
Model-Based Development of In-Vehicle Software

Extended Abstract

Mirko Conrad, Heiko Dörr
DaimlerChrysler AG, Germany

{mirko.conrad | heiko.doerr}@daimlerchrysler.com

Mathematical modeling, which already is established
for a long time in many engineering domains, now also
gains strongly in importance in the development of
embedded software. In the automotive sector [9],
modeling is used on the one hand for the conceptual
anticipation of the functionality to be realized
(open/closed loop control, monitoring) and, on the other,
for the simulation of the behavior of real physical systems
(plant, environment).

Modeling is usually carried out with commercial
modeling and simulation packages such as MATLAB/
Simulink/Stateflow [6]. They support the development
and definition of system/software components, their
connections and interfaces by semiformal graphical
models using editable, hierarchical block diagrams and
extended state transition diagrams (state charts) and
provide the necessary means of description, computation
techniques and interpreters/compilers. Graphic editors
permit an intuitive development and description of
complex models. Hierarchically structured modularity is
used in order to control complexity. A model consists of
function blocks with fixed in- and outputs. Function
blocks are connected within the block diagram by directed
edges between their interfaces, which describe signal
flows. With this, they represent equations in the
mathematical model, which relate the interface variables
of different components. The connection lines represent
causally motivated directions of action, which define the
outputs of one block as the inputs of another. Components
within the hierarchy can aggregate other components or
be elementary (cf. [5,7]).

Such models can be simulated, i.e. executed. During
simulation the calculation causality follows the defined
directions of action until the entire model has been
processed. For solving the equations described by the
model at certain instants of time there is a range of
different predefined solvers available. Variable-step
solvers are of special importance for the thorough
modeling of physical systems and are used primarily for
modeling the plant and the environment. For the
development of embedded software fixed-step solvers are

used, which represent a necessary prerequisite for an
efficient code generation.

The modeling style described is used extensively
within the scope of model-based development of
embedded in-vehicle software [4,8]. Typically, both an
executable model of the control software (functional
model) and a model of the surrounding system (plant
model) and its environment (environment model) are
created early in the development cycle and are simulated
together. This way, it is possible to model even highly
complex automotive systems with a high degree of detail
at an acceptable calculation speed and to simulate their
behavior closely to reality. While the plant/environment
model is gradually replaced during the course of
development by the real system and its real environment,
the functional model serves as a blueprint for the
implementation of embedded software on the control unit
through code generation.

One characteristic of the model-based development
paradigm is the fact that the functional model not only
specifies the desired function but also provides design
information and finally even serves as the basis of the
implementation by means of code generation. In other
words, such a function model offers specification aspects
as well as design and implementation aspects. In practice,
these different aspects are reflected in an evolution of the
functional model from an early specification model via a
design model to an implementation model and finally its
automatic transformation into C code (model evolution).
In comparison to traditional software development with a
clear separation of phases, in model-based development a
stronger coalescence of specification, design and
implementation phases can be noted. Moreover, one and
the same graphical modeling notation is used during the
consecutive development stages. The seamless utilization
of models facilitates a highly consistent and efficient
development.

In central vehicle domains, model-based development
has become established as the standard paradigm for the
development of control unit software. Significant
advantages can be found in the consistency of the
modeling notations and tools used, in the gains in

3-9810801-0-6/DATE06 © 2006 EDAA

efficiency due to using code generation [10] and in the
fact that testing can be started already on model level [2].
According to user reports there are increases in efficiency
of 20-50% due to model-based development with code
generation in comparison to traditional software
development as well as a more rapid increase of the
maturity level of developed functions. Current research
topics include the model-based development of safety-
related in-vehicle software [3] as well as an tool-
supported integrated trace-management for the different
development artifacts [1].

In general, the paradigm of model-based development
does not depend on the existence of the model type
mentioned above. Alternatively, UML-models, for
example, can be used as well. This tutorial, however,
focuses on the form of model-based development with
MATLAB/ Simulink/Stateflow.

References
[1] Altheide, F., Dörr: Integrating Simulink/Stateflow into a

System Development Environment. 6. NASA-ESA
Workshop on Product Data Exchange - Open Standards for
Model-Based Development, Friedrichshafen, 2004

[2] Conrad, M.: Modell-basierter Test eingebetteter Software
im Automobil - Auswahl und Beschreibung von Test-
szenarien. Deutscher Universitätsverlag, Wiesbaden, 2004

[3] Conrad, M., Dörr, H.: Einsatz von Modell-basierten Ent-
wicklungstechniken in sicherheitsrelevanten Anwendungen
- Herausforderungen und Lösungsansätze. 2. Workshop
Model-Based Development of Embedded Systems
(MBEES'06), Dagstuhl, 2006 (to appear)

[4] Conrad, M., Fey, I., Grochtmann, M., Klein, T.: Modell-
basierte Entwicklung eingebetteter Fahrzeugsoftware bei
DaimlerChrysler. Informatik Forsch. Entw. (2005) 20:3-10

[5] Jersak, M., Cai, Y., Ziegenbein, D., Ernst, R.: A Trans-
formational Approach to Constraint Relaxation of a Time-
driven Simulation Model. Proc. 13. Intl. Symposium on
System Sythesis, Madrid, 2000

[6] MATLAB, Simulink, Stateflow, The MathWorks Inc.,
www.mathworks.com/products/matlab,
www.mathworks.com/products/simulink,
www.mathworks.com/products/stateflow

[7] Merz, R., Litz, L.: Objektorientierte Mathematische
Modellierung - Generische Methoden bei komplexen
dynamischen Systemen. Informatik Spektrum, 23 (2000) 2:
90-99

[8] Rau, A.: Model-Based Development of Embedded Auto-
motive Control Systems. Dissertation, Universität
Tübingen, 2003.

[9] Schäuffele, J., Zurawka, T: Automotive Software
Engineering. Vieweg Verlag, 2003

[10] Stürmer, I., Weinberg, D., Conrad, M.: Overview of
Existing Safeguarding Techniques for Automatically
Generated Code. 2. Intl. ICSE Workshop on Software
Engineering for Automotive Systems (SEAS'05), St. Louis,
2005

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

