
Towards Automatic Translation to Temporally Predictable Code∗

Robert Staudinger
University of Salzburg

Department of Computer Science
5020 Salzburg, Austria

rstaudinger@cs.uni-salzburg.at

Abstract

Contemporary Microprocessors are highly optimised to-
wards average case performance using caches and branch
prediction. While these features provide considerable
speedups they come at the price of predictability. How-
ever, for real-time applications with timing precision re-
quirements in an order of magnitude close the CPU’s clock
frequency, tight prediction of WCETs (worst case execu-
tion times) is indispensable. We are proposing a concep-
tual model and an assembly transformation strategy to turn
code with nested conditional control structures into code
with a flat flow of control. This so-called single-path code
facilitates the prediction of timing behaviour, ideally caus-
ing only an negligible overall slowdown. To overcome the
burden of writing a full fledged compiler, we are designing
our transformation to be applied post-pass, with full sup-
port for any optimisations conducted during the preceding
compilation stage.

1 Introduction

Moore’s law does not go past embedded systems. CPUs
of all architectures and dimensions are constantly super-
seded by more powerful successors. However, an unfor-
tunate side-effect anent to the domain of time-critical ap-
plications is, that more contemporary microcontrollers tend
to expose increasingly non-deterministic behaviour regard-
ing individual instruction latencies. This can largely be at-
tributed to the hierarchical memory model with regard to
a program’s data, and pipelined execution pertaining to its
code. We focus on the latter issue: when branch predic-
tion fails, the pipeline of fetched and decoded instructions
has to be flushed and refilled before program execution can
proceed. Since branches can – and often will – depend on

∗This project has been supported by the Austrian Science Fund, project
No. P18913-N15

input data passed to a program at runtime, it is even theoret-
ically impossible to correctly predict them in all and any
cases. This poses a problem for hard real-time systems,
where tight prediction of a program’s timing behaviour is
indispensable.

The traditional approach to overcome this problem is to
exactly model the hardware in question and apply path anal-
ysis to determine worst case timing scenarios [4]. However,
a correct simulation of CPU intrinsics, including behaviour
like instruction latencies and cache effects, is very specific
to the model in question, and thus tied to considerable ef-
fort.

In the light of the complexities adherent to prediction of
a program’s worst case execution time (WCET), Puschner
proposed the Single-Path Approach [9] to timing-aware al-
gorithms. The essence of this concept is to transform the
code from control dependence to data dependence [1], re-
moving conditional branches, and thus eliminating the non-
determinism they are inducting. Single-path algorithms use
predicated instructions to conditionally execute code in-
stead of branching.

Research on predicated execution has extensively been
conducted to increase performance on high-end proces-
sors [6]. Their high clock frequencies depend on long
pipelines, which in turn increases the performance impact
of pipeline stalls. An approximative rule of thumb for con-
ditionally executed sequential blocks of code is, that pred-
icated execution is favourable over branching, if the time
required to execute the block is shorter than the time re-
quired to recover after a pipeline stall. Predicated instruc-
tions propagate through the pipeline just like their uncondi-
tional counterparts, but – the depending on CPU architec-
ture – the execute and/or writeback stages are not executed
but swapped for NOPs if the assocciated boolean predicate
is false. Consequently any actual side effects caused by the
execution of the instruction in question are impeded.

While the algorithms presented in [9] require manual
adoption of source code, we are interested in automatic
translation to single-path code. Rather than implementing

01 void bsort (int a[], int n) {
02 int i, j, t;
03 for (i = n− 1; i > 0; i−−) {
04 for (j = 1; j <= i; j + +) {
05 if (a[j − 1] > a[j]) {
06 t = a[j];
07 a[j] = a[j − 1];
08 a[j − 1] = t;
09 } } }
10 }

Figure 1. Bubble-Sort Algorithm in C

a full-blown compiler, we are investigating transformations
on assembly level, to allow for building upon already opti-
mised code.

This paper ist structured as follows. Section 2 introduces
the predicate stack model we conceived for single-path ex-
ecution of nested control flow graphs (CFGs) and illustrates
the transformation using a real-world example. Section 3
presents how we are mapping the model to the ARM in-
struction set. Section 4 outlines preliminary experimental
evaluation of this work in progress, and Section 5 gathers
first conclusions and outlines future work.

2 The Predicate Stack Model

In the context of this paper, by referring to conditional
blocks of code we are only identifying strictly forward con-
ditional ones. We denote a block bi being forward condi-
tional if it does not have a backwards edge to the imme-
diate predecessor block bi−1. Using this criterion we can
sort out conditional blocks induced by loop constructs. For
a more thorough discussion treating the reconstruction of
CFGs from assembly code we refer to [2].

For automatic translation of arbitrary programs to their
semantically equivalent single-path counterparts we intro-
duce the notion of a predicate stack. The elements on
the predicate stack mirror the nesting of conditional code
blocks in the CFG. Conditional branches push onto the
predicate stack, the associated join-nodes pop from it. Con-
ditional code executes taking into account the topmost ele-
ment on the predicate stack.

With regard to the model described in this section ei-
ther alternatives are equivalent. If a block is already relying
on predicated execution (e.g. introduced by an optimising
compiler), what is left to do for the translation step is al-
locating the respective condition register on the predicate
stack.

For the purpose of illustrating the transformation strat-
egy and run-time execution mechanism we are using the
bubble sort algorithm, also used in [11]. Figure 1 repro-

01 procedure transform (block, predicate) begin
02 for each op in block do
03 rewrite predicate (op, predicate);
04 if b := get subordinate block (op) then
05 p := push predicate (op);
06 transform (b, p);
07 pop predicate ();
08 end if
09 loop
10 end

Figure 2. Transformation Algorithm

duces the source code exactly as used in our experiments.
Furthermore Figure 4 (a) shows a terse, simplified CFG, (b)
depicts the counterpart CFG after translation to single-path
code. The utilization of the predicate stack can be read off
at the right of sub-figure (b). Bsort is built around a single
conditional block, there is no further nesting. Hence only
one predicate is needed to indicate whether the code is ac-
tually executed or just passed through the CPU’s pipeline
without side-effects.

The predicate in question (denoted p0) depends on the
result of the comparison (Fig. 4, Block 3’). Thus the trans-
formation process has to insert the predicate allocation ac-
cordingly. The operations of subordinate Block 4’ are pred-
icated with p0. Finally p0 is revoked in Block 5’, before the
conditional is tested again.

Obviously, in the general case of a nested conditional
block b′ within a block b, the predicate associated to b′ al-
ways depends on the the predicate of the surrounding block
b, as code within a disregarded branch must never be ex-
ecuted. Therefore each predicate that is pushed on top of
a non-empty predicate stack has to be combined with the
current top element at program execution time using logical
and (c.f. Figure 3).

01 procedure push predicate (op) begin
02 new pred := get predicate (op);
03 if stack is empty () then
04 stack push (new pred);
05 else
06 cur pred := stack top ();
07 stack push (cur pred ∧ new pred);
08 end if
09 end

Figure 3. Predicate Stack Manipulation

Figure 2 presents the recursive algorithm used to trans-
form a program’s CFG (constructed from assembly code)
into single-path code. For the sake of brevity and clarity

void bsort (int a[], int n)

 int i, j, t;

for (i = n - 1; i > 0; i--)

for (j = 1; j <= 0; j++)

if (a[j-1] > a[j])

t = a[j];

a[j] = a[j - 1];

a[j - 1] = t;

end loop

loop end loop

loop

push_predicate (p0)

pop_predicate ()

p0

p0

p0

void bsort (int a[], int n)

 int i, j, t;

for (i = n - 1; i > 0; i--)

for (j = 1; j <= 0; j++)

if (a[j-1] > a[j])

t = a[j];

a[j] = a[j - 1];

a[j - 1] = t;

ret

no

loop end loop

end loop loop

yes

(a) Bubble-Sort CFG (b) Single-Path Bubble-Sort CFG

control
flow

predicate stack

2

3

1

0

4

6

5

0’

1’

2’

3’

4’

5’

ret
6’

Figure 4. Bubble-Sort CFG Sketch and Single-Path CFG Sketch with Predicate Stack

the special casing for the entry block, which is not asso-
ciated with a predicate by definition, is omitted. The al-
gorithm transforms each operation in the block to use the
assigned predicate (Line 3). In rewrite predicate() two dif-
ferent cases have to be considered. (i) The instruction does
not yet have an assigned predicate, in which case it is sim-
ply added. (ii) The processed instruction is already predi-
cated as a result of optimisations done by the compiler, the
predicate has to be rewritten to use the one currently on top
of the predicate stack. In case the CFG forks to subordi-
nate blocks, a new predicate – associated with the currently
processed operation – is allocated on top of the predicate
stack. The transform() procedure recurses to process the
new block before the predicate is removed from the stack
(Lines 4-7). This results in a depth first traversal of the CFG.

3 Mapping to the ARM Architecture

We are implementing the model proposed in the previous
section on an ARM architecture1 due to the significance this
CPU family has for embedded systems appliances. More
specifically we are using an XScale PXA255 ARMv5 CPU
on a Gumstix Connex board2.

ARM opcodes fully support predicated execution, there-
fore the translation of instructions is straightforward. The
opcodes in question either have to be rewritten to their pred-
icated counterparts, or in case they are already predicated
by virtue of compiler optimisations (e.g. using “-O3” for

1http://www.arm.com/documentation/Instruction Set/index.html
2http://docwiki.gumstix.org/Basix and connex

gcc), the predicate has to be swapped for the respective one
topping the predicate stack.

For the representation of the predicate stack at runtime
we are using the condition flags provided by the program
status register (PSR). They can be directly read and written
using the mrs and msr opcodes. Four of the status bits (Neg-
ative, Zero, Carry, Overflow) are read- and writeable in user
mode and can thus immediately be used as predicates3. This
limits the maximum intraprocedural nesting depth of condi-
tional block to a value of four, an acceptable value for code
targeted at time critical systems given that loop constructs
do not stress the predicate stack.

Possibilities to support even deeper nesting include ex-
tending the predicate stack to also use the status bits defined
as unused by the ARM manual (a total of eight flags) and
swapping out lower parts of the predicate stack to the pro-
gram stack.

4 Experimental Evaluation

In order to gain experimental evidence regarding the
methodologies outlined in this paper we have made an at-
tempt to reproduce the results from [10] on the hardware
platform described in Section 3. In particular we looked at
the Bubble Sort algorithm, the benchmarks were compiled
with gcc-3.4.5 in order to exercise them on the Gumstix
only using minimal bare-metal configuration, restricted to
serial I/O drivers and timing infrastructure.

By inspecting the assembly code generated when using

3http://www.arm.com/documentation/Instruction Set/index.html

aggressive (“O3”) optimisation we observed, that that the
algorithm is not suitable for single-path conversion, because
gcc already heavily relies on predicated instructions instead
of branches. Further investigations showed that conditional
blocks up to about five statements in the C source code are
almost always compiled to predicated instructions.

Hence the preliminary conclusion we draw is, that many
of the well known sorting algorithms with tight loops and
brief conditional blocks are unsuitable for post-pass trans-
formation when compiled with full optimisation using gcc
for ARM. We are thus looking to conduct measurements
on application code, as it is not always possible to express
domain-specific programs as elegantly as the discussed ex-
amples. In particular we will be looking at the controller
loop of the JAviator quadrotor UAV4.

5 Conclusion and Future Work

In this work in progress paper we have introduced the no-
tion of a predicate stack and presented a conceptual model
for single-path execution of predicated code. Furthermore
we have outlined an assembly transformation algorithm that
translates arbitrary programs to single-path code. We are
aware that unconditional single-path transformation is a
brute force approach when applied to domain-specific pro-
grams rather than well-behaved and optimised algorithms.
Nevertheless studying the behaviour of such programs with
regard to single-path execution is an important direction
we are setting out for further work. Also our current ef-
fort is constrained to intraprocedural transformations, fur-
ther work is required to look at single-path execution from
an intraprocedural point of view. Moreover, we need to col-
lect experience regarding the behaviour of single-path code
in the context of full blown embedded systems, rather than
isolated benchmarks [12].

Finally we acknowledge that single-path execution is
only one among a number of orthogonal issues towards im-
proved WCET analysis and predictability. Software man-
aged caches (often referred to as “scratchpad memory”) and
fine-grained control over CPU subsystems (like for exam-
ple I-Cache locking [3]) are posing interesting challenges,
all the more when combined with single-path execution, as
presented in this paper.

6 Acknowledgements

The author would like to thank Harald Röck for perpet-
ually providing insight regarding ARM assembly intrinsics
and Horst Stadler for helping with the experimental evalua-
tions in the course of this effort.

4http://javiator.cs.uni-salzburg.at

References

[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. D. Warren.
Conversion of control dependence to data dependence. In
POPL, pages 177–189, 1983.

[2] B. Decker and D. Kästner. Reconstructing control flow from
predicated assembly code. In A. Krall, editor, SCOPES, vol-
ume 2826 of Lecture Notes in Computer Science, pages 81–
100. Springer, 2003.

[3] H. Falk, S. Plazar, and H. Theiling. Compile-time decided
instruction cache locking using worst-case execution paths.
In CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM in-
ternational conference on Hardware/software codesign and
system synthesis, pages 143–148, New York, NY, USA,
2007. ACM.

[4] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient microarchitec-
ture modeling and path analysis for real-time software. In
IEEE Real-Time Systems Symposium, pages 298–307, 1995.

[5] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann. Effective compiler support for predicated
execution using the hyperblock. In MICRO, pages 45–54.
ACM/IEEE, 1992.

[6] J. C. H. Park and M. S. Schlansker. On predicated execution.
Hewlett Packard Laboratories, 1991.

[7] S. M. Petters and G. Färber. Making worst case execution
time analysis for hard real-time tasks on state of the art pro-
cessors feasible. In RTCSA, pages 442–. IEEE Computer
Society, 1999.

[8] P. Puschner. The single-path approach towards wcet-
analysable software. In Proc. IEEE International Confer-
ence on Industrial Technology, pages 699–704, Dec. 2003.

[9] P. P. Puschner. Algorithms for dependable hard real-time
systems. In WORDS, pages 26–31. IEEE Computer Society,
2003.

[10] P. P. Puschner. Experiments with wcet-oriented program-
ming and the single-path architecture. In WORDS, pages
205–210. IEEE Computer Society, 2005.

[11] P. P. Puschner and A. Burns. Writing temporally predictable
code. In WORDS, pages 85–94. IEEE Computer Society,
2002.

[12] P. P. Puschner and R. Kirner. From time-triggered to
time-deterministic real-time systems. In B. Kleinjohann,
L. Kleinjohann, R. J. Machado, C. E. Pereira, and P. S. Thi-
agarajan, editors, DIPES, volume 225 of IFIP, pages 115–
124. Springer, 2006.

[13] H. Theiling. Extracting safe and precise control flow from
binaries. In RTCSA, pages 23–30. IEEE Computer Society,
2000.

