
Towards a Model-based Toolchain for the
High-Confidence Design of Embedded Systems

János Sztipanovits, Gábor Karsai, Sandeep Neema, Harmon Nine,
Joseph Porter, Ryan Thibodeaux, and Péter Völgyesi

Institute for Software Integrated Systems
Vanderbilt University

Nashville, TN 37235, USA
janos.sztipanovits@vanderbilt.edu

Abstract

While design automation for hardware systems is quite
advanced, this is not the case for practical embedded sys-
tems. The current state-of-the-art is to use a software mod-
eling environment and integrated development environment
for code development and debugging, but these rarely in-
clude the sort of automatic synthesis and verification ca-
pabilities available in the VLSI domain. This paper intro-
duces concepts, elements, and some early prototypes for an
envisioned suite of tools for the development of embedded
software that integrates verification steps into the overall
process.

1. Introduction

Embedded software often operates in environments crit-
ical to human life and subject to our direct expectations.
We assume that a handheld MP3 player will perform reli-
ably, or that the unseen aircraft control system aboard our
flight will function safely and correctly. Embedded envi-
ronments require far more care than provided by the cur-
rent best practices in software development. Often formal
verification and system certification are required to insure
correct behavior and conformance to legal standards. Em-
bedded systems design challenges are well-documented [4],
but industrial practice still falls short of these expectations.

Consider one style of modern development practice:
graphical modeling and simulation tools (e.g. Mathworks’
Simulink/Stateflow or National Instruments’ Matrix-X) rep-
resent physical systems and engineering designs using
block diagram notations for dataflows or state models. De-
sign work revolves around simulation and test cases, with
code generation following once the design is considered
complete. Such methods frequently ignore software engi-

neering constraints on the design and neglect issues that
arise from embedded platform choices. At early stages of
the design, often the platform is vaguely specified to the
engineers as a set of possible tradeoffs, with incomplete de-
tails regarding actual platform function and performance.

Similarly, another development style uses UML (or sim-
ilar) tools to capture software engineering concepts such as
components, interactions, timing, fault handling, and de-
ployment. These workflows focus on source code creation
and management followed by testing and debugging on tar-
get hardware. In this case the physical and environmental
constraints are not represented by the tools. At best such
constraints may be provided informally as notes or docu-
mentation to developers and may remain poorly understood.

The interplay between these two prevalent development
styles creates problems. Designers lack tools to model the
interactions between the hardware, software, and the envi-
ronment. For example, software generated from a carefully
simulated functional dataflow model may fail to perform
correctly when its functions are distributed over a shared
network of processing nodes. Neither style of development
supports comprehensive verification of certification require-
ments. To move towards a solution to these problems, we
propose a suite of tools that address many of these chal-
lenges. Currently under development at Vanderbilt’s Insti-
tute for Software Integrated Systems (ISIS), these tools use
domain-specific modeling languages (DSMLs) to integrate
the disparate aspects of an embedded systems design.

The tool suite described here is built on the concept of
platform-based design [8], and is shown conceptually in
Figure 1. Componentization and higher-level services en-
able the designer to build correct systems from validated
components. Additionally, if the DSMLs used in tool in-
tegration have formally defined behavioral semantics and
well-defined models of computation (MoCs) for compo-
nent interactions [7], system properties and models can be



Figure 1. Existing elements of the tool suite.

expressed formally and verified with appropriate external
tools. In the sequel we briefly describe the current state of
the tool suite and conclude with a discussion of the direction
of our future goals.

2. Elements of the Tool Suite

The domain of choice for this research is that of dis-
tributed and embedded control systems. Accordingly, the
formal MoC chosen is that of the Time-Triggered Architec-
ture (TTA) [6]. Time-triggered systems provide a number of
essential guarantees for safety-critical control systems de-
signs. In particular, the TTA provides precise timing for
periodic tasks, distributed fault-tolerance, and replica deter-
minism in redundant configurations. These basic guarantees
and their implementations constitute some of the impor-
tant high-level component services needed for our platform-
based designs.

2.1. Software architecture specification

Simulink/Stateflow (SL/SF) models can be imported into
a well-defined modeling format that allows for analysis, ex-
tension, and code generation. Graphical modeling tools can
read these models and perform software engineering design
tasks. The SL/SF models are embedded in software com-
ponents with well-defined interfaces, and then mapped to
well-defined distributed hardware models.

2.2. Code generation

Model transfomations [3] can convert imported SL/SF
models into a model representing an abstract syntax tree
(AST) for C code fragments. Interpreters for the new AST
model can create code or directly perform simple static

analyses such as checking variable initializations. Gener-
ated C code is generic – the tools currently support execu-
tion on a hardware implementation of the TTA (hardware
available from TTTech[2]) or on a time-triggered virtual
machine (VM) running on Linux (described below).

2.3. Scheduling

Resource allocation in the TTA is controlled by a pre-
generated cyclic schedule created from task specifications
and their communication dependencies. We have created a
simple schedule generation tool that uses the Gecode finite-
domain constraint programming library to search for cyclic
schedules that meet the specifications. Constraint models
are an extension of earlier work in this area [9].

2.4. Modeling the execution platform

The chosen time-triggered model of computation has
been formalized using the DEVS formalism (Figure 2) and
simulated using the DEVS++ simulator [5]. Simulation re-
sults for a time-triggered triple modular redundancy experi-
ment were consistent with observed performance of a time-
triggered implementation [10].

2.5. Implementation of the execution plat-
form

In addition to tests on available time-triggered hard-
ware, we have developed a portable time-triggered VM run-
ning on a networked cluster of processors running standard
Linux. The portability of the VM allows the direct explo-
ration of the capabilities and limitations of the services pro-
vided by the underlying operating system, and the effects of
those limitations on the guarantees provided by the chosen
MoC [10].

3. Future work

As this research effort is a work in progress, we conclude
with a brief summary of the next steps and future objectives
for each of the tools presented. We must keep in mind the fi-
nal goal of verifiable and certifiable software for embedded
systems. This section contains forward-looking statements.

3.1. Software architecture specification

The chief limitation of our software architecture tools is
the one-way design flow from the SL/SF design, through
componentization, down to the final code. We aim to im-
prove the ability to send design information back to the ear-
lier stages of the design as neeeded. For example, platform-
specific simulations may indicate that jitter or quantization



Figure 2. DEVS models for time-triggered vir-
tual machine

effects will impact the initial assumptions of a control de-
sign. Representing that data to control designers in a mean-
ingful way will allow design changes without excessive
workflow iterations. Schedulability is another area where
downstream software design tools can provide meaningful
feedback to the original design engineers.

3.2. Code generation

The abstract model in the code generator opens the door
for a number of potential static analysis and verification op-
portunities. The current toolchain includes two code gen-
erators that produce C (and Java) source code from (single-
rate) subsystems in Simulink and Stateflow models. The
code generators have been implemented using graph trans-
formation techniques, and they produce an AST from which
the actual code is printed. To assist in system-level or func-
tional code verification the AST could be extended to carry
over information from the original model, thus providing
guidance for the source code-level verification tool regard-
ing the original model from which the code was generated
and its properties. We believe this can significantly improve

the performance of the verification step because the verifier
does not have to reverse engineer the high-level abstractions
from the source code, as the abstractions are readily avail-
able in the models.

3.3. Scheduling

We aim to expand the scheduling tools to include spe-
cific time-triggered models. One simple example is that of
adding constraints to support the requirements of the TT-
Tech TTP/C hardware. Another avenue for research is the
exploration of interactions between the resource allocation
model (via schedules) with other system objectives which
can be modeled by constraint or optimization problems in
other domains (such as continuous stability in the control
design).

3.4. Extending the modeling of the execu-
tion platform

The formal DEVS model is a big step towards provid-
ing guaranteed safety and performance in time-triggered
control system designs. DEVS also supports pure event-
triggered behaviors in addtion to timed models. Experimen-
tation with this capability will hopefully lead to a better un-
derstanding of the limitations of heterogeneous component
interactions in our system designs.

Platform simulation also opens up opportunities for ex-
ploration. The TrueTime tool suite from Lund University
[1] extends Simulink models with concepts for modeling
distributed platforms, scheduling policies, and communi-
cation protocols. TrueTime promises to help characterize
behavioral changes due to the distribution of functionality
over networked processors.

3.5. Extending the capabilities of the exe-
cution platform

As the capabilities of the formal models expand, we
aim to extend our portable VM implementation to manage
heterogeneous behaviors. The VM will also be ported to
other operating platforms, including diverse hardware and
RTOSes such as QNX and uC-OS. Different platforms pro-
vide different levels of assurance regarding timing, deter-
minism, and resource management. These differences will
need to be reflected in the models. New features may also be
added to the VM as required to support interaction idioms
such as remote procedure calls or rendezvous. We may also
require additional component services such as health mon-
itoring, fault management, robust clock synchronization, or
failover.



4. Acknowledgements

This work was sponsored (in part) by the Air Force
Office of Scientific Research, USAF, under grant/contract
number FA9550-06-0312. The views and conclusions con-
tained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force
Office of Scientific Research or the U.S. Government.

References

[1] Truetime: Simulation of networked and embedded control
systems. http://www.control.lth.se/truetime/.

[2] TTTech TTP/C Cluster. http://www.tttech.com/.
[3] Aditya Agrawal, Gabor Karsai, Sandeep Neema, Feng Shi,

Attila Vizhanyo. The design of a language for model trans-
formations. Journal on Software and System Modeling,
5(3):261–288, Sep 2006.

[4] T. Henzinger and J. Sifakis. The embedded systems design
challenge. In FM: Formal Methods, Lecture Notes in Com-
puter Science 4085, pages 1–15. Springer, 2006.

[5] M. H. Hwang. DEVS++: C++ Open Source Library of
DEVS Formalism. http://odevspp.sourceforge.net/, first edi-
tion, May 2007.

[6] H. Kopetz and G. Bauer. The time-triggered architecture.
Proceedings of the IEEE, Special Issue on Modeling and
Design of Embedded Software, Oct 2001.

[7] E. A. Lee and A. L. Sangiovanni-Vincentelli. A denotational
framework for comparing models of computation. Technical
Report UCB/ERL M97/11, EECS Department, University
of California, Berkeley, 1997.

[8] Sangiovanni-Vincentelli, A. Defining Platform-based De-
sign. EEDesign of EETimes, February 2002.

[9] K. Schild and J. Würtz. Scheduling of time-triggered real-
time systems. Constraints, 5(4):335–357, Oct. 2000.

[10] R. Thibodeaux and G. Karsai. Model-based specification
and implementation of a model of computation. In prepara-
tion for ECMDA 2008, February 2008.


