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Abstract

In the domain of multiprocessor real-time systems, there has

been a wealth of recent work on scheduling, but relatively lit-

tle work on the equally-important topic of synchronization.

When synchronizing accesses to shared resources, four basic

options exist: lock-free execution, wait-free execution, spin-

based locking, and suspension-based locking. To our knowl-

edge, no empirical multiprocessor-based evaluation of these

basic techniques that focuses on real-time systems has ever

been conducted before. In this paper, we present such an

evaluation and report on our efforts to incorporate synchro-

nization support in the testbed used in this effort.

1 Introduction

There has been much recent interest in techniques for

scheduling real-time workloads on multiprocessors. With the

advent of multicore technologies, this is an important topic:

in the future, multiprocessors will be increasingly common,

and applications with real-time constraints will be imple-

mented upon them. To enable such implementations, algo-

rithmic research on real-time scheduling must shift in a more

applied direction. To this end, our research group recently

developed a testbed called LITMUSRT (LInux Testbed for

MUltiprocessor Scheduling in Real-Time systems), which

is an extension of Linux (currently, version 2.6.20) that al-

lows different scheduling algorithms to be linked as plugin

components [12]. The development of LITMUSRT has oc-

curred at an auspicious time, given the increasing interest in

real-time variants of Linux (see, for example, [1]). These

variants will undoubtedly be ported to multicore platforms

and thus could benefit from recent algorithmic advances in

scheduling-related research.

Like scheduling, work on the equally-important topic of

multiprocessor real-time synchronization must also shift in a

more applied direction. Unfortunately, this topic (in compar-

ison to scheduling) has been somewhat neglected. Clearly,

for a platform like LITMUSRT to be truly useful, support

for synchronization must be provided. Such support is the
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subject of this paper. Specifically, we consider the issue of

how to best support resource sharing in LITMUSRT.

Scope of this paper. The contributions of this paper are

twofold. First, we report on changes made to LITMUSRT

to enable real-time resource sharing. Second, we present

an empirical evaluation of several multiprocessor real-time

synchronization options; this study is directed at previously-

proposed mechanisms as implemented on our LITMUSRT

testbed. It is important to note that the scope of this paper

does not include the development of new synchronization

mechanisms. It also does not extend to systems other than

LITMUSRT, though we do believe that many of our conclu-

sions are of a general nature. To the best of our knowledge,

the real-time synchronization options considered herein have

never been empirically compared before on an actual testbed.

Before continuing, let us examine the options available for

real-time resource sharing. Of the available options, locking

mechanisms are clearly the most commonly used. However,

when the resource in question is a shared data object, non-

blocking algorithms can be used instead. We consider two

forms of non-blocking synchronization in this paper: lock-

freedom and wait-freedom.1 In non-blocking implementa-

tions, object accesses may occur concurrently; as explained

later, lock-free and wait-free implementations provide dif-

ferent progress guarantees when such accesses “interfere”

with one another. In contrast, when locks are used, concur-

rency is eliminated by sometimes requiring tasks to block.

When a task must block, it can do so either by spinning

(busy-waiting) or by being suspended. Thus, four fundamen-

tal techniques exist that can be used for enabling resource

sharing: lock-free execution, wait-free execution, spin-based

locking, and suspension-based locking. The main goal of

the empirical study discussed herein is to compare these four

techniques (on our LITMUSRT testbed) on the basis of real-

time schedulability. The specific focus of this study is re-

sources for which interesting trade-offs exist, e.g., external

devices with long access times for which suspension-based

blocking is inherent are less relevant.

Multiprocessor scheduling. We assume that the workload

to be scheduled is specified as a collection of sporadic tasks.

1A third notion, obstruction-freedom, has been studied extensively [22].

However, obstruction-free implementations provide very weak progress

guarantees, and thus are unlikely to be a viable option in real-time systems.
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Such a task repeatedly submits work to the system in the form

of sequential jobs. A sporadic task system can be scheduled

via two basic approaches: partitioning and global schedul-

ing. Under partitioning, tasks are statically assigned to pro-

cessors and each processor is scheduled separately. Under

global scheduling, all jobs are scheduled using a single run

queue, and inter-processor migration is allowed. In this pa-

per, we consider one representative algorithm from each cat-

egory: in the partitioned case, the partitioned EDF (P-EDF)

algorithm, wherein the earliest-deadline-first (EDF) algo-

rithm is used on each processor, and in the global case, the

global EDF (G-EDF) algorithm. As explained later, these

choices were made because EDF-based algorithms have a

number of desirable properties. Additionally, we consider

both hard real-time systems in which deadlines should not

be missed, and soft real-time systems in which bounded dead-

line tardiness is permissible. Under eitherP-EDF orG-EDF,

restrictive caps on overall utilization are required in hard real-

time systems (see [13] for a discussion of this issue). In con-

trast, under G-EDF, a cap of m on m processors suffices if
bounded deadline tardiness is allowed [17].

Prior synchronization-related work. Rajkumar et al. [28]

were the first to propose locking protocols for real-time mul-

tiprocessor systems. They presented two multiprocessor vari-

ants of the priority-ceiling protocol (PCP) [31] for systems

where partitioned, static-priority scheduling is used. In later

work, several protocols were presented for systems sched-

uled by P-EDF. The first such protocol was presented by

Chen and Tripathi [14], but it is limited to periodic (not spo-

radic) task systems. In later work, Lopez et al. [25] and Gai

et al. [19] presented protocols that remove such limitations,

at the expense of imposing certain restrictions on critical sec-

tions (such as, in [19], requiring all global critical sections to

be non-nested). A scheme for G-EDF that is also restricted

was presented by Devi et al. [18]. More recently, Block et

al. [8] presented the flexible multiprocessor locking protocol

(FMLP), which does not restrict the kinds of critical sections

that can be supported and can be used under either G-EDF

or P-EDF. In the FMLP, resources are protected by either

spin-based or suspension-based locks. The FMLP is the only

scheme known to us that is capable of supporting arbitrary

critical sections under G-EDF. Furthermore, the schemes in

[18, 19, 25] are special cases of it. Thus, given our focus on

G-EDF and P-EDF, it suffices to consider only the FMLP

when considering lock-based synchronization.

The literature on non-blocking synchronization is too ex-

tensive for us to be able to cite every related paper on this

topic. However, we do note that non-blocking algorithms

have been considered before in the context of real-time sys-

tems; relevant citations can be found in [2, 29].

Results. In the first part of the paper, we explain how we

added synchronization support to LITMUSRT. The result-

ing platform was used in performing the empirical evaluation

mentioned above. In this evaluation, we first obtained sys-

tem and synchronization overheads by running benchmarks

on LITMUSRT. Using these overheads, we then conducted

two sets of schedulability experiments. In each, both hard

and soft real-time schedulability were considered.

In the first set of experiments, we considered only locking

mechanisms. Our goal was to determine when (if ever) sus-

pending is better than spinning. In this study, we considered

a wide spectrum of lock nesting levels and critical-section

durations. Interestingly, suspension-based locking never re-

sulted in better schedulability than spin-based locking. (On

the other hand, more processor time may be available to back-

ground jobs if suspension-based locking is used.) In the sec-

ond set of experiments, we considered specifically the prob-

lem of implementing shared data objects. Our main objective

here was to determine when (if ever) non-blocking techniques

are preferable to locking techniques. Our study focused on

three representative objects: read/write buffers, queues, and

binary heaps (listed in order of increasing complexity). In

this study, schedulability was generally better with locking,

but wait-free implementations tended to be comparable and

often even superior (even for more complex objects for which

wait-free implementations are often dismissed as impracti-

cal). On the other hand, lock-free implementations were vi-

able only for simple objects.

We present these findings later in Sec. 4 after first provid-

ing needed background in Sec. 2 and describing our modifi-

cations to LITMUSRT in Sec. 3.

2 Background

In the following subsections, we present our task model and

describe the FMLP.

2.1 Task Model

We consider the scheduling of a system of sporadic tasks,

denoted T1, . . . , TN , on m processors. The jth job (or in-

vocation) of task Ti is denoted T j
i . Such a job T j

i becomes

available for execution at its release time, r(T j
i ). Each task

Ti is specified by its worst-case (per-job) execution cost,
e(Ti), and its period, p(Ti). The job T j

i should complete

execution by its absolute deadline, r(T j
i )+ p(Ti); otherwise,

it is tardy. The spacing between job releases must satisfy

r(T j+1

i ) ≥ r(T j
i ) + p(Ti). Task Ti’s utilization reflects the

processor share that it requires and is given by e(Ti)/p(Ti).

Scheduling. A hard real-time system is considered to be

schedulable iff it can be shown that no job deadline is ever

missed. A soft real-time system is considered (in this paper)

to be schedulable iff it can be shown that deadline tardiness

is bounded. Algorithms that are used to check schedulabil-

ity must be designed to account for overheads that arise in
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practice. Sources of such overheads include context switch-

ing times, cache-related overheads, etc. Such overheads are

typically accounted for by inflating per-job execution costs.

As noted earlier, all multiprocessor real-time scheduling

algorithms follow either a partitioning or a global-scheduling

approach. Prior research has shown that, for hard real-time

systems, partitioning algorithms are usually preferable, while

for soft real-time systems, global algorithms are better. In the

hard real-time case, most partitioning and global-scheduling

approaches have rather similar schedulability tests in the ab-

sence of overheads (a survey of such tests can be found

in [13]).2 As a result, partitioning approaches tend to be

better because they have lower run-time overheads [12]. In

contrast, in the soft real-time case, partitioning approaches

are subject to bin-packing limitations that can be eliminated

through the use of global algorithms. In particular, Leon-

tyev and Anderson [23] (in extending prior work of Devi

and Anderson [17]) have shown that most global algorithms

are capable of ensuring bounded deadline tardiness on anm-
processor platform for any sporadic task system with total

utilization at most m. In contrast, there exist task systems
with total utilization slightly higher than m/2 that no parti-
tioning scheme can schedule, even if bounded deadline tardi-

ness is allowed [17]. Such limitations are the reason for the

better performance of global algorithms (in terms of schedu-

lability) in the soft real-time case.

The above discussion motivates why we have selected

one partitioning and one global-scheduling algorithm in our

study. We have opted to consider EDF-based algorithms

in both cases because static-priority algorithms are inferior

from the standpoint of schedulability generally [13], and can-

not guarantee bounded tardiness without severely restricting

overall utilization in the soft real-time case [17].

Resources and shared objects. A resource can be ac-

cessed either by using a lock-free or wait-free algorithm or by

acquiring locks. The former is possible only if the resource is

a shared data object. To avoid confusion, we will henceforth

use the term “shared object” (instead of “resource”) when re-

ferring to lock-free or wait-free algorithms.

In a lock-free object implementation, each object call is

implemented using a “retry loop.” Each iteration of such a

loop is called an attempt. An attempt may either succeed or

fail. A successful attempt causes the implemented object to

be updated as desired, while a failed one has no effect on the

object and must be retried. In the absence of any contention

for an object, any attempt will succeed. However, if an ob-

ject is accessed concurrently, then progress is ensured only

in a system-wide manner: some attempt will succeed, but an

individual job may fail repeatedly. When lock-free objects

2A category of optimal global algorithms exists called Pfair algo-

rithms [7, 32] for which this statement is not true. However, Pfair algo-

rithms are conceptually more complex than EDF-based algorithms, so we
defer consideration of them to future work.

are used in real-time systems, bounds on retries are required

when checking schedulability. In a wait-free implementation,

each object call is implemented using purely sequential code,

i.e., blocking by spinning or suspending is not allowed, nor is

unrestricted retrying. Thus, progress is ensured for individual

jobs: each object access by any job completes after a bounded

number of instruction executions by that job (regardless of

the behavior of other jobs). Implementations of lock-free and

wait-free objects require no kernel support and typically use

strong synchronization primitives such as compare-and-swap

to ensure that operations linearize properly.

When locks are used, jobs issue requests for exclusive ac-

cess to resources. If a request is not satisfied immediately,

then the issuing job is said to be blocked. Once satisfied, the

issuing job holds the resource until it completes its associ-

ated critical section and releases the resource. A request R
is contained (or nested) within another request R′ if the re-

questing job already holds R′ when it requests R. A request
is outermost if it is contained within no other request.

As noted earlier, blocking, either by spinning or suspen-

sion, is inherent under locking. In real-time systems, job

blocking times must be accounted for when checking schedu-

lability. Locking algorithms in which spinning is used are

commonly called spin locks. In this paper, we limit attention

to FIFO spin locks known as queue locks, wherein blocked

tasks wait within a FIFO queue of spinning tasks [4]. Such

locking algorithms are designed so that all spinning is local,

i.e., via read-only spin loops that (in the absence of preemp-

tion) give rise to only a constant number of shared-memory

accesses when used in systems with coherent caches or dis-

tributed shared memory. Suspension-based blocking is used

in OS-based synchronization protocols in which resources

are acquired and released via system calls. The literature

on lock-based synchronization is vast and includes (for ex-

ample) mechanisms that are hybrids of pure spin-based and

suspension-based mechanisms (e.g., [24]). However, for our

purposes, a locking mechanism must have analyzable block-

ing behavior, so mechanisms derived in work on non-real-

time systems for which the required analysis does not exist

are of no interest to us. The FMLP, mentioned earlier, was

developed with such analysis in mind. We describe it next.

2.2 The FMLP

Given that our focus is on evaluating previously-proposed

synchronization mechanisms, it is not our intent here to de-

scribe every detail of the FMLP. A full description of this

protocol can be found in [8]. Instead of repeating that de-

scription here, we have opted to explain how the design

choices underlying the FMLP were made. Such a descrip-

tion should (hopefully) suffice when trying to understand the

experimental evaluation given later.

The FMLP is considered to be “flexible” for two reasons:

it can be used under either partitioned or global scheduling,
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and it is agnostic regarding whether blocking is via spin-

ning or suspension. Regarding the latter, resources are cat-

egorized as either “short” or “long.” Short resources are ac-

cessed using queue locks and long resources are accessed via

a semaphore protocol. Whether a resource should be con-

sidered short or long is user-defined, but requests for long

resources may not be contained within requests for short re-

sources. The terms “short” and “long” arise because (intu-

itively) spinning is appropriate only for short critical sections,

since spinning wastes processor time. However, our experi-

mental results presented later call this view into question.

The remaining details underlying the design of the FMLP

were resolved with the express purpose of trying to ease the

task of calculating worst-case job blocking times. In this

regard, simple mechanisms are much more desirable than

complex ones: with complex mechanisms, very conserva-

tive assumptions must be made when determining blocking

times, and thus estimated blocking times (which are used in

scheduling analysis) may grossly overestimate actual ones.

With this in mind, the FMLP was designed by systemati-

cally considering a number of issues, and for each, consider-

ing different design choices. In each case, the choice that was

adopted was that which resulted in better blocking-time esti-

mates. From these design decisions, a number of underlying

principles of the FMLP emerged, as listed below.

Discourage preemptions of resource-holding jobs. When

a resource-holding job is preempted, other jobs waiting for

the same resource may be substantially delayed. Thus, in

the FMLP, such preemptions are discouraged. For short

resources, this is done by actually executing requests non-

preemptively. For long resources under G-EDF, priority in-

heritance is used instead: a job that holds a resource in-

herits the priority of the highest-priority job that it blocks.

Under P-EDF, long resource requests are executed non-

preemptively with local priority inheritance: priority is in-

herited only from jobs that reside on the same processor as

the lock-holding job. The reason for this is that priorities can-

not be meaningfully compared across processors (two jobs on

different processors with equal deadlines may have very dif-

ferent priorities from a per-processor perspective: one may

have the highest priority on its processor, and the other the

lowest on its processor). Note that the group-locking mech-

anism discussed below ensures that a job suspends at most

once per outermost long request. Suspensions are not an issue

for short resources since they are accessed non-preemptively

under both G-EDF and P-EDF.

Prioritize lock requests on a FIFO basis. If lock requests

are EDF-ordered, then a job’s blocking time depends on fu-

ture higher-priority job arrivals. Usually, conservative as-

sumptions must be made regarding such arrivals, which can

result in high blocking-time estimates. The FMLP instead

prioritizes requests in FIFO order. With FIFO ordering and

non-preemptivity (see [8] for a discussion of long-resource

locking under G-EDF, where preemptivity is allowed) on m
processors, a request can be blocked by onlym−1 preceding
requests.

Use a (very) simple deadlock-avoidance mechanism. It

can be difficult to accurately bound blocking times when

complex deadlock-avoidance mechanisms are used (such as

priority-ceiling-related mechanisms [28]). Moreover, dead-

lock is a problem only when resource requests are nested,

and we give evidence later that suggests that nesting is rela-

tively rare. In the FMLP, deadlock is prevented by “group-

ing” resources and allowing only one job to access resources

in any given group at any time. Two resources are in the

same group iff they are of the same type (short or long) and

requests for one may be nested within those of the other. A

group lock is associated with each resource group; before a

job can access a resource, it must first acquire its correspond-

ing group lock. For short resources, group locks are acquired

using queue locks, and for long resources, they are acquired

using a semaphore protocol. Note that, in the case of nested

resource requests, all blocking incurred by a job occurs when

it attempts to acquire the corresponding group lock.

Under P-EDF, it is possible that all tasks that request long

resources from a given group may be assigned to the same

processor. Such long resources are called local (others are

called global). In dealing with local resources under P-EDF,

Baker’s uniprocessor stack resource protocol (SRP) [5] is

used in the FMLP instead of the more complex mechanisms

outlined above. Lopez et al. [25] were the first to propose

this optimization. Note that, since there is no notion of local-

ity under G-EDF, the SRP cannot be used under it.

It is worthwhile to note that under P-EDF the synchro-

nization protocol of Gai et al. [19] is equivalent to the FMLP

when all long resource requests are local, and that of Lopez

et al. [25] is equivalent to the FMLP when all long resource

requests are local and there are no short resource requests.

Therefore, an experimental evaluation of the FMLP implic-

itly applies to the aforementioned approaches.

3 Implementation

Before presenting our experimental results, we briefly ex-

plain how we added support for the FMLP to LITMUSRT.

A detailed description of LITMUSRT can be found

in [10] and its source code can be downloaded from

http://www.cs.unc.edu/∼anderson/litmus-rt. We imple-

mented the FMLP through a combination of kernel- and user-

space modifications. The kernel was modified to support pri-

ority inheritance, the SRP, semaphores, and non-preemptive

sections. In LITMUSRT, schedulers are implemented as plu-

gin components that provide algorithm-specific functional-

ity [12]. We extended the scheduler interface to allow for
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priority inheritance and added two new plugins that imple-

ment slightly-modified versions ofG-EDF and P-EDF as re-

quired by the FMLP [8]. We implemented non-preemptive

sections by letting each real-time task register the address

of a flag in user-space during initialization. This flag is

set by the task prior to entering a non-preemptive section.

When a delayed preemption is required because the task to

preempt is executing non-preemptively (as indicated by its

flag), the kernel sets a second flag in user-space. When a

task leaves a non-preemptive section, it resets its flag and

checks the kernel’s flag. If it is set, then the task invokes a

system call to both reset the kernel flag and call the sched-

uler. This technique requires only one system call in the case

of a delayed preemption, and zero otherwise. We created a

user-space library, libso, that uses the new kernel services

and the mmap(2) system call to provide the abstraction of

FMLP-controlled shared objects as well as process naming

and in-object memory management. We implemented short-

resource group locks in libso using T. Anderson’s array-based

queue lock [4]. We implemented long-resource group locks

via semaphores provided by the kernel. Our semaphore im-

plementation is modeled after that in Linux, with the ex-

ception that LITMUSRT semaphores require jobs to wait in

FIFO order and priority inheritance is used as described ear-

lier. So that the SRP can be used under P-EDF, we added

system calls to allow tasks to register (so that priority ceil-

ings can be computed), acquire, and release local resources.

When a job of a task subject to the SRP (i.e., it has registered

its intent to access an SRP-controlled resource) is released,

the job’s priority (as given by its period) is checked. If it

does not exceed the processor’s priority ceiling, the job is

suspended and added to a per-processor wait-queue, where it

remains until the priority ceiling is lowered.

4 Experiments

In this section, we report on the results of experiments con-

ducted using LITMUSRT to compare lock-free and wait-

free algorithms and spin-based and suspension-based syn-

chronization mechanisms as provided via the FMLP. We

compared these four approaches on the basis of both schedu-

lability and tardiness bounds, with various overheads deter-

mined empirically on our test platform.

4.1 Overheads

In real systems, task execution times are affected by the fol-

lowing sources of overhead. At the beginning of each quan-

tum, tick scheduling overhead is incurred, which is the time

needed to service a timer interrupt. Whenever a scheduling

decision is made, a scheduling cost is incurred, which is the

time taken to select the next job to schedule. Whenever a

job is preempted, context-switching overhead is incurred, as

is either preemption or migration overhead; the former term

includes any non-cache-related costs associated with the pre-

emption, while the latter two terms account for any costs due

to a loss of cache affinity. Preemption (migration) overhead

is incurred if the preempted job later resumes execution on

the same (a different) processor.

Additional synchronization-related overheads may also

exist in real systems. In the case of the FMLP, overhead is in-

curred whenever any group lock (long or short) is acquired or

released and whenever any SRP-controlled resource (under

P-EDF) is acquired or released. In the case of lock acquisi-

tions, these overheads exclude blocking times, which are ac-

counted for separately when checking schedulability. They

instead include such things as the time taken to enter the

queue-lock spin queue, the time needed to perform needed

system calls, etc. Note that synchronization overheads do

not apply to non-blocking approaches—object-access costs

for such approaches are considered later in this paper.

Limitations of real-time Linux. To satisfy the strict def-

inition of hard real-time, all worst-case overheads must be

known in advance and accounted for. Unfortunately, this

is currently not possible in Linux, and it is highly unlikely

that it ever will be.3 This is due to the many sources of un-

predictability within Linux (such as interrupt handlers and

priority inversions within the kernel), as well as the lack of

determinism on the hardware platforms on which Linux typi-

cally runs. The latter is especially a concern, regardless of the

OS, on multiprocessor platforms. Indeed, research on timing

analysis has not matured to the point of being able to analyze

complex interactions between tasks due to atomic operations,

bus locking, and bus and cache contention. Despite these ob-

servations, there are now many advocates of using Linux to

support applications that require some notion of real-time ex-

ecution. As noted by McKenney [26],

I believe that Linux is ready to handle applications

requiring sub-millisecond process-scheduling and

interrupt latencies with 99.99+ percent probabili-

ties of success. No, that does not cover every imag-

inable real-time application, but it does cover a

very large and important subset.

Our objectives in designing LITMUSRT are in agreement

with McKenney’s viewpoint. Thus, when checking schedu-

lability, we interpret task execution costs in a way that

is reasonable for a Linux-based system. Our main con-

cern here (since this is not a paper on timing-analysis

tools for determining execution costs) is accounting for sys-

tem and synchronization overheads. In doing this, we use

3By “Linux,” we mean modified versions of the stock Linux kernel

with improved real-time capability, not paravirtualized variants such as

RTLinux[34] or L4Linux[21], where real-time tasks are not actually Linux

tasks. Stronger notions of hard real-time can be provided in such systems, at

the expense of a more restricted and less familiar development environment.
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experimentally-determined worst-case (average-case) over-

heads in the hard (soft) real-time case. Thus, in reality, we

interpret “hard real-time” to mean deadlines should almost

never be missed and “soft real-time” to mean that deadline

tardiness on average remains bounded, even if some tasks

misbehave. These are stronger guarantees than provided by

most real-time Linux variants in commercial use today.

Measuring overheads. Experimentally estimating over-

heads is not as easy as it may seem. In particular, in repeated

measurements of some overhead, a small number of samples

may be “outliers.” This may due to a variety of factors, such

as warm-up effects in the instrumentation code and the vari-

ous non-deterministic aspects of Linux itself noted earlier. In

light of this, we determined each overhead term by discarding

the top 1% of measured values, and then taking the maximum

(for hard real-time) or average (for soft real-time) of the re-

maining values. Given our objectives for LITMUSRT, stated

above, we believe that this is a reasonable approach. More-

over, the overhead values that we computed should be more

than sufficient to obtain a valid comparison of different syn-

chronization options, which is the main focus of this paper.

The hardware platform used in our experiments is a cache-

coherent SMP consisting of four 32-bit Intel Xeon(TM) pro-

cessors running at 2.7 GHz, with 8K L1 instruction and data

caches, and a unified 512K L2 cache per processor, and 2 GB

of main memory. Overheads were measured and recorded

using Feather-Trace, a light-weight tracing toolkit developed

at UNC [9]. We calculated overheads by measuring the sys-

tem’s behavior for task-set sizes between ten and 100 tasks in

steps of ten. For each scheduling algorithm and task-set size,

we measured 80 task sets generated randomly (using the ex-

ponential and uniform distributions described in Sec. 4.2), for

a total of 800 task sets per scheduling algorithm. Each task

set was traced for 60 seconds after five seconds of warm-up

time (needed for task initialization, shared-library loading,

etc.). In total, more than 100 million individual overhead

measurements were obtained during more than 26 hours of

tracing. For each overhead term, we plotted the measured

values obtained as a function of task-set size (discarding out-

liers, as discussed above), and then computed maximum and

average values. The resulting graphs are presented in the full

version of this paper [11]. Only two graphs showed a clear

(linear) trend (worst-case tick and scheduling overheads un-

derG-EDF). All other overheads could be characterized well

by their (constant) average and maximum values. The results

are shown in Table 1. (The linear expressions in the table

were obtained using linear regression analysis.)

The preemption and migration costs in Table 1 were de-

rived in previous work [12], so we do not discuss the method-

ology used to obtain them. In [12], these costs are given as

a function of working set size (WSS). These WSSs are per

quantum, thus reflecting the memory footprint of a partic-

ular task during a 1-ms quantum, rather than over its en-

Overhead P-EDF avg/wc G-EDF avg/wc

Preemption 15.70 / 42.00 15.70 / 42.00

Migration — 15.80 / 44.00

Context-switching 2.65 / 9.25 2.50 / 9.03

Scheduling cost 2.88 / 11.38 4.31 / 22.96 +0.075N

Tick 4.45 / 9.54 4.34 / 8.03 +0.067N

Leaving NP-section 0.50 / 4.12 0.51 / 3.37

Long grp.-lock acq. 1.02 / 5.04 0.71 / 6.78

Long grp.-lock rel. 0.95 / 12.71 0.92 / 13.07

SRP resource acq. 1.07 / 4.48 —

SRP resource rel. 1.29 / 8.01 —

Short grp.-lock acq. 0.17 / 2.00

Short grp.-lock rel. 0.09 / 0.87

Switching to kernel mode 0.31 / 0.34

Switching to user mode 0.54 / 0.89

Table 1: Measured average and worst-case overhead values for our

four-processor platform, in µs. N is the number of tasks.

tire lifetime. WSSs of 4K, 32K, and 64K were considered

in [12], but we only consider the 4K case here, due to space

constraints. However, data for the other cases can be found

in [11]. Note that larger WSSs tend to decrease the compet-

itiveness of methods that suspend. Thus, we concentrate on

the 4K case to demonstrate that, even in cases where such

methods are most competitive, spinning is still preferable.

The other overheads in Table 1 are newly-measured and

were determined by recording timestamps at the beginning

and end of the overhead-generating code sections, e.g. we

recorded a timestamp before starting a context switch and

after the switch was completed. To obtain costs associated

with entering and exiting the kernel, we modified the kernel

to share a Feather-Trace buffer [9] with user-space and instru-

mented both the kernel and real-time tasks to record the start

and end times of system calls. Thus, four timestamps were

obtained per system call, from which we deduced the costs

involved in transitioning to and from kernel mode.

In the experiments presented in the next section, only a

four-processor system is considered. However, in the full ver-

sion of the paper [11], a 16-processor system is considered as

well, to provide some indication of how the tested approaches

would fare on a larger system. Each approach exhibited sim-

ilar trends in both the four- and 16-processor cases.

Locking trends in real systems. To better understand lock-

ing patterns in “real-world” systems, we used Feather-Trace

to trace the locking behavior of the Linux kernel under var-

ious loads, two video players, and an interactive 3D video

game (details can be found in [9]). Although Linux is not

a real-time system, its locking behavior should be similar to

that of many complex systems, including real-time systems,

where great care is taken to make critical sections short and

efficient. The video players and the video game need to en-

sure that both visual and audio content are presented to the

user in a timely manner, and thus are representative of the

locking behavior of a class of soft real-time applications.

Interestingly, in spite of the diversity of the systems traced,
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we observed similar trends. Of the tested applications, only

Linux uses spin locks. With Linux, we found that roughly

83% of critical sections protected by spin locks were non-

nested, 13% were singly-nested, and deeper levels of nesting

occurred only rarely, with the deepest being six. More than

96% of critical sections were shorter than 5µs in this case.4

Each tested application uses semaphores, and the percentage

of non-nested critical sections in this case varied by appli-

cation and ranged from roughly 70% to nearly 100%. The

deepest nesting level observed was three. For the video play-

ers and video game, more than 97% of critical sections pro-

tected by semaphores were shorter than 5µs, and over 99%
were shorter than 10µs. For Linux, semaphores are used to
protect longer critical sections (spin locks protect shorter crit-

ical sections), so critical-section lengths are slightly longer.

More than 93% of all critical sections were shorter than 13µs
under load; average lengths were significantly shorter. This

data, from four substantially different, real-world systems,

supports the wide-spread assumption that short, non-nested

critical sections are by far the common case in practice. A

more detailed discussion of these results can be found in [9].

4.2 Experimental Set-Up

We determined the schedulability of randomly-generated task

sets under each scheme, for both hard and soft real-time sys-

tems, using the overheads listed in Sec. 4.1. We used distri-

butions proposed by Baker [6] to generate task sets. Task pe-

riods were uniformly distributed over [10ms, 100ms]. Task
utilizations were distributed differently for each experiment:

(i) uniformly, over the range [0.001, 0.1], [0.1, 0.4], or [0.5,

0.9]; (ii) exponentially, with average 0.05 (range [0.001,

0.1]), 0.25 (range [0.1, 0.4]), or 0.7 (range [0.5, 0.9]); or (iii)

bimodally, distributed uniformly over [0.001, 0.5) with prob-

ability 8/9, and over [0.5, 0.999] with probability 1/9. Task

execution costs excluding the cost of resource-access times

were calculated from periods and utilizations (and may be

non-integral). Each task set was created by generating tasks

until either a specified cap on total utilization (80% for soft,
65% for hard) was reached or 100 tasks were generated, and
by then discarding the last-added task, thereby allowing some

slack to account for overheads. (We considered other caps in

some experiments, but they are omitted here.)

Resource access generation. The number of shared re-

sources in a task set was determined using the formula K·N
α·m
.

The parameter K denotes the maximum number of resource
accesses per task and was varied from 1 to 9. The parameter

α ∈ {1, 2} was used to control the degree of sharing. Each
resource has an access cost, which is added to each access-

ing task’s execution cost. This cost represents the cost of an

4In the case of nesting, measured outermost critical-section durations in

all cases included nested requests and any associated nested blocking.

access in the contention-absent case, excluding any synchro-

nization overheads. Such overheads are discussed below. The

manner in which access costs and nesting levels were deter-

mined is also explained below.

Schedulability tests. Schedulability can be checked for a

given task set by using a schedulability test that has been

augmented to account for both resource-sharing costs and the

various overheads mentioned in Sec. 4.1. Overheads can be

accounted for by using standard accounting techniques to in-

flate task execution costs, as described in [16].

Resource-sharing costs must be determined differently for

each tested scheme. Wait-free sharing is the simplest: in this

case, because tasks never block or repeatedly retry, they can

be viewed as being independent, i.e., as if no sharing occurs.

In contrast, retry bounds are needed in the lock-free case: if a

retry loop completes on its jth iteration, then the processing

capacity needed for j − 1 iterations is wasted. Retry bounds
can be computed using formulas from [16, 18]. Such for-

mulas are obtained by bounding the number of potentially-

conflicting accesses that can occur while some lock-free ac-

cess is in progress, and this is a function of the number of job

releases that can occur over such an interval.

Lock-based resource-sharing costs can be estimated us-

ing the FMLP analysis presented in [8]. For short resources,

the needed analysis is straightforward, since jobs waiting for

such resources consume processor time. For long resources,

however, the situation is more complex, since jobs wait by

suspending. Suspensions are notoriously difficult to deal with

in scheduling analysis. Even in the uniprocessor case, Ri-

douard et al. [30] have shown that the problem of checking

hard real-time feasibility when jobs may suspend is NP-hard

in the strong sense. Because of such difficulties, suspensions

are often dealt with by viewing a job that suspends for s time
units as if it had actually executed for those s time units. For
G-EDF, this is the approach we take. To our knowledge,

the same approach is used in all prior work on multiproces-

sor synchronization under EDF, where suspensions can arise

due to inter-processor blocking [14]. For P-EDF, it is pos-

sible to do slightly better: Devi [15] has presented sufficient

techniques for accounting for suspensions on uniprocessors,

and these techniques can be used under P-EDF, since each

processor is scheduled independently. We have used these

techniques in our analysis, but it should be noted that the al-

ternative of viewing suspensions under P-EDF as computa-

tion produced nearly identical results. The difficulties noted

here associated with analyzing the impact of suspensions will

have major repercussions, as we shall see.

With overheads and resource-related costs accounted for

as discussed above, we checked schedulability as follows.

For P-EDF, we checked whether a given task set could be

partitioned using the worst-fit decreasing heuristic, with the

added constraint that tasks accessing common long resources

be assigned to the same processor. (This is less pessimistic
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than using available closed-form tests and increases the like-

lihood of being able to implement long resources more ef-

ficiently via the SRP.) If the added constraint could not

be met, a second attempt was made to partition the task set

without it. If this failed, then the task set was deemed to be

unschedulable. Note that, under P-EDF, the distinction be-

tween hard and soft real-time schedulability only differs in

the use of maximum or average overheads: under partition-

ing, if tardiness is bounded, then it is zero, so the only way to

schedule a soft real-time task set is to view it as hard.

To determine schedulability under G-EDF, the sufficient

schedulability test in [20] was used in the hard real-time case,

and a simple check that the system is not over-utilized in the

soft real-time case. In the latter case, tardiness bounds were

computed using formulas from [16, 18] (which can be applied

when jobs have non-preemptive sections).

In the next two subsections, we present results from two

sets of experiments, one conducted to compare spin-based

and suspension-based synchronization under the FMLP

when implementing arbitrary critical sections, and a second

that focuses specifically on shared data objects. Considering

all possible combinations of parameters in our experimen-

tal set-up, it takes almost 1,500 graphs to present all of our

data. Although we only present some representative example

graphs here, the complete set of graphs can be found in [11].

4.3 Spinning vs. Suspending

The first set of experiments was conducted to compare the

short and long resource variants of the FMLP. Based on the

trace data discussed in Sec. 4.1, we varied maximum outer-

most critical-section lengths (access costs) from 1 to 14 µs.
Nested requests were generated in a manner that reflects the

distribution of nested calls discussed in Sec. 4.1.

Fig. 1 shows results obtained for m = 4, α = 1, K = 5,
and tasks of low (left column), medium (middle column), and

high (right column) utilizations. The x-axis of each graph
gives the maximum outermost critical-section length; 50 task

sets were generated for each data point on this axis.

In examining these graphs, we consider first insets (a)–

(c), which concern hard real-time schedulability. There are

several things to notice here. First, as critical sections be-

come longer (or, equivalently, nesting levels become deeper),

schedulability tends to worsen. Second, schedulability is

very poor under P-EDF whenever the long-resource variant

of the FMLP is used, unless task utilizations are high. The

latter may seem counter-intuitive, but when task utilizations

are high, fewer tasks exist, so synchronization costs are re-

duced. Third, in the short-resource case, schedulability is

very good under both P-EDF and G-EDF if task utilizations

are low (inset (a)). Finally, it is much better (from the stand-

point of schedulability) to implement resources via spinning

(short) rather than suspending (long). Other results that were

obtained but not shown support these conclusions.

The remaining insets of Fig. 1 pertain to soft real-time

systems; schedulability results are shown in insets (d)–(f)

and tardiness results for G-EDF are shown in insets (g)–

(i). Again, there are several interesting things to note. First,

because the same schedulability test is used (with different

overheads) in the soft and hard cases, the schedulability re-

sults shown for P-EDF in insets (d)–(f) are similar to those

shown in insets (a)–(c). Of course, under P-EDF, if a task

set can be scheduled, then tardiness is zero. Second, the us-

age of short resources under G-EDF always results in the

best schedulability (often by a very wide margin). Third, in

the long-resource case, schedulability under G-EDF is quite

good if task utilizations are low and critical sections are not

too long (see the left part of inset (d)) or if task utilizations

are fairly high (insets (e) and (f)). Fourth, tardiness under

G-EDF tends to be lower if resources are implemented as

short rather than long (insets (g)–(i)). As above, other results

that were obtained but not shown support these conclusions.

A major reason why long resources yield poorer results

than short resources is the difficulty in analyzing the impact

of suspensions noted earlier. Given the earlier-cited result of

Ridouard et al. [30] pertaining to hard real-time uniproces-

sor systems, we are doubtful that significantly better analy-

sis techniques can be found for dealing with suspensions in

the hard real-time case. However, there is some hope that

better techniques may be found for soft real-time systems.

Nonetheless, it remains to be seen whether better analysis, if

it can be obtained, would alter our conclusion that spinning is

usually preferable. We in fact believe that it would not. This

belief is based upon empirical evidence, discussed next.

Spin-based utilization loss. Spinning clearly wastes pro-

cessing capacity where suspending would not. By determin-

ing the conditions under which such waste leads to poorer

performance, we can gain insight into the extent of conser-

vatism in our analysis techniques for suspensions, because

these techniques do not reveal any performance advantages

for suspending. In an attempt to determine such conditions,

we conducted experiments on LITMUSRT in which we mea-

sured the utilization available to background jobs over an

interval of 60s in the presence of real-time tasks exhibiting
different levels of lock contention. We assessed the impact

of spinning in comparison to suspending by measuring the

processing capacity available to the background jobs: when

capacity is lost due to spinning, the background jobs receive

less capacity. We varied the number of resources, relative and

absolute critical-section lengths, and task periods and execu-

tion costs. The relative critical-section length (RCSL) of a
job is the fraction of its execution time spent in critical sec-

tions. Of the listed parameters, we found that only RCSLs

and the number of resources had an impact on the observed

results, so in the discussion that follows, performance is as-

sessed with respect to these parameters only.

We implemented six task sets, each consisting of 32
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Figure 1: (a)–(c) Hard real-time schedulability, (d)–(f) soft real-time schedulability, and (g)–(i) tardiness bounds (in µs) for G-EDF

as a function of maximum critical-section length for three task utilization ranges. In comparing (a)–(c) with (d)–(f), recall that different

overheads and utilization caps are used in the hard and soft cases. (Numeric identifiers have been included to help distinguish the curves.)

identical real-time tasks. Each task had a period within

[40ms, 1000ms] (different periods were used for different
task sets) and a utilization of 0.125, but was configured

to actually consume only about a quarter of its utilization.

Thus, if no utilization is lost due to spinning, then the back-

ground jobs should receive about 75% of the system’s capac-

ity (equivalent to a utilization of 3.0 on our four-processor

test system). Each task’s RCSL was configurable and was

the same for all tasks in a set in each system run. Our re-

sults are shown in Fig. 2, which plots the processing capacity

available to the background jobs in different scenarios ver-

sus RCSL. Each curve in the figure was obtained by averag-

ing values obtained from the six implemented task sets. Re-

sources were implemented as either short or long, with one,

two, or four resources in total. For the scenario in which x
resources are present, the tasks were partitioned into groups

of 32/x, with the tasks in each group accessing a separate re-
source. Note that, with one resource, contention is very high

(likely much higher than would ever arise in practice). Fig. 2

depicts curves for each implemented scenario (only one curve

is shown for long resources because the curves are almost

identical in all cases). Note that, when resources are imple-

mented as long resources, the background jobs receive about

75% of the system’s capacity, as expected.

The impact of spinning can be seen by comparing the three

short-resource curves to the long-resource curve. With only

one resource, spinning becomes detrimental when the RCSL

surpasses 0.2. With less contention, the impact of spinning

is lower: with two (four) resources, spinning becomes detri-

mental when the RCSL surpasses roughly 0.4 (0.6). Note

that, in our experiments, all tasks of a given set have the same

(large) RCSL. Thus, for example, an RCSL of 0.6 means that

the real-time component of the system as a whole spends

60% of its time in critical sections (ignoring spinning time).

This is a highly unlikely scenario. In practice, we would ex-

pect any utilization loss due to spinning to often be negligible.

4.4 Blocking vs. Non-blocking

Our main objective in the second set of experiments was to

determine when non-blocking techniques are preferable to

blocking techniques when implementing shared data objects.

Non-blocking implementations that allow nested accesses are

impractically complicated, so we only considered non-nested
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Figure 2: The effect of spinning on best-effort job utilization.

accesses. We also considered only the short-resource variant

of the FMLP, as it is superior to the long-resource variant,

as established above. This study focused on three shared ob-

jects: read/write buffers, queues, and binary heaps (which

can be used to implement priority queues). For each, we sur-

veyed the literature and chose algorithms that we felt would

have the best performance. (In some cases, we implemented

and evaluated multiple algorithms before choosing.) We im-

plemented lock-free buffers using an algorithm of Tsigas et

al. [33] and wait-free buffers using an algorithm of Ander-

son and Holman [2]. We implemented lock-free queues us-

ing an algorithm of Michael et al. [27]. The remaining algo-

rithms were implemented using lock-free and wait-free uni-

versal constructions of Anderson and Moir [3].5

We determined access costs for lock-free and wait-free ob-

jects as follows. For each object implementation, we timed

one task in an N -task implementation where N ∈ [2, 32].
Average and maximum execution costs were obtained after

discarding the top 1% of values, as done earlier in obtaining

overheads, to account for outliers. For both buffer imple-

mentations, we considered 10,000 read/write operations on a

buffer consisting of ten words. For the queue implementa-

tions, we considered 10,000 enqueues/dequeues, where 60%
(40%) of the operations were enqueues (dequeues). For the
heap implementations, we considered 10,000 operations on

a heap with a maximum size of 1,000 elements, where 60%
(40%) of the operations were insertions (extractions of the
maximum element). In the case of lock-based sharing, we

considered sequential versions of each object, and obtained

timings in a similar way. The measurements obtained are

summarized in Table 2. As seen, roughly half of the imple-

mentations were seen to have a clear linear dependence on the

number of tasks. (The listed linear expressions were obtained

by linear regression analysis.)

In describing our schedulability results, we limit attention

5Universal constructions can be used to implement any type of object.

They are the only choice for implementing “complex” objects for which

specialized implementations do not exist. Universality is usually achieved

by requiring tasks to copy portions of the constructed object’s state. The

constructions in [3] are designed to lessen copying overhead.

Object Scheme Avg. Access Cost Max Access Cost

Buffer Short 0.38 µs 0.67 µs

Buffer LF 0.84 µs (1.12 + 0.01 · N) µs

Buffer WF (2.62 + 0.01 · N) µs (5.43 + 0.20 · N) µs

Queue Short 0.32 µs 0.58 µs

Queue LF 0.66 µs 1.25 µs

Queue WF 11.97 µs (13.49 + 0.68 · N) µs

Heap Short 1.04 µs 2.60 µs

Heap LF (11.31 + 0.04 · N) µs (19.43 + 0.09 · N) µs

Heap WF (16.28 + 0.08 · N) µs (34.22 + 2.49 · N) µs

Table 2: Formulas for determining object access costs in spin-based

(Short), lock-free (LF), and wait-free (WF) implementations, where

the number of tasks that share an object is N ∈ [2, 32]. In the lock-

free case, the term “access cost” refers to one retry-loop iteration.

to soft real-time systems, due to space constraints. We also

consider only buffers and heaps (the simplest and most com-

plex objects we considered). As before, other omitted results

support the conclusions drawn here. Fig. 3 shows tardiness

results for G-EDF for buffers (top row) and heaps (bottom

row) for the case where m = 4 and α = 1 and task utiliza-
tions are low (left column), medium (middle column), and

high (right column). Fig. 4 shows corresponding schedu-

lability results, for both G-EDF and P-EDF. The x-axis
of each graph gives the value of K (access frequency); 50
task sets were generated for each integral point on this axis.

Fig. 3 illustrates several conclusions. First, non-blocking im-

plementations are generally better than spin-based ones for

simple objects (insets (b)–(c)), while spin-based implemen-

tations are roughly as good, and sometimes better, for com-

plex objects (insets (d)–(f); note that, given the scale in inset

(e), there is not much difference between the three schemes

in this case). Second, lock-free and wait-free algorithms are

equally preferable for simple objects, but when implementing

complex objects shared by tasks of low to moderate utiliza-

tion, wait-free algorithms are better (insets (d) and (e)). This

difference is due to excessive retries in the lock-free case.

5 Conclusion

With the advent of multicore technologies, multiprocessor

platforms are of growing importance in the real-time do-

main. While this realization has fueled much recent work on

scheduling, the issue of synchronization has been somewhat

neglected. Motivated by this, we have produced an extension

of the LITMUSRT testbed that incorporates support for syn-

chronization, and have used the resulting testbed to compare

several synchronization approaches. To our knowledge, such

a comparison has not been attempted before.

The major conclusions of our study are as follows: (i)

when implementing shared data objects, non-blocking algo-

rithms are generally preferable for small, simple objects, and

wait-free or spin-based implementations are generally prefer-

able for large or complex objects: (ii) wait-free algorithms
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Figure 3: Tardiness bounds (in µs) as a function of access frequency (K) for soft real-time systems scheduled by G-EDF for (a)–(c)

buffers and (d)–(f) heaps for three task utilization ranges.
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Figure 4: Schedulability results corresponding to the cases in Fig. 3. Insets (a)–(c) correspond to insets (d), (c), and (f), respectively, in

Fig. 3. Schedulability results for the other cases are omitted, because schedulability under each scheme was 100%.

are preferable to lock-free algorithms; (iii) with frequently-

occurring long or deeply-nested critical sections, schedulabil-

ity is likely to be poor (under any scheme); (iv) suspension-

based locking should be avoided under P-EDF (and under

partitioning generally) for global resources; (v) using cur-

rent analytical techniques, suspension-based locking is never

preferable (on the basis of schedulability or tardiness) to spin-

based locking; (vi) if such techniques can be improved, then

the use of suspension-based locking will most likely not lead

to appreciably better schedulability or tardiness than spinning

unless a system (in its entirety) spends at least 20% of its time
in critical sections (something we find highly unlikely to be

the case in practice).

There are numerous directions for future work. First,
the FMLP can also be applied within the PD2 Pfair algo-
rithm [8]; it would be interesting to empirically evaluate this
alternative as well. Second, we would like to move the cur-
rent LITMUSRT implementation to a multicore platform
and repeat this evaluation. Third, our current LITMUSRT

implementation sometimes relies on coarse-grained locking
within the kernel; we would like to re-examine this imple-

mentation to see if finer-grained locking or non-blocking
techniques could be used instead. Finally, we would like to
repeat this study on a cache-limited platform, where spinning
may not be local.
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