
Evaluation of a Refinement-Driven SystemC�-Based Design Flow

Thorsten Schubert1, Jürgen Hanisch2, Joachim Gerlach2, Jens-E. Appell1, Wolfgang Nebel1

1OFFIS Research Institute
Escherweg 2, 26121 Oldenburg, Germany

{thorsten.schubert, jens.appell, wolfgang.nebel}
@offis.de

2Robert Bosch GmbH, Automotive Electronics
Tübinger Str 123, 72762 Reutlingen, Germany

{juergen.hanisch , joachim.gerlach}@de.bosch.com

Abstract

This paper describes the experiences and results that
were made with a SystemC-based design flow for the im-
plementation of an automotive digital hardware design. We
present the refinement process starting from an initial high-
level executable specification in C++ via SystemC down to
a Gate-level description. We compare the synthesis results
of the SystemC-based system-level design flow with those
from a traditional VHDL-based register-transfer level de-
sign flow in terms of efficiency and simulation performance.

1. Motivation

Today's design flows are characterised by a heterogene-
ous mixture of design languages and tools. Different do-
mains like analog hardware, digital hardware and software
each have their specialised languages and tools. Even when
restricting to a single domain like digital hardware, still a
diversity of languages and tools is used. For example, Mat-
lab is very popular for algorithmic modelling, especially in
the signal processing community. C and C++ are often used
for similar purposes when high simulation performance is
required. For the actual implementation of hardware, RTL
modelling with VHDL and Verilog is predominant.

These language changes between the different stages of
the design process require manual recoding, which is labo-
rious and error-prone. Furthermore, language changes in the
design flow complicate the verification of the design. Either
a co-simulation between the different languages has to be
done, or the testbench has to be rewritten in the new lan-
guage.

SystemC promises to overcome this problem by provid-
ing a single modelling framework that covers a wide range
of abstraction levels. For example the concept of hierarchi-
cal channels facilitates transaction-level modelling (TLM),
i.e. an abstract way to model communication in order to
explore and profile architectural alternatives [1]. For de-

scribing algorithmic designs, SystemC introduces the no-
tion of untimed and timed functional abstraction levels. On
these levels of abstraction the designer can concentrate on
the functionality of the design, while abstracting from de-
tails of communication and synchronisation. Furthermore,
SystemC is able to describe systems at the Behavioural- and
RT-level. While the higher levels of abstraction may be
used for simulation purposes only, it is possible to use Be-
havioural-and RT-level descriptions as starting point for an
automated synthesis very similar to VHDL and Verilog.

A further promoted advantage of SystemC is its high
simulation performance, which is achieved by a compiled
execution and the use of higher levels of abstraction.

In order to be applicable in an industrial design flow, it
is mandatory that the new approach seamlessly integrates
into existing design flows. Regarding our design example
from the digital hardware domain, this means we have to
build on top of the well established and mature HDL-based
RTL flow in terms of synthesis and simulation. Tools sup-
porting the new design flow must be commercially avail-
able and supported.

The second major prerequisite is the efficiency of the
synthesis results in terms of area and timing.

Regarding verification, it is always desirable to obtain a
high simulation performance in order to achieve a sufficient
certainty of functional correctness.

The rest of this paper is organised as follows. Section 2
gives an overview of the evaluation procedure. Section 3
describes the design example that is the basis of our evalua-
tion. In Section 4 we describe the refinement process. We
present experimental results in Section 5 and draw a con-
clusion of the evaluation in Section 6.

2. Evaluation Procedure

In order to evaluate the applicability of SystemC and its
potential advantages, we chose a design flow as depicted in
Figure 1. A stepwise manual refinement was applied start-
ing with an initial specification in C++ and ending with two

1530-1591/04 $20.00 (c) 2004 IEEE

different kinds of synthesisable SystemC models: a behav-
ioural and a RTL model both complying with the corre-
sponding synthesisable subset of the SystemC Compiler
from Synopsys®. Each refinement step was verified for bit
accuracy by simulation. Both models were optimised in
order to improve the synthesis results. The optimisation
goal was a minimum area under a fixed timing constraint of
40 ns (clock period).

Algorithmic

m
an

ua
l r

ef
in

em
en

t

Timed Functional
+

Structure

Synthesisable Behavioural

Synthesisable RTL

SystemC

C++

Verilog

Timed Functional

sy
nt

h.

Gate-level

Figure 1. Design flow

C++ was chosen over Matlab for the initial specification
in order to be able to stay in a single language environment
as long as possible during the design process.

An existing, series-production quality VHDL implemen-
tation of our design example, that was created with the
conventional flow of manually recoding the given C speci-
fication in RTL VHDL served as reference implementation
regarding the required efficiency.

3. Design Example

The design example we chose for our evaluation is a
sample-rate converter (SRC). It represents a typical hard-
ware design in the area of car multimedia. Its moderate
complexity (about 3000 lines of code for the final RTL-
SystemC implementation) makes it an ideal candidate for
an evaluation. The purpose of the SRC is to convert stereo
audio signals between different sampling frequencies from
different sources, e.g. between 44.1 kHz (CD) and 48 kHz
(DVD). This is illustrated in Figure 2. Given a sequence of
samples of an analog signal equally spaced at InT , it is
SRC's task to calculate samples of the original analog sig-
nal at a different rate. So basically it is an interpolation
problem. The underlying algorithm that realises the interpo-
lation makes use of bandlimited interpolation as described
in [1].

Output

Input

t
OutΤ

InΤ
Figure 2. Sample-rate conversion

The SRC can be regarded as a periodically time-variant
system, i.e. it performs a convolution of the input signal
with a time-varying impulse response. In order to do so all
SRC implementations from our evaluation contain the fol-
lowing parts: a buffer, that collects past input samples,
some kind of ROM to store the impulse responses (filter
coefficients), and an algorithmic block that performs the
convolution (see Figure 3 - Figure 6)

4. Refinement Process

The overall strategy during refinement was to make only
small, conservative changes to the design and to revalidate
each refined model. In this section we describe the major
refinement steps.

4.1. Initial Specification in C++

The basic structure of the C++ version is shown in
Figure 3. The three main components are the classes CIn-
putBuffer, CPolyphaseFilter and the function
Filter().

Figure 3. C++ model of the SRC

The class CPolyPhaseFilter (more precisely: an
instance) handles the storage of the coefficients for the
time-varying impulse response. The actual filtering is done
in the function Filter(). With each call to Filter()
one output sample is calculated. One might expect to find
this as a member function of the class CPolyphaseFil-
ter, but the filter needs the samples from the input buffer
in the same way it needs the coefficients of the polyphase
filter. Consequently the filter function was associated to
neither of the classes. The filter function is realised as a
single function, which obtains the samples as well as the
coefficients in the same way, namely via the iterators pro-

vided by the input-buffer and the polyphase-filter class
(Figure 3). The iterators can be regarded as some kind of
access objects similar to pointers. They provide methods to
access the element they are pointing on and to manipulate
the pointer. The iterators for the input buffer realise a ring
buffer like access scheme. They can be thought of as read
and write pointers (see Figure 4). The iterator internally
holds an index to an array and ensures a correct wrap
around, because it can only be modified through public
methods. For example when the convolution steps back-
wards through the input samples, the iterator automatically
wraps from 0 to the maximum index. In a similar fashion
the iterator of the polyphase filter hides the storage order of
the coefficients and the fact that only one half of the sym-
metrical impulse response is stored.

 Writepointer

Readpointer

input sample from
A/D-converter

input sample
recently used for
filtering

obsolete
input sample

Figure 4. Input buffer organised as ring buffer

4.2. SystemC 2.0 with Channels

Starting from the C++ implementation as the golden
model, an abstract SystemC model was developed. The first
refinement step was a structural refinement, which resulted
in the model shown in Figure 5. The SRC algorithm was
encapsulated in a hierarchical channel, which implements
the three interfaces SRC_CTRL, SampleWriteIF and
SampleReadIF. The SRC_CTRL is the configuration
port for setting the operation mode.

The major difference between the C++ and the SystemC
implementation is the way the model is executed in its
testbench. The C++ model is a pure sequential algorithm.
The calculation of an output value is assumed to be per-
formed in zero time. The time between two output samples
is calculated and the number of input samples that would
have arrived during this time is added to the input buffer,
before the output sample is calculated. The SystemC model
behaves differently. The producer and consumer in Figure 5
and Figure 6 are independent threads which read and write
samples with a certain frequency.

Figure 5. SRC as hierarchical channel

In a next refinement step the hierarchical channel itself
was refined. The C++ code was split-up into three sub-
modules, basically according to the class structure. A third
thread was added in the main module of the SRC modelling
its functional behaviour. Synchronisation between the
threads was done by explicit event objects (sc_event).
The method calls of the C++ model were roughly translated
into interface method calls (IMC) through channels [3].

Figure 6. Refined hierarchical channel

4.3. Synthesisable Behavioural SystemC

The refinement of the non-synthesisable SystemC im-
plementation with channels into a synthesisable behavioural
description required the following steps:

Communication refinement: The IMC-based commu-
nication of the hierarchical channels was replaced by a
signal-based communication. Explicit handshaking was
implemented, because the main module was going to be
scheduled in a scheduling mode where the number of clock
cycles between I/O operations is not fixed [4]. Therefore
handshaking signals have to be used to indicate valid data.
The advantage of this scheduling mode is that it offers the
greatest optimisation potential.

Structural refinement: All arithmetic operations were
moved into a single process allowing resource sharing for
more efficient synthesis results with current synthesis tech-
nology.

Type refinement: The native C/C++ types were re-
placed by SystemC types with explicit bit-widths. Although
the native types would have been synthesisable, the use of
explicit bit-widths produces more efficient synthesis results.

Timing refinement: A clock was introduced. The time
quantisation that was introduced by this clock required a
change of the golden model. The effect is illustrated in

Figure 7. The upper part of the figure shows the sampling
times within a continuous time domain; the lower figure
shows the sampling times as "seen" by the clocked imple-
mentation (discrete time domain). Since the events at which
input and output samples occur can only be detected at
clock edges, these events are slightly delayed. This delay
causes small changes in the output values compared to the
reference data. To be able to still compare the output values
with the reference output values by a bit-accurate compari-
son, the time quantisation was manually propagated back to
the golden model.

Input

Output

ReadPointer WritePointer

Input

Output

ReadPointer WritePointer

Figure 7. Time quantisation of sample events

Note, this behavioural version of the SRC already con-
tained RTL SystemC modules for two reasons. The first
reason was to test the interoperability of behavioural and
RT level code for simulation and synthesis. The second
reason was that some modules (especially the I/O inter-
faces) only contained simple control functionality, which
was easy to implement at RTL.

4.4. Optimised Behavioural SystemC

The first synthesis result of the complete SRC needed
27.5% more area than the VHDL reference implementation
(for the results refer to Section 5). By far the biggest part of
the design with more than 90% of the total area was the
SRC_MAIN module. Therefore the optimisation was focus-
sed on this module.

The following constructs were expected to cause ineffi-
ciencies of the synthesis result:

Handshaking in loops. A handshaking mechanism be-
tween the input buffer and the SRC_MAIN module was
necessary, due to the scheduling policy of the behavioural
synthesis. The handshaking mechanism could be eliminated
by relying on a fixed cycle scheme. For example this can be
done by proper constraining the behavioural code.

Code proliferation. Because the focus of the refinement
process was to preserve the functionality a conservative
"cut-and-paste-and-refine" strategy was chosen. Since ma-
jor restructuring of the code was necessary the code became
cluttered and less readable. An intensive code cleanup at
this stage helped to simplify several expressions.

Bit-widths. Due to the conservative refinement strategy,
some bit-widths were chosen too pessimistic. These could
be reduced without affecting the result.

Generality. The initial C++ implementation of the SRC
was written in a very generic style. Especially the bit-
widths were parameterised through the C++ template
mechanism. The template mechanism was replaced by
preprocessor #define directives. The code was more
flexible with parameterised bit-widths, but it was harder to
figure out which constructs caused large registers, opera-
tions, etc.

4.5. RTL SystemC

The manual refinement of the synthesisable behavioural
SystemC code from the main module into synthesisable
RTL code consisted of the following steps:
• Fine-tuning of the model's scheduling.
• Allocation of registers for the variables
• Creating an FSM that realises the scheduling

The data-path was not modelled explicitly. Instead it was
described implicitly by the state transitions of the FSM and
then optimised with the Design Compiler� [5].

The refinement of the behavioural SystemC implementa-
tion to an RTL description was relatively easy. The opti-
mised behavioural SystemC implementation of the SRC
was already bit-accurate and nearly cycle-accurate, so the
main task was to optimise its scheduling and the creation of
the controlling FSM.

Although RTL-modelling and synthesis is not the pri-
mary area of application for SystemC and is less elegant
than with HDLs, it is definitely feasible.

4.6. Optimised RTL SystemC

Since the data-path already utilised a minimum number
of resources, the remaining optimisation potential results
from register usage. Since the refinement was done in a
conservative way, there were still some registers that could
be eliminated.

4.7. Discussion

The first refinement steps turned out to be the most diffi-
cult and labour intensive tasks, because of the semantic gap
between the different levels of abstraction, e.g., the transi-
tion from a sequential C++-based program into concurrent
SystemC processes and their transition into clocked threads.
In total, nearly the same amount of work as in the case of
recoding the model in VHDL had to be done, but in a step-
wise manner instead of a single large transformation. If too
many, intermediate levels of abstraction and refinement
steps are chosen, the effort for the refinement can be even
higher. Regarding this evaluation we think that the use of
channels was inadequate for our application. Channels
neither helped for profiling or exploring different architec-
tures nor did they help for synthesis.

The refinement effort however, is comparable to the re-
coding effort, at least when targeting the RT-level. This
appears sensible due to the fact that the necessary tasks, e.g.
creating an architecture and scheduling, are the same � just
the language is different.

An advantage of the refinement-driven approach is that
parts of the code can be reused and that the risk of introduc-
ing new errors into the model is lower. During our evalua-
tion it even happened that a bug in the golden model was
refined down to Gate-level and was discovered during
Gate-level simulation. The bug in the golden model has
been identified as an erroneous access to an invalid buffer
position in some corner cases. When the memory for the
buffer was replaced by an automatically generated simula-
tion model (that included a check for valid addresses) for
Gate-level simulation, the bug became obvious. On the one
hand this example shows that the (in principle positive)
function-preserving property of the refinement-driven ap-
proach also has some drawbacks. On the other hand the
example shows, that the refinement approach allows for
testing the system's general functionality across all design-
stages, so that the probability for failure recognition is in-
creased in this approach

The synthesis results in Section 5 show that the most ef-
ficient designs could be obtained with the RTL-SystemC
implementation. The effort to refine the optimised behav-
ioural level description into RTL turned out to be lower
than expected. So at least for this kind of design the RTL
approach has the best cost-value ratio. The feature making
behavioural synthesis less suitable for this class of designs
is the asynchronous nature of sample-rate conversion in
general. It requires a relatively fine-grained control over the
internal timing behaviour, a quality that is much easier to
control at the RT-level.

5. Results

5.1. Simulation Performance

All simulations have been done on a Sun Blade 100 with
500 MHz and 640 MB RAM. All simulations were per-
formed with ModelSim® 5.5d, SystemC models were com-
piled with gcc 2.95.1 and SystemC/HDL co-simulation has
been performed with the SystemC HDL-Cosim tool version
2002.05 from Synopsys (which is now part of System Stu-
dio). The simulation performance is given in simulated
clock cycles/second. The implementations without a clock
were scaled appropriately according to the ratio of simula-
tion time and simulated time assuming a 25 MHz clock.

Figure 8 shows the degradation of the simulation per-
formance along the refinement process. As expected, the
pure C++ implementation is the fastest one. When compar-
ing the simulation performance of the behavioural SystemC
and RTL SystemC implementation, it has to be considered,

that the behavioural level implementation also contained
RT level components. Due to the lack of proper profiling
tools for the SystemC simulation, it could not be checked
whether the RTL parts dominated the overall simulation or
whether the behavioural part is not significantly faster at
all.

1
10

100
1000

10000
100000

1000000
10000000

C
yc

/S
ec

C++

Sys
tem

C
BEH

RTL

Figure 8. Simulation performance on different lev-

els of abstraction

Figure 9 shows the simulation performance of the HDL
versions of the SRC: the intermediate RTL Verilog code
from RTL SystemC synthesis, the Gate-level code (Ver-
ilog) resulting from the behavioural flow and the Gate-level
(Verilog) code resulting from the RTL flow. The simula-
tions have been performed in two different configurations.
In the first configuration each design under test (DUT) was
simulated in the VHDL testbench, that was available from
the reference design. In the second configuration each DUT
was simulated in the SystemC testbench.

As can be seen from the figure, the co-simulation of the
DUT in the SystemC testbench is slightly faster than a
native HDL simulation. This indicates that in this case the
performance gain by using SystemC outweighs the over-
head introduced by the co-simulation.

0,00

50,00

100,00

150,00

200,00

C
yc

/S
ec

RTL Gate-BEH Gate-RTL

VHDL-Testbench SystemC-Testbench

Figure 9. Co-Simulation vs. native HDL simulation

5.2. Synthesis

Synthesis has been done with SystemC� Compiler
2002.05 and Design Compiler� 2002.05 from Synopsys.
Target library was a 0.25µ CMOS library. All designs were
synthesised with the same synthesis constraints.

We only consider the area here, since it was the main op-
timisation goal in the evaluation. The timing goal could be
easily achieved by all implementations.

Figure 10 shows the area of the SRC designs after com-
pilation to Gate-level relative to the VHDL reference de-
sign which is scaled to 100%. The area numbers were ob-
tained by the report_area command of the Design
Compiler. Memories are excluded from the area, because
they are identical for all implementations and do not reflect
the quality of the synthesis result. A scan chain, however, is
included in all designs.

0

20

40

60

80

100

120

140

%

VHDL-R
ef

BEH unopt.

BEH opt.

RTL unopt.

RTL opt.

Combinatorial Sequential

Figure 10. Comparison of area efficiency

The most remarkable result is that the optimised Sys-
temC implementations produce a smaller design than the
VHDL reference. Even the unoptimised RTL-SystemC
implementation is smaller than the VHDL reference. We
can explain this result as follows. The VHDL reference
implementation started from a low level C specification that
already guided the implementation to a specific architec-
ture. The more abstract C++ model includes more degrees
of freedom concerning the target architecture. So actually
the efficiency was gained through the use of more abstract
models. A direct refinement of the original low-level speci-
fication into RTL-SystemC would have resulted most
probably into nearly the same result as the VHDL imple-
mentation.

When comparing the optimised behavioural and RTL
implementation it can be seen, that the amount of combina-
torial logic is nearly the same. This indicates, that the opti-

mum allocation was reached with the behavioural synthesis.
The area savings of the RTL SystemC implementation over
the behavioural SystemC implementation result from a
more efficient usage of registers.

6. Conclusion

Our evaluation showed that it is generally possible to
apply SystemC in an industrial design flow. The integration
into the existing design flow turned out to be straight for-
ward.

Regarding the efficiency of the synthesis result our
evaluation showed that the refinement-driven approach and
the use of higher levels of abstraction does not necessarily
produce less efficient results. Even the contrary was the
case in our evaluation.

As expected, the use of higher levels of abstraction al-
lows for much faster simulation. Even co-simulating the
SystemC testbench with the HDL design turned out to be
slightly faster than the pure HDL simulation.

The refinement-driven approach in a single language has
pros and cons. The main advantage of the approach is the
partitioning of the design process in several intermediate
steps combined with a revalidation of each step, which
allows for making small function-preserving changes. The
disadvantage is that undersized refinement steps will result
in an overall higher effort than complete recoding and tend
to produce lower quality code, when refinement means
changing the code instead of completely rewriting it. With a
careful selection of the right abstraction levels and the on-
going raise of the level of automation of the SystemC syn-
thesis process, the advantages could outweigh the disadvan-
tages.

7. Acknowledgements

This work was done in the MEDEA+ project SpeAC and
partially supported by the German Bundesministerium für
Bildung und Forschung under grant 01M 3049C.

8. References

[1] Grötker, T., Liao, S., Martin, G., Swan, S., System Design
with SystemC, Kluwer, Academic Publishers, Boston, 2002

[2] Digital Audio Resampling Home Page, http://www-
ccrma.stanford.edu/~jos/resample/

[3] Open SystemC Initiative (OSCI), Functional Specification
for SystemC 2.0, October 2001

[4] Synopsys Inc., CoCentric® SystemC� Compiler Behavioral
User and Modeling Guide Version 2002.05, June 2002

[5] Synopsys Inc.: Design Compiler� Reference Manual: Opti-
mization and Timing Analysis, Version 2002.05, June 2002

	Main Page
	DF'04
	Front Matter
	Table of Contents
	Author Index

	DATE04

