Towards Exploiting the Preservation Strategy of Deferrable Servers

Reinder J. Bril and Pieter J.L. Cuijpers

Technische Universiteit Eindhoven (TU/e), Department of Mathematics and Computer Science, Den Dolech 2, 5600 AZ Eindhoven, The Netherlands r.j.bril@tue.nl, p.j.l.cuijpers@tue.nl

Abstract

Worst-case response time analysis of hard real-time tasks under hierarchical fixed priority pre-emptive scheduling (H-FPPS) has been addressed in a number of papers. Based on an exact schedulability condition, we showed in [4] that the existing analysis can be improved for H-FPPS when deferrable servers are used. In this paper, we reconsider response time analysis and show that improvements are not straightforward, because the worst-case response time of a task is not necessarily assumed for the first job when released at a critical instant. The paper includes a brief investigation of best-case response times and response jitter.

1. Introduction

Today, fixed-priority pre-emptive scheduling (FPPS) is a de-facto standard in industry for scheduling systems with real-time constraints. A major shortcoming of FPPS, however, is that temporary or permanent faults occurring in one application can hamper the execution of other applications. To resolve this shortcoming, the notion of *resource reservation* [8] has been proposed. Resource reservation provides *isolation* between applications, effectively protecting an application against other, malfunctioning applications.

In a basic setting of a real-time system, we consider a set of independent applications, where each application consists of a set of periodically released, hard real-time tasks that are executed on a shared resource. We assume twolevel hierarchical scheduling, where a *global* scheduler determines which application should be provided the resource and a *local* scheduler determines which of the chosen application's tasks should execute. Although each application could have a dedicated scheduler, we assume FPPS for every application. For temporal protection, each application is associated a dedicated reservation. We assume a *periodic resource model* [11] for reservations. Conceivable implementations include FPPS for global scheduling using a specific type of server, such as the *periodic server* [5] or the *deferrable server* [12].

Worst-case response time analysis of real-time tasks under hierarchical FPPS (H-FPPS) using deferrable servers has been addressed in [1, 5, 6, 10], where the analysis presented in [5] improves on the earlier work. Based on an exact schedulability condition, we showed in [4] that the analysis in [5] can be improved for a deferrable server at highest priority when that server is exclusively used for hard realtime tasks. In this paper, we reconsider worst-case response time analysis. We show that improving the existing analysis is not straightforward, because the worst-case response time of a task is not necessarily assumed for the first job when released at a critical instant. For illustration purposes, we consider a specific class of subsystems S and an example subsystem $S \in \mathcal{S}$. The paper includes a brief investigation of best-case response times and response jitter.

This paper is organized as follows. In Section 2, we briefly recapitulate existing results for our class of subsystems S and introduce our example subsystem $S \in S$. This example clearly illustrated the potential for improvement. We investigate response times and response jitter for our example in Section 3, and conclude the paper in Section 4.

2. A recapitulation of existing analysis

In this section, we briefly recapitulate existing analysis. We start with a description of a scheduling model for our class S and present our example $S \in S$. Next, we recapitulate the analysis for a periodic resource model [11], a periodic server [5], and a deferrable server [4], which we illustrate by means of *S*. We conclude with an overview.

2.1. A scheduling model

We assume FPPS for global scheduling, and consider a class of subsystems S consisting of an application with a single, periodic hard real-time task τ and an associated server σ at highest priority. The server σ is characterized by a *replenishment period* T^{σ} and a *capacity* C^{σ} , where $0 < C^{\sigma} \leq T^{\sigma}$. Without loss of generality, we assume that σ is replenished for the first time at time $φ^σ = 0$. The task τ is characterized by a *period* T^{τ} , a *computation time* C^{τ} , and a *relative deadline* D^{τ} , where $0 < C^{\tau} \leq D^{\tau} \leq T^{\tau}$. We assume that τ is released for the first time at time $\varphi^{\tau} \geq \varphi^{\sigma}$, i.e. *at* or *after* the first replenishment of σ. The *worst-case response time WR*^{τ} of the task τ is the longest possible time from its arrival to its completion. The utilization U^{τ} of τ is given by *^C* τ $\frac{C^{\tau}}{T^{\tau}}$ and the utilization *U*^σ of σ by $\frac{C^{\sigma}}{T^{\sigma}}$ *T* ^σ . A *necessary* schedulability condition for S is given by [4]

$$
U^{\tau} \le U^{\sigma} \le 1. \tag{1}
$$

2.2. An example subsystem

For illustration purposes, we use an example subsystem $S \in \mathcal{S}$ with characteristics as described in Table 1. Note

	$T = D$	C
σ	3	C^{σ}
Τ.	ć	2

Table 1. Characteristics of subsystem *S***.**

that τ is an *unbound* task [5], because its period T^{τ} is not an integral multiple of the period T^{σ} of the server. In this section, we are interested in the minimum capacity C_{min}^{σ} for the various approaches, where $C_{\text{min}}^{\sigma} = \min\{C^{\sigma} | WR^{\tau} \leq D^{\tau}\}.$ Given (1), $C_{\min}^{\sigma} \ge U^{\sigma} \cdot T^{\tau} = 1.2$.

2.3. Analysis for periodic resource model

Based on [11], we merely postulate the following lemma. Without further elaboration, we mention that we can postulate similar lemmas for the analysis of S based on the abstract server model in [6] and deferrable servers in [10].

Lemma 1 *Assuming a periodic resource model for* S*, the worst-case response time WR*^τ *of task* τ *is given by*

$$
WR^{\tau} = C^{\tau} + \left(\left[\frac{C^{\tau}}{C^{\sigma}} \right] + 1 \right) (T^{\sigma} - C^{\sigma}).
$$
 (2)

Given (2), we derive for our example *S* that the minimum capacity for a periodic resource model is given by $C_{\text{min}}^{\sigma} = 2$. For this capacity, we find $WR^{\tau} = 4$.

2.4. Analysis for a periodic server

Strictly spoken, our class of subsystems S does not satisfy the model described in [5], because that article assumes that every set of tasks associated with a server contains at least one soft real-time task. Fortunately, a periodic server provides its resources irrespective of demand. As a result, the soft real-time tasks of a task set do not hamper the execution of the hard real-time tasks with which they share a periodic server. The analysis presented in [5] therefore equally well applies to S in general and *S* in particular. For an unbound task, we derive from [5] that WR^{τ} is given by

$$
WR^{\tau} = C^{\tau} + \left[\frac{C^{\tau}}{C^{\sigma}}\right] (T^{\sigma} - C^{\sigma}).
$$
 (3)

Without further elaboration, we mention that (3) also holds for the analysis of S based on a deferrable server in [1]. Given (3), we derive that $C_{\text{min}}^{\sigma} = 1.5$, giving rise to $WR^{\tau} = 5$.

2.5. Analysis for a deferrable server

The following theorem for S has been formulated in [4] as a corollary of a central theorem.

Theorem 1 *Consider a highest-priority deferrable server* σ *with period T* ^σ *and capacity C* σ *. Furthermore, assume that the server is associated with a periodic task* τ *with period T* τ *, worst-case computation time C* τ *, and deadline D* ^τ = *T* τ *, where the first release of* τ *takes place at or after the first replenishment of* σ*. The deadline D* τ *is met when the respective utilizations satisfy the following inequality*

$$
U^{\tau} \le U^{\sigma} \le 1. \tag{4}
$$

Note that (4) is a necessary and sufficient (i.e. exact) schedulability condition for both the task and the server. Further note that (1) and (4) are identical, implying that a deferrable server is optimal for S when $D^{\tau} = T^{\tau}$.

According to Theorem 1, *S* is schedulable using a deferrable server with $C_{\text{min}}^{\sigma} = U^{\tau} \cdot T^{\sigma} = 1.2$. The worst-case response time WR^{τ} of task τ is a topic of Section 3.

2.6. Overview

Table 2 gives an overview of the minimum capacities C_{min}^{σ} and minimum server utilities U_{min}^{σ} for the various approaches for *S* that guarantee schedulability of task τ. The table includes the worst-case response time WR^{τ} of τ as determined by the various approaches.

	mın	mnn	$W\!R^{\tau}$
periodic resource model [11]	2.0	5/6	4.0
abstract server model [6]	2.0	5/6	4.0
deferrable server [10]	2.0	5/6	4.0
periodic server [5]	1.5	172	5.0
deferrable server [1]	1.5		5.0
deferrable server (this paper)	12	275	

Table 2. A comparison of approaches for *S***.**

Figure 1. Timeline for *S* **with a release of task** τ **at the start of the period of the deferrable server** σ**. The numbers at the top right corner of the boxes denote the response times of the respective releases.**

Figure 2. Timelines for *S* **with a first release of task** τ **at** ϕ ^τ = 0.8 **using a deferrable server** σ**.**

3. On response times and response jitter

We will now explore the example in more detail by considering the worst-case response time, best-case response time, and response jitter of task τ of *S* as a function of ϕ τ for a deferrable server with a capacity $C^{\sigma} = 1.2$.

3.1. Worst-case response times

Because the greatest common divisor of T^{τ} and T^{σ} is equal to 1, we can restrict φ^{τ} to values in the interval [0, 1). As illustrated in Figure 3, WR^{τ} is equal to 4.4 and assumed for $\varphi^{\tau} = 0$, i.e. when τ is released at the start of the period of the deferrable server σ. Hence, a *critical instant* [7] occurs for $\varphi^{\tau} = 0$. Figure 1 shows a timeline with the exe-

Figure 3. Worst-case response times of task τ as a function of the first release time φ^{τ} .

cutions of the server and the task for $\varphi^{\tau} = 0$ in an interval of length 15, i.e. equal to the *hyperperiod H* of the server and the task, which is equal to the least common multiple (lcm) of their periods, i.e. $H = \text{lcm}(T^{\sigma}, T^{\tau})$. The schedule in [0,15) is repeated in the intervals $[hH,(h+1)H)$, with $h \in \mathbb{N}$, i.e. the schedule is periodic with period *H*. From this figure, we conclude that capacity deferral of σ is a prerequisite for schedulability of *S* with a capacity $C^{\sigma} = 1.2$, and *S* is therefore not schedulable with a periodic server with that capacity. We observe that the worst-case response time of the task is assumed for the 2^{nd} rather than the 1^{st} job. Hence, we need to revisit the notion of *active period* [2] in the context of H-FPPS to take account of this fact.

3.2. Investigating best-case response times

Unlike worst-case response times, we cannot restrict φ^{τ} to values in the interval $[0, \text{gcd}(T^{\tau}, T^{\sigma}))$, but have to consider values in the interval $[0, T^{\sigma})$ instead. This is caused by the fact that the response time of τ in the *start-up phase* can be smaller than the response time in the *stable phase*, as illustrated for $\varphi^{\tau} = 0.8$ in Figure 2. Although the relative phasing of the 1st job of τ at time $t = 0.8$ compared to the 1st replenishment of σ is identical to that of the 4th job of τ at time $t = 15.8$ compared to the 6th replenishment of σ , the response time of the 1^{st} job $R_1^{\tau} = 3.0$ and of the 4^{th} job $R_4^{\tau} = 3.2$. These differences in response times are caused by the fact that the execution of the 1^{st} job is *not* influenced by earlier jobs, whereas the execution of the 4 *th* job is.

Figure 4. Best-case response time of task τ **during its lifetime as a function of** ϕ τ **. The dashed line shows the shortest response time in the stable phase.**

The best-case response time $BR^{\tau}(\varphi^{\tau})$ of τ is shown in

Figure 4. The dashed line in this figure shows for which values of φ^{τ} the shortest response time in the stable phase is larger than the shortest response time in the start-up phase. From this figure, we draw the following conclusions. Firstly, the best-case response time under arbitrary phasing is 2.0, which is equal to the computation time C^{τ} of τ . Secondly, if we only consider response times of τ in the stable phase, the shortest response time becomes 2.6. Finally, $BR^{\tau}(\varphi^{\tau})$ is determined by the start-up phase for phasings $\varphi^{\tau} \in (0.6, 2.6).$

3.3. Investigating response jitter

The response jitter of task τ as function of φ^{τ} is defined as

$$
RJ^{\tau}(\varphi^{\tau}) = WR^{\tau}(\varphi^{\tau}) - BR^{\tau}(\varphi^{\tau}). \tag{5}
$$

The response jitter $RJ^{\tau}(\varphi^{\tau})$ is illustrated in Figure 5. Notably, $RJ^{\tau}(\varphi^{\tau})$ is constant in the stable phase.

Figure 5. Response jitter of task τ **during its** lifetime as a function of φ^{τ} . The dashed line **shows the response jitter in the stable phase.**

4. Conclusion

Based on an exact schedulability condition, we showed in [4] that existing worst-case response time analysis of hard real-time tasks under H-FPPS can be improved when deferrable servers are used. In this paper, we investigated that identified opportunity to exploit the preservation strategy of deferrable servers. To that end, we considered a specific example subsystem with (i) a server used at highest priority and (ii) a period of its task that is not an integral multiple of the period of its server. For our example, the utilization of the server can be significantly reduced when using a deferrable server rather than a periodic server or assuming a periodic resource model. Given these initial results, application of a deferrable server can be an attractive alternative for resource-constrained systems with stringent timing requirements for a specific application when no appropriate period can be selected for its associated server. Unfortunately, improving the existing analysis turns out to be nontrivial, because the worst-case response time of a task is not necessarily assumed for the first job when released at a critical instant.

Using the same example, we briefly investigated bestcase response times and response jitter. Unlike existing best-case response times of tasks under FPPS [3, 9], we did not assume infinite repetitions towards both ends of the time axis. As a result, the best-case response time of a task is determined by a start-up phase for specific phasings of the task relative to the server. When the start-up phase can be ignored, the best-case response time becomes larger and, correspondingly, the response jitter becomes smaller.

Improved response time analysis of H-FPPS using deferrable servers is a topic of future work, and we are currently re-investigating the notions of critical instant and active period in this context.

References

- [1] L. Almeida and P. Peidreiras. Scheduling with temporal partitions: response-time analysis and server design. In *Proc.* 4 *th ACM EMSOFT*, pp. 95 – 103, September 2004.
- [2] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred preemption revisited. In *Proc.* 19*th ECRTS*, pp. 269–279, July 2007.
- [3] R. Bril, E. Steffens, and W. Verhaegh. Best-case response times and jitter analysis of real-time tasks. *Journal of Scheduling*, 7(2):133–147, March 2004.
- [4] P. Cuijpers and R. Bril. Towards budgetting in real-time calculus: deferrable servers. In *Proc.* 5 *th International Conference on Formal Modelling and Analysis of Timed Systems (FORMATS), LNCS-4763*, pp. 98 – 113, October 2007.
- [5] R. Davis and A. Burns. Hierarchical fixed priority preemptive scheduling. In *Proc.* 26*th IEEE Real-Time Systems Symposium (RTSS)*, pp. 389–398, December 2005.
- [6] G. Lipari and E. Bini. Resource partitioning among realtime applications. In *Proc.* 15*th ECRTS*, pp. 151–158, July 2003.
- [7] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a real-time environment. *Journal of the ACM*, 20(1):46–61, January 1973.
- [8] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels: A resource-centric approach to real-time and multimedia systems. In *Proc. SPIE, Vol. 3310, Conference on Multimedia Computing and Networking (CMCN)*, pp. 150–164, January 1998.
- [9] O. Redell and M. Sanfridson. Exact best-case response time analysis of fixed priority scheduled tasks. In *Proc.* 14*th ECRTS*, pp. 165–172, June 2002.
- [10] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein. Analysis of hierarchical fixed-priority scheduling. In *Proc.* 14*th ECRTS*, pp. 152–160, June 2002.
- [11] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees. In *Proc.* 24*th IEEE Real-Time Systems Symposium (RTSS)*, pp. 2–13, December 2003.
- [12] J. Strosnider, J. Lehoczky, and L. Sha. The deferrable server algorithm for enhanced aperiodic responsiveness in hard real-time environments. *IEEE Transactions on Computers*, 44(1):73–91, January 1995.