
System Level Design Using C++

Diederik Verkest, IMEC, Leuven, Belgium, verkest@imec.be
Joachim Kunkel, Synopsys, Mountain View, CA, kunkel@synopsys.com

Frank Schirrmeister, Cadence Design Systems, San Jose, CA, franks@cadence.com

Abstract

This paper discusses the use of C++ for the design of
digital systems. The paper distinguishes a number of
different approaches towards the use of programming
languages for digital system design and will discuss in
more detail how C++ can be used for system modeling
and refinement, for simulation, and for architecture
design.

1. Introduction

Advances in silicon processing technology enable
integration of ever more complex systems on a single
chip. These so-called Systems-on-Chip (SoC) contain
dedicated hardware components, programmable
processors, memories, … requiring not only the design
of digital hardware but also the design of embedded
software. The successful deployment of these systems
requires a very high design productivity to deal with the
immense complexity of the system with limited design
resources. This design productivity problem is at the
basis of the recent paradigm shifts in system design:
Intellectual Property (IP) reuse, platform based-design,
and high abstraction level specifications covering both
hardware and embedded software aspects of a SoC.

A higher abstraction level entry to the SoC design
process can be achieved by extending a software
programming language such as C/C++ (see further) or
JAVA (e.g. [13,18,20,36]), using a specialized language
such as SDL (e.g. [14,35]), or by extending an existing
hardware description language to deal with system-level
concepts (e.g. [1]). In this paper we discuss the use of the
C++ programming language to design SoCs from the
system-level down-to implementation.

In today’s system level design flows it has become
commonplace to describe the pure functional system
level model of hardware building blocks in C/C++. Once
hardware-related concepts need to be expressed though,
the design usually is transferred into a hardware
description language (HDL) based design environment.
The reason for this is that C/C++ on and by itself does
not provide the necessary mechanism to describe

concepts like concurrency, signals, reactivity, hardware
data-types, … that are inherent to hardware. The problem
with this approach is that it requires rewriting the C/C++
description in HDL, a time consuming and error prone
step, and even worse, it usually also forces the handoff of
the design from a C++ knowledgeable systems engineer
to an HDL trained ASIC designer. Needless to say that
once the design has been converted to HDL, the system
engineer’s ability to continue contributing to the data and
control refinement process vanishes.

Originally intended for software design, neither C nor
C++ has the basic support required for accurately dealing
with the hardware parts of a SoC design. There are two
approaches for building this type of hardware support.
The first approach relies on syntax extension
[2,7,9,12,16] and requires the development of separate
compilers, simulators, and synthesis tools to manipulate
the new syntax. In this paper we look at the second
approach which relies on class libraries to model the
hardware aspects of the SoC design and can only be used
with languages that are extensible such as C++ or JAVA.
These approaches can re-use the existing language
development framework (compilers, debuggers, and
other productivity tools), for instance for simulation.

There are several ways of using C++ in the SoC
design process. The most straightforward use of C++ is
to construct a pure functional executable model for
simulation using the C++ language and additional class
libraries for hardware concepts. A more sophisticated use
of C++ makes use of the class libraries and the C++
language framework to support a systematic
methodology to design and integrate parts of the SoC
[19,23,25]. Finally, a properly defined subset of the C++
language and the class library extensions can be used as
the input to hardware synthesis [10].

In section 2 we discuss the use of C++ for modeling
systems at different abstraction levels and pay attention
to the mechanisms that C++ offers for support of IP
reuse. In section 3 we discuss the use of C++ for
simulation and architecture definition. Conclusions are
due in section 4.

2. System modeling and refinement

The object-oriented and multi-paradigm modeling
capabilities of C++ [4,29] make it an attractive language
for system-level design. C++ mechanisms such as
classes, templates and operator overloading can be used
to elegantly integrate features that are not available in
basic C++. Classes, for instance, can be used to define
special bit-true data-types [15,17,33]. Operators can be
overloaded to refine their semantics, for instance to
model the overflow behavior of operators on bit-true
data-types or to add execution times for performance
modeling. This extensibility is crucial to support a mix of
modeling paradigms in a single language framework and
makes C++ well suited for executable system modeling.
Using C++, it is possible to provide a rich set of
modeling primitives to system designers without creating
a new syntax or compiler [6,10,11,23,32,34,37].

We believe system-level design should be based on an
executable model in which functionality, architecture,
and timing can be refined concurrently from concept to
implementation. To be useful for system-level SoC
design, this executable model has to support the different
computational models (communicating concurrent
processes, data-flow, finite-state machines, discrete
event, etc.) that are required to deal with the
specification heterogeneity of SoC.

The key to mastering the complexity of SoC design is
abstraction. In the next sections we review two ap-
proaches that apply this principle to support SoC design.

2.1. A C++ class library based approach

While the key to mastering the complexity of SoC
design is to move to higher levels of abstraction, it is also
important to continue supporting abstraction levels and
concepts well established in the design community. A
good example for this approach is SystemC [40].

SystemC provides a C++ class library based
implementation of objects like processes, ports, signals,
hardware data types, ... as well as an event based
simulation kernel. Using the SystemC C++ class libraries
and an off the shelf C++ compiler, a designer can
describe hardware components at a broad range of
abstraction levels, which result from the ability to
perform data refinement and control refinement
separately. One extreme example is C++ code that does
not include any SystemC objects other than the hardware
data types, like bit vectors or finite precision signed and
unsigned integers. An extreme example at the other end
of the spectrum is a functional C++ description
exhibiting clock cycle accurate behavior only at the ports
of the hardware component.

SystemC traces back its origin to the Scenic [10]
project at Synopsys. One of the goals of the Scenic
project was to create a C++ based hardware description
language that could be used to create executable
specifications of hardware components and would also
allow for RTL and behavioral level synthesis.

 The following is an example of a 16-bit CRC
generator described using the class libraries that are
available in the SystemC environment (some modeling
constructs are highlighted in bold).

struct crc_ccitt : sc_module {
sc_in<bool> in;
sc_out<sc_bv<8>> out;

SC_CTOR(crc_ccitt)
{
 SC_CTHREAD(entry);
 watching(reset.delayed() == 1);
}

void entry();
};

void crc_ccitt::entry()
{

bool s;
sc_bv<16> crc;

if (reset == 1) {
out = 0;

}
wait();

while (true) {
crc = out;
s = crc[15] ^ in;
out = (crc.range(14,12),
 crc[11] ^ s,
 crc.range(10,5),
 crc[4] ^ s,
 crc.range(3,0), s);
wait();

}
}

Given its well defined HDL-like RTL and behavioral
level hardware semantics, SystemC provides a very
valuable language foundation for the development of
C++ based synthesis tools that leverage today's proven
HDL based synthesis technologies. Since SystemC
follows the C++ class library based approach,
introducing additional system design concepts merely
requires the creation of new class libraries.

2.2. An object-oriented approach

Further abstraction can be obtained by capturing the
intended design concepts in C++ objects and offering
these as class libraries to the system designer. At the
synthesizable RT level, for example, designers reason
with the synchronous FSMD paradigm as the key design

concept [8] and not with event-driven semantics of a
traditional HDL. Similarly, DSP systems are specified at
the system-level using a data-flow paradigm. So in
addition to supporting event-driven simulation semantics
in C++, higher conceptual abstraction levels such as
FSMD and data-flow objects [23], concurrent process
models and time [30], ... are required to construct high-
level models of SoC designs. These more abstract SoC
models allow a designer to effectively explore the design
space to an extent that is no longer possible at the
detailed RT HDL level.

Such a high-level executable system model is only the
starting point. To make the use of C++ for SoC design
really useful, a design environment is required in which
the executable model can be refined towards an
implementation. A proper use of the C++ language
framework supports this refinement while limiting the
amount of code rewriting a designer has to carry out.
SoC design can then become a programming activity
where the link from the system-level specification to the
RT level implementation is carried out entirely inside the
C++ environment using a process of incremental
refinement. This gradual introduction of implementation
detail in the executable specification of the SoC requires
the ability to combine the different modeling objects in
one and the same description [23]. Part of the SoC
design can be at e.g. the abstract data-flow level and
other parts can already be at the more refined FSMD
level. This incremental refinement can be carried out
under the control of the designer where important
decisions are left to the designer. The tools give the
required feedback that allow the designer to make the
right decisions and support the designer in changing the
SoC model to reflect the implementation decisions. This
type of incremental refinement flow using the C++
framework has been applied in several application
domains, such as network protocol processing (ATM)
[5,31] and digital telecom systems [3,22,23,24] including
embedded software components [6]. The next paragraphs
illustrate how these principles have been applied in the
OCAPI design environment [23,38].
Architecture RTL of my_processor is
begin
 SYNC: process (clk)
 begin
 if (clk'event and clk = '1') then
 current <= next_state;
 a_at1 <= a;
 end if;
 end process;

 COMB: process
 begin
 a <= a_at1;
 case current is
 when state1 =>
 a = 0;
 next_state <= state2;

 when state2 =>
 a = a_at1 + 1;
 end case;
 if (reset = '0') then
 a = 0;
 end if;
 end process;
end RTL;

#include "ocapi.h"

void main() {
 sig a (ck); // register

 sfg reset; // instruction
 a = 0;

 sfg inc;
 a = a +1;

 fsm f(ck); // controller
 state state1, state2;

 f << deflt(state1);
 f << state2;

// state transitions
state1 << always << reset << state2;
state2 << always << inc << state2;
}

The examples above show VHDL and C++
descriptions for a simple increment block implemented
as a synchronous digital machine with one controller
sending instructions to a data path. In the VHDL
description it is not possible to clearly distinguish the
code used for modeling the controller and the code used
for modeling the data path. In addition, the VHDL
constructs used have no direct relation to the RT level
architecture of the increment block. The C++ description
on the contrary, uses objects such as sfg, state, and
fsm to reflect the exact design concept that was
intended. The sfg object models a data path
instruction, while state and fsm are parts of the
controller. All these objects are related to each other
through the use of (overloaded) C++ operators and
expressions. As these operators execute, an object
hierarchy is constructed that reflects the RT behavior of
the processor. The object hierarchy can be manipulated
for simulation, code generation, or other purposes. In
contrast to a traditional use of a programming language
to directly express the functional behavior of the design,
OCAPI descriptions express a conceptual model of the
design. A traditional C++ description of the increment
block would, upon execution, produce a sequence of
incrementing numbers. The OCAPI description, upon
execution, produces a model of the increment block that
can subsequently be manipulated e.g. interpreting it to
produce the sequence of incrementing numbers, or
generating equivalent HDL code from it that can be used
for synthesis. It is this ability to manipulate the design

description in the same C++ environment that also
enables effective IP re-use, as will be discussed in the
next paragraph.

IP reuse is in the first place a matter of reusing
functionality, not structure. Structural reuse forces the
designer to reuse the implementation of an IP block "as
is". However, an optimal integration of an IP block in a
different system context often requires changes, which
are nearly impossible to carry out on a structural or even
RT VHDL level description of the IP block where
communication, control, and functional aspects of an IP
block are all intermixed. Hence, one of the keys to reuse
is to provide a clear separation between the functionality
(i.e. internal behavior) of an IP block and its
communication (i.e. link with the external world)
[2,26,27]. This principle leads to a design methodology
known as interface-based design [17,21,42] where the
interface of a component can be refined independently
from the component's internal behavior. Although
interface-based design is an important step forward to
enable effective IP integration, it leads to separately
refined communication and functional behavior that can
not, afterwards, be integrated easily. In the object-
oriented design approach embedded in the OCAPI
environment, the principle is taken one step further
leading to behavioral re-use [24] where the re-use objects
can directly access the internal basic behavioral objects
of the components of the system description: STATE,
FSM, SFG, etc. In the OCAPI environment one can
implement methods that not only refine the

communication but also allow the refined
communication to automatically manipulate the IP
block's behavior and adapt it to the new communication
environment. This manipulation is possible because
executing an OCAPI description of a system creates an
object hierarchy (i.e. a data structure) of the system,
built-up from OCAPI's basic behavioral objects, rather
than directly executing the system behavior. This data
structure can be manipulated by having other objects
interact with it to add, for example, new states and
transitions to the FSM object.

The example in Figure 1 shows how a waitstate
object attaches itself to an existing FSM. Given the FSM
f, a start state s, and a signal flag, it modifies the FSM
such that it contains a conditional jump from the start
state to a newly created wait state (ws). The procedure
that performs the modification is the expand method
that is given the necessary hooks (FSM f, state s, and
signal flag) to attach to. This type of reuse allows the
introduction of very complex communication behavior in
a system. The designer is responsible only for the
description of the data processing parts of the system and
does not need to worry about the interaction with e.g. an
I2C programming interface. The programming interface
protocol is available as a reuse object in the OCAPI
environment and knows how to attach itself to the data
processing part of the system and modify the control-
flow of the data processing part to provide an optimal
integration.

3. Simulation and architecture definition

As pointed out in section 1, there are different levels
of abstraction at which C++ can be used for system
modeling. Traditional system designers use pure
functional C++ to model and explore the algorithmic
aspects of a block to be designed. At this level of
abstraction the designer thinks in terms of abstract tokens
like ATM cells and GSM frames. Simulation assumes
ideal constraints like zero execution time and infinite
queues between data-flow modules, which avoids token
loss and would use floating point data-types for the
arithmetic. As the result of this step the designer
understands whether an algorithm is the right one to
choose taking into account, for example, certain channel
characteristics in a 3G wireless system. There are really
no architectural effects simulated at this level, only the
structure of the algorithm and its function.

When implementing a particular block into hardware
or software the first architectural effect to be analyzed is
the width of data used for the algorithmic part of the
design. In a simulation the arithmetic operators can be
overloaded in C++ to work on implementation data-
types. A polymorphic type system, which supports theFigure 1. Manipulation of design objects

FSM

s
flag

FSM

s

ws

! flag

flag

flag

class waitstate {
 state ws;
 public:
 waitstate();
 expand (fsm &f, sig &flag, state &s) {
 f << ws;
 s << cnd(flag) << ws;
 ws << cnd(flag) << ws;
 ws << !cnd(flag) << s;
 }
};

appropriate fixed point data-types (Figure 2), is an
enabling factor for seamless refinement between
different arithmetic data-types. It allows (together with
operator overloading in C++) to change the data-types
operated on without having to recapture the structure of
the design. At the end of this step the designer
understands which effect the architectural limitation of
the data width (defined in the type system) has on the
algorithm's functionality, and whether e.g. truncation,
rounding or error correction algorithms have to be
inserted.

After the data width has been analyzed and decided,
the implementation proceeds with adding the effects of
fine grain architectural effects like pipelines and register
banks. The designer may use C++ combined with
appropriate class-libraries to model effects like
concurrency and parallelism in a block to be designed.
The architectural effects are, therefore, inserted using the
class library extensions. The C++ code represents
essentially a hardware description of the block (and also
looks very similar to HDL representations of the same
block). The step from this model to a RTL description
becomes mainly a translation step as they work on the
same level of design abstraction.

The techniques described above for C++ based
simulation and architecture definition work very well for
the actual implementation of a block and the refinement
from an abstract algorithm down to RTL
implementations. Figure 3 summarizes the different steps
of the IP Authoring Flow described above.

Taking into account the exploding complexity of
today’s SoC designs it is important to note that there is a
second, very important flow. It is IP Block Integration.
This second flow enables the exploration of block
functionality in its system context at the abstract system
level (C++ untimed, performance), and allows the
refinement of an executable system specification from
tokens to the actual signal implementations.

Starting from the abstract untimed pure functional
system level model described above, design teams have
to understand how a particular block interacts with its
environment from the algorithmic perspective. An
example would be a physical layer channel receiver,
error correction and speech decoding arranged in a serial
fashion in a wireless receiver system. In an IP Reuse
scenario these models might come from different
sources, potentially even as black boxes without access
to the module content. Furthermore, at this level of
functional integration, different models of computation
like data flow, discrete event, continuous time, ... have to
be integrated into one simulation model, raising several
issues related to simulation (see for more details below).

While the designer does analysis at this level within
blocks, e.g. bit error rate analysis, a typical integration
effect to be investigated would be whether the error
correction algorithm can recover dropped symbols from
the physical layer decoder. The analysis of the
integration is at this point fully functional, no
architectural effects are considered, and only the
structure of the algorithm is taken into account.

From an IP Integration perspective C++ is probably
only one potential authoring technique, since several best
in class description technologies have been established in
the recent past. Among them most notably UML-RT and
SDL are used for software modeling, while specialized
description techniques like data flow networks (as used
in Cadence Cierto™ SPW, Synopsys COSSAP™) or
emerging languages like Superlog™ [41] are point
description techniques for hardware modeling. Therefore
it is essential to allow efficient exchange of simulation
models between simulators. The IEEE Open Model
Interface (OMI) standard (see also [39]) allows this
exchange of protected simulation models between
simulators. Wrapped with an OMI compliant interface,
modules can be linked into C++ based simulations.

Figure 2. Polymorphic data-types

Figure 3. Levels of abstraction for IP authoring

Floating-Point
Algorithm

Σ

Ζ

Σ

Κ Κ

Z

<16,4,t>

<15,5,t>

<12,2,t>

<13,4,t>

Κ

ΣΣ

Κ

Fixed-Point
Algorithm

RTL H/W
Architecture

Design

Gate-LevelGate-Level

Does the
algorithm

work?

Does the
algorithm still
work at certain
bit data width?

Does the
algorithm still

work after
pipelining?

complex
real

doublelongfixed point

sc
al

ar
ve

ct
or

m
at

rix
im

ag
e

R
G

B
YU

V
YI

Q
YC

rC
b

CM
YK

<11,2,t>

S 1 1 0 0 1 0 1 0 1 1

11
2

Polymorphic Data Types

Flexible Fixed Point Representation

After the designer has ensured correct integration of
algorithms from different sources at the untimed abstract
level, the next step is to analyze the performance impact
of the architectural partitioning. It is desirable to refine
the pure functional C++ based (or OMI imported)
simulation models with additional performance
information. This information is typically associated
with coarse grain architectural components like CPUs,
DSPs, bus systems, memories, arbiters and schedulers in
real time operating systems. A function independent
characterization of performance can be achieved by
providing C++ based APIs for accessing scheduler or
arbitration models. These APIs then represent the C++
based architectural models, which carry the performance
and delay in which the pure functional models execute or
exchange information among each other.

By adding performance aspects during the integration
of IP blocks, important integration aspects can be gauged
very early in the design cycle prior to implementation.
While there are several aspects to be considered
especially between the different models of computation
(data flow, discrete event, continuous time, etc.), let us
pick the example of data flow integration into a control
oriented discrete event environment.

In the untimed abstract data flow simulation a
schedule typically is defined which calls the different
data flow elements. Infinite queues are assumed between
the different modules at this level, which means that
tokens are never lost. When integrated in a discrete event
simulation environment and after performance
characterizations are attached, such data flow simulation
can now take into account the reality that infinite queues
do not exist. The physical layer receiver in the example
above might produce tokens in a different rate than the
speech decoder can consume them. The implementation
of the speech decoder might be too slow, therefore the
simulation has to detect that queues are overflowing and
eventually tokens will be lost if non sufficient queue
control is applied.

Finally, the design has to be refined from the untimed
performance level of abstraction to the fully timed,
clocked level from which the design can be exported to
the actual hardware and software implementations. The
abstract tokens used at the untimed system level (GSM
frames, ATM cells) can be refined into actual signal
transactions by adding the appropriate handshake detail
in a communication refinement step. Inter module
communication patterns represent the path that a signal
takes through the architecture (e.g. an interrupt
transmitted over a bus to a CPU triggering an interrupt
service routine receiving data using shared memory).

The different levels of abstraction in an IP integration
process are indicated in Figure 4. For further information
about the methodology of system level integration and
successive refinement to implementation see [19,25].

4. Conclusions

The object-oriented and multi-paradigm nature of the
C++ language allow the introduction of typical hardware
design concepts such as bit-true data-types, finite state
machine models, ... which extend the basic semantics of
C++ towards system-level design. In this paper we have
discussed the use of these principles for system design
modeling at the RT, architecture, and system level and
for the refinement between these different abstraction
levels. The advantages of C++ for system-level design
were reviewed. By making extensive use of class
libraries, C++ offers a single language framework for
executable system modeling and incremental refinement
towards an implementation. In case of object-oriented
modeling with objects that directly correspond with
synthesizable concepts, as explained in section 2.2, the
lowest refinement level will be an RT-level C++
description from which proven synthesis techniques can
be used to generate gate-level implementations.

Synthesis of the full C/C++ language is mostly similar
to synthesis from HDL descriptions, which is a mature
technology today. However, C/C++ presents some
unique challenges for synthesis. Firstly, synthesis of
descriptions using pointers is difficult. Due to effects
such as aliasing, analysis of pointers and where they
point to is non-trivial. Though one can restrict
synthesizable descriptions to exclude pointers, this
problem cannot be ignored in the long term. While some
progress has already been reported in this area [28,31],
more work needs to be done. Another challenge is in
extending the synthesizable subset to include object-
oriented features like virtual functions, multiple
inheritance, etc. More work is required to define the
object-oriented semantics for hardware before synthesis
can be attempted.

Figure 4. Levels of abstraction for IP integration

Floating-Point
Algorithm

Σ

Ζ

Σ

Κ Κ

Characterized
Architecture
Performance

Refined
Integrated

Design

Is the
performance of
the integrated

design
sufficient?

Does the
refined

integrated
design work

Does the
algorithmic
integrated

design work?

Data Flow,
Discrete Event,

Continuous Time

C
lo

ck
ed

U
nt

im
ed

P
er

fo
rm

an
ce

Communication
Pattern

Communication
Refinement

Ab
st

ra
ct

 T
ok

en

A
bs

tr
ac

t T
ok

en

Finally, a proper use of object-orientation supports a
much improved IP re-use process both for IP authoring
and IP integration.

Acknowledgements

The authors would like to acknowledge the
contributions of many colleagues: Patrick Schaumont,
Johan Cockx, Chantal Ykman, Dirk Desmet from IMEC,
Abhijit Ghosh, Stan Liao from Synopsys, and Stan
Krolikoski from Cadence. Further thanks go to Luciano
Lavagno for his valuable comments on earlier drafts.

IMEC acknowledges the financial support of the
Flemish IWT and Alcatel in the context of the MEDEA
A-403 SMT, MEDEA A-114 xDSL, and ITA-2 IRMUT
projects and of the European Commission in the context
of the EP 21,929 MEDIA project.

References

[1] P. Ashenden and M. Radetzki, "Comparison of SUAVE
and Objective VHDL Language Features, Proceedings of
FDL-99, pp. 269-278, Lyon, France, September 1999.

[2] I. Bolsens, H. De Man, B. Lin, K. Van Rompaey, S.
Vercauteren, and D. Verkest, "Hardware-Software Co-
Design of Digital Telecommunication Systems",
Proceedings of the IEEE, 85(3):391-418, March 1997.

[3] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I.
Bolsens, "A Methodology and Design Environment for
DSP ASIC Fixed Point Refinement", Proceedings of
DATE-99, pp. 271-276, Munich, Germany, March 1999.

[4] J. Coplien, "Multi-Paradigm Design for C++", Addison-
Wesley, October 1998.

[5] J. da Silva, C. Ykman-Couvreur, M. Miranda, K. Croes, S.
Wuytack, G. de Jong, F. Catthoor, D. Verkest, P. Six, and
H. De Man, "Efficient System Exploration and Synthesis
of Applications with Dynamic Data Storage and Intensive
Data Transfer", Proceedings of the 35th DAC, pp. 76-81,
San Francisco, CA, June 1998.

[6] D. Desmet, M. Esvelt, P. Avasare, D. Verkest, and H. De
Man, "Timed Executable System Specification of an
ADSL Modem Using a C++ Based Design Environment",
Proceedings of CODES-99, pp. 38-42, Rome, Italy, May
1999.

[7] R. Ernst, J. Henkel, and T. Benner, "Hardware/Software
Cosynthesis for Microcontrollers, IEEE Design and Test
of Computers, pp. 64-75, December 1993.

[8] D. Gajski, N. Dutt, A. Wu, and S. Lin, "High Level
Synthesis", Kluwer Academic Publishers, 1992.

[9] D. Gajski, R. Dömer, and Jianwen Zhu, "IP-centric
Methodology and Design with the SpecC Language",
Proceeding of the NATO ASI on System Level Synthesis
for Electronic Design, Chapter 10, Il Ciocco, Lucca, Italy,

August 1998. Edited by A. Jerraya and J. Mermet, Kluwer
Academic Publishers, May 1999.

[10] A. Ghosh, J. Kunkel, and S. Liao, “Hardware Synthesis
from C/C++”, Proceedings of DATE-99, pp. 387-389,
Munich, Germany, March 1999.

[11] R. Gupta and S. Liao, "Using a Programming Language
for Digital System Design", IEEE Design and Test of
Computers, pp. 72-80, April-June 1997.

[12] R. Gupta and G. De Micheli, "Hardware/Software
Cosynthesis of Digital Systems", IEEE Design and Test of
Computers, pp. 29- 41, September 1993.

[13] R. Helaihel and K. Olukotun, "JAVA as a Specification
Language for Hardware/Software Systems", Proceedings
of ICCAD-97, pp. 690-697, San Jose, CA, November
1997.

[14] A. Jerraya and K. O'Brien, "SOLAR: An Intermediate
Format for System-Level Modeling and Synthesis", in
Computer Aided Software/Hardware Engineering, J.
Rozenblit, K. Buchenrieder, eds, IEEE Press, 1994.

[15] S. Kim, K. Kum, and W. Sung, "Fixed-Point Optimization
Utility for C and C++ Based Digital Signal Processing
Programs", Workshop on VLSI Signal Processing, pp.197-
206, Osaka, Japan, November 1995.

[16] L. Lavagno and E. Sentovich, "ECL: A Specification
Environment for System-Level Design", Proceedings of
36th DAC, pp. 511-516, New Orleans, LA, June 1999.

[17] C. Lennard, P. Schaumont, G. de Jong, and P. Hardee,
"Standards for System-Level Design: Practical Reality or
Solution in search of a question?", Proceedings of DATE-
2000, Paris, France, March 2000.

[18] O. Levia and C. Ussery, "Directed Control Data-flow
Networks: A New Semantic Model for the System-on-
Chip Era", Proceedings of FDL-99, pp. 548-560, Lyon,
France, September 1999.

[19] G. Martin and Sanjay Chakravarty, “A New Embedded
System Design Flow based on IP Integration”,
Proceedings of DATE-99 User Forum, pp. 99-103,
Munich, Germany, March 1999.

[20] C. Passerone, C. Sansoè, L. Lavagno, R. McGeer, J.
Martin, R. Passerone, and A. Sangiovanni-Vincentelli,
"Modeling Reactive Systems in JAVA", ACM
Transactions of Design Automation for Electronic
Systems, 3(4):515-523, October 1998.

[21] J. Rowson and A. Sangiovanni-Vincentelli, "Interface-
Based Design", Proceedings of the 34th DAC, pp. 178-183,
Anaheim, CA, June 1997.

[22] P. Schaumont, S. Vernalde, M. Engels, and I. Bolsens,
"Synthesis of Multi-Rate and Variable Rate Digital
Circuits for High Throughput Telecom Applications",
Proceedings of ED&TC-97, pp. 542-546, Paris, France,
March 1997.

[23] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I.
Bolsens, "A Programming Environment for the Design of

Complex High Speed ASICs", Proceedings of the 35th

DAC, pp. 315-320, San Francisco, CA, June 1998.

[24] P. Schaumont, R. Cmar, S. Vernalde, M. Engels, and I.
Bolsens, "Hardware Reuse at the Behavioral Level",
Proceedings of the 36 th DAC, pp. 784-789, New Orleans,
LA, June 1999.

[25] F. Schirrmeister and S. Krolikoski, “Virtual Component
Co-Design – Facilitating a Win-Win Relationship between
IP Integrators and IP Providers”, Fall IP Conference 1999,
Edinburgh, 1999.

[26] C. Schneider and W. Ecker, "Stepwise Refinement of
Behavioral VHDL Specifications by Separation of
Synchronization and Functionality", Proceedings of
EURODAC-96, pp. 509-514, Geneva, Switzerland,
September 1996.

[27] G. Schumacher, W. Nebel, and C. von Ossietzky, "Object-
Oriented Modeling of Parallel Hardware Systems",
Proceedings of DATE-98, pp. 234-241, Paris, France,
March 1998.

[28] L. Semeria and G. De Micheli, “SpC: Synthesis of
Pointers in C. Application of Pointer Analysis to the
Behavioral Synthesis from C”, Proceedings of
ICCAD-98, pp. 340-346, November 1998.

[29] B. Stroustrup and S. Hamilton, "The Real Stroustrup
Interview", Computer, pp. 110-114, June 1998.

[30] D. Verkest, J. Cockx, F. Potargent, G. de Jong, and H. De
Man, "On the Use of C++ for System-on-Chip Design",
Proceedings of IEEE CS workshop on VLSI-99, pp. 42-47,
Orlando, FL, April 1999.

[31] D. Verkest, J. da Silva, C. Ykman, K. Croes, M. Miranda,
S. Wuytack, F. Catthoor, G. de Jong, and H. De Man,
"Matisse: A System-on-Chip Design Methodology
Emphasizing Dynamic Memory Management", Journal of
VLSI Signal Processing, 21(3):185-194, July 1999.

[32] C. Weiler, U. Kebschull, and W. Rosenstiel, "C++ Base
Classes for Specification, Simulation and Partitioning of
Hardware/Software Systems", Proceedings of ASP-DAC,
CHDL, VLSI, pp. 777-784, 1995.

[33] M. Willems, V. Bursgens, H. Keding, T. Grötker, and H.
Meyr, "System Level Fixed-Point Design Based on an
Interpolative Approach", Proceedings of the 34 th DAC, pp.
293-298, Anaheim, CA, June 1997.

[34] J.-S. Yim, Y.-H. Hwang, C.-J. Park, H. Choi, W.-S. Yang,
H.-S. Oh, I.-C. Park, and C.-M. Kyung, "A C-based RTL
Design Verification Methodology for Complex
Microprocessors", Proceedings of the 34th DAC, Anaheim,
CA, June 1997.

[35] C. Ykman-Couvreur, J. Lambrecht, D. Verkest, B.
Svantesson, A. Hemani, S. Kumar, and F. Wolf, "System
Exploration and Synthesis from SDL of an ATM Switch
Component", Proceedings of 12th ASIC/SOC Conference,
pp. 119-124, Washington, DC, September 1999.

[36] J. Young, J. MacDonald, M. Shilman, A. Tabbara, P.
Hilfinger, and R. Newton, "Design and Specification of
Embedded Systems in JAVA Using Successive, Formal
Refinement", Proceedings of the 35th DAC, pp. 70-75, San
Francisco, CA, June 1998.

[37] Cynlib, http://www.CynApps.com/.

[38] OCAPI, http://www.imec.be/ocapi/.

[39] Open Model Interface Standard, see
http://www.cfi.org/OMF/.

[40] Open SystemC Initiative, http://www.SystemC.org/.

[41] Superlog, http://www.co-design.com/.

[42] VSIA System-Level Interface Behavioral Documentation
Standard, System Level Design Development Working
Group Standard 1 Version 0.1, http://www.vsi.org/.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

