
ing the three delay models to our Golden result, each model had
about the same average error in mean (~1%), but the error in stan-
dard deviation (σ) differed considerably. The resulting error in σ
for each model is displayed in Table 2. Both variation cases –
Pseudo-65nm and 90nm – are included in Table 2, however,
unless otherwise mentioned, the remaining results discussed in
this paper pertain to the Pseudo-65nm data.

From Table 2, it is apparent that both of our delay models, the
Cell-Spfc and Xtor-Spfc, are more accurate than the current SSTA
delay model, SCDL. The SCDL delay model has an average error
in σ of 11.8%, and has a worst case error of 39%. Our proposed
delay model, the Xtor-Spfc model, reduces average σ error by
2.9X and has a worst case error of ~16% (a 2.4X improvement).

In order to visually portray the accuracy improvement that you
achieve by using either the Cell-Spfc model or the Xtor-Spfc
model, Figures 9 and 10 are included. These figures show the
standard deviation of delay for the three models plotted against the
golden standard deviation. In these plots, one point represents a
model’s standard deviation for one input-to-output propagation
delay distribution (there are ~50 different pin-to-pin transitions for
the 22 standard cells in our library). Ideally, we would like the
models to fall directly on the black line (y = x), where Model σ =
Golden σ. It is clear that the SCDL model is consistently furthest
from the line, followed by the Cell-Spfc, while the Xtor-Spfc is
the most accurate. This confirms what we observed in Table 2. If
we look at two example CDF graphs in Figure 11 and Figure 12,
we observe similar results. The Xtor-Spfc model and Cell-Spfc
models follow the Golden result more closely than the SCDL
model. However, here the shortcomings of the Cell-Spfc model
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Figure 8. PDF for Various Transistors in a 4-finger, 2-input NOR gate

Table 2. Absolute Error in Standard Deviation
(from Golden Distribution)

Pseudo-65nm
(Avg. σ/μ = 4.9%)

90nm
(Avg. σ/μ = 2.9%)

% Error in σ % Error in σ

Rise Fall Rise Fall

SCDL - Avg 10.9% 12.7% 14.3% 15.0%
Cell-Spfc - Avg 8.7% 11.4% 9.3% 9.3%
Xtor-Spfc - Avg 3.4% 4.7% 2.2% 1.4%
SCDL - WC 38.0% 39.4% 41.7% 38.3%
Cell-Spfc - WC 38.2% 39.3% 36.0% 30.8%
Xtor-Spfc -WC 16.1% 8.7% 15.4% 8.8%



become apparent. When we are dealing with a simple standard
cell, such as the minimum-sized inverter in Figure 11, the Cell-
Spfc model is almost as accurate as the Xtor-Spfc model. But
when the models are used on more complex cells, such as the
AND/OR Invert gate in Figure 12 or standard cells with fingered
transistors, then Cell-Spfc has nearly as much error as SCDL,
since it collects many within-cell CD distributions into one RV,
similar to the SCDL model.

5.  CONCLUSION
In this work we proposed a transistor-specific CD model and its

corresponding delay model. We then used a custom Litho-Aware
simulation tool to compare our models to existing SSTA models,
and determined the absolute error of our Xtor-Spfc CD and delay
models. We found that the modern SSTA delay modeling
approach is error-prone and can sometimes lead to twice as much
error as total variation. All in all, our proposed SSTA delay model
achieves average error reductions in standard deviation of ~3X
when compared to current models and can be easily incorporated
in existing SSTA frameworks.
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Figure 9. Fall Delay Standard Deviation Comparison – Normalized
(Pseudo-65nm Variation)

Figure 10. Rise Delay Standard Deviation Comparison – Normalized
(Pseudo-65nm Variation)

Figure 11. Minimum-sized Inverter Fall Delay Transition CDF
(90nm Variation)

Figure 12. AND/OR Invert Rise Delay Transition CDF
(90nm Variation)
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