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Abstract 

 
An emerging common trend in model-based design 

of embedded software and systems is the adoption of 
Domain-Specific Modeling Languages (DSMLs). While 
abstract syntax metamodeling enables the rapid and 
inexpensive development of DSMLs, the specification 
of DSML semantics is still a hard problem. In previous 
work, we have developed methods and tools for the 
semantic anchoring of DSMLs. Semantic anchoring 
introduces a set of reusable “semantic units” that 
provide reference semantics for basic behavioral 
categories using the Abstract State Machine (ASM) 
framework. In this paper, we extend the semantic 
anchoring framework to heterogeneous behaviors by 
developing a method for the composition of semantic 
units. Semantic unit composition reduces the required 
effort from DSML designers and improves the quality 
of the specification. The proposed method is 
demonstrated through a case study.  

 
 

1. Introduction 
 

Model-based design of embedded software uses 
formal, composable and manipulable models in the 
design, implementation and system integration process. 
An emerging common trend in model-based software 
and systems design is that modeling languages are 
domain-specific: they offer software/system developers 
abstractions and notations that are tailored to 
characteristics of their application domains.  

Model analysis and model-based code generation 
require the precise specification of DSMLs. This is 
partly achieved by metamodeling languages and 
metamodels describing the abstract syntax of DSMLs 
[4]. While abstract syntax metamodeling has been an 
important step in model-based design and been used in 
various model-based design frameworks, explicit and 
formal specification of behavioral semantics has not 
received much attention. For instance, the UML SPT 
[1] does not have precisely defined semantics [2], 

which creates possibility for semantic mismatch 
between design models and modeling languages of 
analysis tools. This is particularly problematic in safety 
critical real-time and embedded systems domain, 
where semantic ambiguities may produce conflicting 
results across different tools.  

We started addressing these problems by extending 
our Model Integrated Computing (MIC) tool suite [6] 
with a semantic anchoring infrastructure for DSMLs. 
The Semantic Anchoring infrastructure [7] [8] includes 
a set of well-defined “semantic units” that capture the 
behavioral semantics of basic dynamic behavior 
categories. The semantics of a DSML is defined by 
specifying the transformation rules between the 
abstract syntax metamodel of the DSML and that of a 
selected semantic unit. In this paper we build on the 
previous results and address the impact of system 
heterogeneity by developing a method to specify 
DSML semantics as the composition of semantic units. 

The organization of this paper is the following: 
Section 2 provides a short overview of the concepts of 
semantic anchoring and semantic units. The core idea 
for semantic unit composition is explained in Section 
3. In Section 4, we demonstrate our approach using a 
simple case study. Section 5 is our conclusion. 

 
2. Semantic Anchoring and Semantic Units 

 
A DSML can be formally defined as a 5-tuple                

L = <A, C, S, MS, MC> consisting of abstract syntax 
(A), concrete syntax (C), syntactic mapping (MC), 
semantic domain (S) and semantic mapping (MS) [7]. 
The abstract syntax A defines the language concepts, 
their relationships, and well-formedness rules available 
in the language. The concrete syntax C defines the 
specific notations used to express models, which may 
be graphical, textual, or mixed. The syntactic mapping, 
MC: C→A, assigns syntactic constructs to elements in 
the abstract syntax. The DSML semantics are defined 
in two parts: a semantic domain S and a semantic 
mapping MS: A→S. The semantic domain S is usually 
defined in some formal, mathematical framework, in 
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terms of which the meaning of the models is explained. 
The semantic mapping relates syntactic concepts to 
those of the semantic domain. 

Although DSMLs use many different modeling 
concepts and notations for accommodating needs of 
domains and user communities, the scope of well 
understood behavioral abstractions are more limited. 
Broad categories of component behaviors can be 
represented by a finite set of basic behavioral 
categories, such as Finite State Machine (FSM), Timed 
Automaton (TA) and Hybrid Automaton (HA). 
Similarly, analyzability requirements and the need for 
correct-by-construction system composition have led to 
the emergence of a set of basic component interaction 
categories expressed as Model of Computations such 
as Synchronous Data Flow (SDF), and Process 
Networks (PN) [5]. This observation led us to propose 
a semantic anchoring infrastructure for defining 
behavioral semantics of DSMLs. The development and 
use of the semantic anchoring infrastructure includes 
the following tasks [7]: 
1. Definition of a set of modeling languages {Li} for 

capturing semantics of the basic behavioral 
abstractions and development of the precise 
specifications for all components of Li = <Ci, Ai, 
Si, MSi, MCi>. We use the term semantic units to 
describe these basic modeling languages. 

2. Definition of the behavioral semantics of an 
arbitrary DSML, L = <C, A, S, MS, MC>, is 
accomplished by specifying the mapping,           
MA: A→Ai, to a predefined semantic unit Li. The 
semantic mapping, MS: A→S, of L is then defined 
by the composition MS = MSi ○ MA, which 
indicates that the semantics of L is anchored to the 
Si semantic domain of the Li modeling language. 

 

 
Figure 1. Semantic anchoring tool suite. 

 
Figure 1 shows our semantic anchoring tool suite. It 

comprises (1) the ASM-based AsmL tool suite [3] [9] 
for specifying semantic units and (2) the MIC 
modeling (GME) and model transformation (GReAT) 
tool suites [6] that support the specification of 
transformation rules between the DSML metamodels 
and the Abstract Data Models defined in the semantic 
units. The behavioral semantics of semantic units are 
specified as a Control State ASMs [3] using AsmL. 
Microsoft Research has developed a set of tools to 

support the simulation, test case generation and model 
checking for AsmL specifications. 

 
3. Semantic Unit Composition 

 
In the semantic anchoring infrastructure, we define 

a finite set of semantic units, which capture the 
semantics of basic behavioral and interaction 
categories. If the semantics of a DSML can be directly 
anchored to one of these basic categories, its semantics 
can be defined by simply specifying the model 
transformation rules between the metamodel of the 
DSML and the Abstract Data Model of the semantic 
unit [7]. However, in heterogeneous systems, the 
semantics is not always fully captured by a predefined 
semantic unit. If the semantics is specified from scratch 
(which is the typical solution if it is done at all) it is not 
only expensive but we loose the advantages of 
anchoring the semantics to (a set of) common and well-
established semantic units. This is not only loosing 
reusability of previous efforts, but has negative 
consequences on our ability to relate semantics of 
DSMLs to each other and to guide language designers 
to use well understood and safe behavioral and 
interaction semantic “building blocks” as well. 

Our proposed solution is to define semantics for 
heterogeneous DSMLs as the composition of semantic 
units. If the composed semantics specifies a behavior 
which is frequently used in system design (for 
example, the composition of SDF interaction semantics 
with FSM behavioral semantics defines semantics for 
modeling signal processing systems [5]), the resulting 
semantics can be considered a derived semantic unit, 
which is built on primary semantic units, and could be 
offered up as one of the set of semantic units for future 
anchoring efforts. Note that primary semantic units 
refer to the semantic units that capture the semantics of 
the basic behavioral categories, such as FSM, TA and 
HA. The composition approach we describe in the rest 
of the paper is strongly influenced by Gossler and 
Sifakis framework for composition [11] by clearly 
separating behavior and interaction. In the following 
we provide a brief overview of the composition 
approach that will be followed by a case study. 

Mathematically, a semantic unit specification can be 
represented as a 2-tuple <A, R>, where A is an 
Abstract Data Model specifying the abstract syntax of 
the semantic unit and R represents a set of Operations 
and Transition Rules (updates, in the ASM 
terminology). We use M = Ι (A) to denote the set of all 
instances of A. Then, each m ∈ M is a well formed 
Data Model defined by the Abstract Data Model A and 
R specifies the behavior of each m ∈ M. The behavior 
in ASM is modeled by a sequence of steps, where a 



Step in a given state includes the execution 
simultaneously of all Rules whose guard conditions are 
true (and the updates are consistent) [3]. Since ASM 
states are mathematical structures (sets with basic 
operations and predicates), it is easy to integrate 
Abstract Data Models and Rules. The integrated tool 
suite ensures that the behavior of domain models 
defined in a DSML is simulated according to their 
“reference semantics” by automatically transforming 
them into AsmL Data Models using the transformation 
rules. 

We model semantic unit composition as structural 
and behavioral compositions (see Figure 2). An ASM 
instance includes an m data model, the R rule set and 
the S dynamic state variables updated during runs. The 
structural composition defines relationships among 
selected elements of Abstract Data Models using 
partial maps. In Figure 2, we demonstrate semantic 
composition with two semantic units, SU1 and SU2. 
The composed semantics is also represented as a 2-
tuple <A, R>. The structural composition yields the 
composed Abstract Data Model A = <AC, ASU1, ASU2, 
g1, g2 >, where g1, g2 are the partial maps between 
concepts in AC, ASU1, and ASU2. 

 

RC

SC

m ∈ MC = I(AC)

RSU1

SSU1

mSU1 ∈ MSU1 = 
= I(ASU1)

RSU2

SSU1

mSU2 ∈ MSU2 = 
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g1 : AC → ASU1 g2 : AC → ASU2

Get_()

Run_()

Get_()

Run_()

SU1 SU2

CS = <A, R>
A    = <AC ,ASU1, ASU2, g1, g2>
R    = <RC,RSU1,RSU2>

 
Figure 2. A graphical representation for                                 

the semantic unit composition. 
 
Behavioral composition is completed by the RC set 

of rules that together with RSU1 and RSU2 form the R 
rule set for the composed semantics. The role of the RC 
set of rules is to receive the possible sets of actions that 
can be offered by the embedded semantic units using 
the Get(…) rules, to restrict these sets according to the 
interactions created by the structural composition and 
to send back selected subset of actions through the 
Run(…) rules to complete their next step. The 
executable actions are represented as partial orders 
above the set of actions. (This will be shown in detail 
in the next Section.) 

In fact, the behavioral composition specifies a 
controller, which restricts the executions of actions. 
Since the behavior of the embedded semantic units can 
be described as partial orders on the sets of actions 
they can perform, the behavioral composition can be 
modeled mathematically as a composition of the partial 
orders. 

 
4. Case Study: Semantic Specification for 
EFSM 

 
EFSM was developed by General Motors Research 

to specify vehicle motion control software [12]. As a 
case study, we defined the behavioral semantics of 
EFSM as the composition of two primary semantic 
units, Finite State Machine (FSM-SU) and 
Synchronous Dataflow (SDF-SU). The full semantic 
specification includes two composition steps: (1) the 
semantics of EFSM Components are defined as the 
composition of FSM-SU and SDF-SU; (2) the 
semantics of SEFSM Systems are then defined as the 
composition of the semantics of EFSM Components, 
which can also be considered as a derived semantic 
unit, called Action Automaton Semantic Unit, and 
SDF-SU. Due to space limitations, we can only briefly 
describe the first composition step. The full semantic 
specifications can be downloaded from [10]. 

 

 
Figure 3. A simple EFSM component model. 

 
4.1. EFSM Components 
 

An EFSM model is a synchronous reactive system 
including a set of components communicating through 
event channels and data channels. An EFSM 
component is an FSM-based model. We use a simple 
component model shown in Figure 3 as an example to 
explain the structure and the behavior of EFSM 
components. The component communicates with other 
components through ports, including a single input 
event port (IEP), an output event port (OEP), two input 
data ports (IDP1 and IDP2) and two output data ports 



(ODP1 and ODP2). A component also includes an 
FSM, where transitions are labeled with a trigger 
event, a guard, an output event and set of actions. 
Guards and actions are computational functions within 
the component and receive their input data through 
input data ports. The execution of an action (a 
function) may produce new data, while the execution 
of a guard only returns a Boolean value for the true or 
false evaluation.  

 
4.2. Primary Semantic Units Used  

 
4.2.1. FSM-SU Specification. The specification 
contains two parts: an Abstract Data Model AFSM-SU and 
Operations and Transformation Rules RFSM-SU on the 
data structures defined in A. The AsmL abstract class 
FSM prescribes the top-level structure of a FSM. All 
the abstract members of FSM are further specified by a 
concrete FSM, which is an instance of the Abstract 
State Model. (see detailed examples in [7]) 

structure Event 
  eventType as String 
class State 
  initial    as Boolean 
  var active as Boolean = false 
class Transition 
abstract class FSM 
  abstract property states           as Set of State 
    get 
  abstract property transitions      as Set of Transition 
    get 
  abstract property outTransitions   as Map of  
    <State, Set of Transition> 
    get 
  abstract property dstState as Map of <Transition, State> 
    get 
  abstract property triggerEventType as Map of  
    <Transition, String> 
    get 
  abstract property outputEventType  as Map of  
    <Transition, String> 
    get 

The behavioral semantics of FSM-SU is specified 
as a set of AsmL rules. The rule Run specifies the top-
level system reaction of a FSM when it receives an 
event. Note that the ‘?’ modifier after Event means the 
return from the Run rule may be either an event or an 
AsmL null value. 

abstract class FSM 
  Run (e as Event) as Event? 
    step 
      let CS as State = GetCurrentState () 
    step 
      let enabledTs as Set of Transition = {t | t in  
        outTransitions (CS) where e.eventType =  
        triggerEventType(t)} 
    step 
      if Size (enabledTs) >= 1 then 
        choose t in enabledTs 
          step 
            CS.active := false 
          step 
            dstState(t).active := true 
          step 
            if t in me.outputEventType then 
              return Event(outputEventType(t)) 
            else 
              return null 
      else 
        return null 

 

4.2.2. SDF-SU Specification. The AsmL specification 
of the Abstract Data Model ASDF-SU is shown below.  
Token is defined as an AsmL structure to package data 
using the AsmL construct case. Port and Channel are 
defined as first-class types. The Boolean attribute exist 
of a port indicates whether the port has a valid data 
token. When all the input ports of a node have valid 
data tokens, the node is enabled to fire. In the 
specification, Fire is an abstract function. A concrete 
node will override the abstract function Fire with a 
computational function. The AsmL abstract class SDF 
captures the top-level structure of a model. The 
abstract property inputPorts contains a sequence of the 
SDF model’s input ports that do not belong to any 
internal nodes. The abstract property outputPorts 
expresses the similar meaning. 

structure Value 
  case IntValue 
    v as Integer 
  case DoubleValue 
    v as Double 
  case BoolValue 
    v as Boolean 
structure Token 
  value as Value? 
class Port 
  var token as Token   = Token (null) 
  var exist as Boolean = false 
class Channel 
  srcPort as Port 
  dstPort as Port 
abstract class Node 
  abstract property inputPorts  as Seq of Port 
    get 
  abstract property outputPorts as Seq of Port 
    get 
  abstract Fire () 
abstract class SDF 
  abstract property nodes       as Set of Node 
    get 
  abstract property channels    as Set of Channel 
    get 
  abstract property inputPorts  as Seq of Port 
    get 
  abstract property outputPorts as Seq of Port 
    get 

The operational rule Run specifies the steps it takes 
to execute a set of nodes. This rule can be considered 
as a composition interface for SDF-SU. In the 
beginning, some of the nodes in the set may not be 
enabled, but they are supposed to be enabled by the 
execution of already enabled ones. The rule non-
deterministically chooses an enabled node from the set 
of enabled nodes (returned by the operational rule 
GetEnabledNodes) and fires it. The execution of a 
node consumes the data tokens in all input ports of the 
node and produce tokens to all output ports as well. An 
error is reported if there are no enabled nodes in the set 
while the set is not empty. 

abstract class SDF 
  Run (ns as Set of Node) 
    step while Size(ns) <> 0  
      choose n in ns where n in GetEnabledNodes () 
        remove n from ns 
        Fire (n) 
      ifnone  
        error ("Some Nodes are not enabled to fire.") 

 



4.3. Compositional Semantic Specification for 
EFSM Components 
 

The behaviors of individual EFSM components can 
be divided into two different behavioral aspects: the 
FSM-based behaviors expressing reactions to events 
and the SDF-based behaviors controlling the execution 
of computational functions (actions and guards). In this 
section, we formally specify the behavioral semantics 
of EFSM components as the composition of two 
primary semantic units: FSM-SU and SDF-SU. The 
compositional semantics specification consists of two 
parts: (1) an Abstract Data Model defining the 
structural composition <AC, AFSM-SU, ASDF-SU, g1, g2>, 
where g1: AC→AFSM-SU and g2: AC→ASDF-SU are 
structural relation maps; and (2) Operations and 
Transformation Rules specifying the behavioral 
composition <RC , RFSM-SU , RSDF-SU >. 

 

 
Figure 4. A compositional structure of the 

EFSM component originally shown in Figure 3. 
 
4.3.1. Structural Composition. The structural 
composition defines mapping from elements in the 
Abstract Data Model of the composed semantic unit to 
elements in FSM-SU and those in SDF-SU. Figure 4 
shows the role of FSM-SU and SDF-SU in the EFSM 
component model by restructuring the example in 
Figure 3. In the modified structure, the FSM model 
controls the event-related behaviors, while the SDF 
model takes charge of the data-related computations. 
Comparing Figure 3 and 4, we can find that the overall 
structure of the FSM model closely matches that of the 
original EFSM component, except for events, guards 
and actions. The trigger events and the output events in 
the FSM model are renamed. The guards and actions 
are represented as nodes in the SDF model. The 
relationships between the FSM model and the SDF 
model are specified by two maps: GuardMap and 
ActionMap. In this section, we only briefly explain 

how these two maps help to relate the FSM model with 
the SDF model. More details will be introduced in the 
following behavioral composition section. 
 

The new compositional structure is built in a way 
that each transition in the original component is 
decomposed into three parts: a transition in the FSM 
model, a node representing the guard and a node 
representing the action in the SDF model. In the 
original component, a transition can be unambiguously 
located by the combination of the source state, the 
trigger event, and the guard. In the compositional 
structure, the information can be expressed by a 3-tuple 
(s, e, n), where s refers a state in the FSM model; e is a 
local trigger event in the FSM model; and n represents 
a node in the SDF model. When a component receives 
an event, this event is a global event and will not be 
directly forwarded to the FSM model. The GuardMap 
maps this global event to a set of 3-tuples, each tuple 
referring to a transition in the original component 
whose trigger event matches this global event. Using 
the example in Figure 3 again, the event α is the trigger 
event only for the transition T1. In the compositional 
structure as shown in Figure 4, the T1 transition is 
decomposed into the t1 transition in the FSM model, 
whose source state is s and trigger event is e1in, and 
the guard1 and action1 node in the SDF model. As a 
result, GuardMap assigns the event α to the set         
{(s, e1in, guard1)}. 

class EventPort 
  var evnt   as Event  = Event ("") 
  var exist  as Boolean = false 
abstract class Component 
  abstract property inPort    as EventPort 
    get 
  abstract property outPort   as EventPort 
    get 
  abstract property GuardMap  as Map of <String,  
    Set of(String, String, Node?)> 
    get 
  abstract property ActionMap as Map of <String,  
    (Set of Node, String?)> 
    get 
  abstract property fsm as FSM 
    get 
  abstract property sdf as SDF 
    get 

 
4.3.2. Behavioral Composition. In essence, the 
behavioral composition specifies the rules RC, which is 
akin to a component-level controller (or scheduler) that 
orchestrates the executions and interactions of the FSM 
model and the SDF model.  

The execution of a transition in the original EFSM 
component can be decomposed into a three-step 
process: (1) the evaluation of the guard functions for 
all outgoing transitions from the current state as nodes 
in the SDF model; (2) the selection of an enabled 
transition in the FSM model; and (3) the execution of 
actions of the transition as nodes in the SDF model. 
The three steps are related to each other by the maps 



GuardMap and ActionMap. The output event produced 
by the execution of a transition in the FSM model is a 
local event. ActionMap maps it to a 2-tuple ({n}, e), 
where {n} refers to a set of nodes (actions) in the SDF 
model and e refers to a global output event that will be 
propagated out of the component. For instance, the 
execution of the t2 transition of the FSM model in 
Figure 4 generates a local event e2out. Since the t2 
transition corresponds to the T2 transition in the 
original component (Figure 3), which is attached with 
actions, action2, action3 and action4, and an output 
event v, the ActionMap maps the local event e1out to a 
2-tuple ({action2, action3, action4}, v) accordingly. 

The rules verbalized above are specified in AsmL as 
Operations and Transition Rules. The operational rule 
Run of Component specifies the top-level component 
operations as a sequence of updates. The AsmL 
construct require asserts that the component’s input 
event port must have a valid event. The rule first 
consumes the event in the port and checks whether this 
event triggers further updates in the component. If the 
event does, the rule MapToLocalInputEvent returns the 
corresponding local event used to trigger the FSM 
model; if not, a null value is returned and the reaction 
is completed. If a valid local event is returned, it 
activates the FSM model. The reaction of the FSM 
model returns a local output event. If the EFSM 
component produces an output event in this reaction, 
the rule MapToGlobalOutputEvent maps the local 
event to the global output even, which is then stored in 
the output port of the component. 

abstract class Component 
  Run () 
    require inPort.exist 
    step 
      inPort.exist := false       
      let localEvent as Event? =  
        MapToLocalInputEvent (inPort.evnt) 
    step 
      if localEvent <> null then 
        step let e as Event? = fsm.React (localEvent) 
        step 
          let globalEvent as Event?=MapToGlobalOutputEvent(e) 
        step 
          if globalEvent <> null then 
           outPort.evnt := globalEvent 
           outPort.exist := true 

Furthermore, we observe that this behavioral 
semantics specification is not limited to the EFSM 
components. It actually specifies the semantics of a 
common behavioral category that captures the reactive 
computation behaviors. Therefore, we can consider the 
semantic specification for EFSM components as a new 
derived semantic unit, called Action Automaton 
Semantic Unit (AA-SU). We can leverage this AA-SU 
to compositionally specify the semantics of EFSM 
systems. (Please refer to [10] for the full specification.) 

 
 
 

5. Conclusion 
 
Compositional semantic specification is a necessary 

step for making DSMLs semantically precise and 
practical. The proposed approach builds on a large 
body of work on ASM [3], semantics of composition 
[5], and on our earlier work on semantic anchoring [7] 
[8]. As a future step we will continue the construction 
of a library of primary semantic units and will move 
toward increased automation in semantic unit 
composition. 
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