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Abstract

Many contemporary disk drives have built-in queues and
schedulers. These features can improve I/O performance,
by offloading work from the system’s main processor, avoid-
ing disk idle time, and taking advantage of vendor-specific
disk characteristics. At the same time, they pose challenges
for scheduling requests that have real-time requirements,
since the operating system has less visibility and control
over service times. While it may be possible for an oper-
ating system to obtain more predictable real-time perfor-
mance by bypassing the on-disk queue and scheduler, the
diversity and continuing evolution of disk drives make it
difficult to extract the necessary detailed timing character-
istics of a specific disk, and to generalize that approach to
all hard drives.

This paper demonstrates three techniques we developed
in the Linux operating system to bound real-time request re-
sponse times for disks with internal queues and schedulers.
The first technique is to use the disk’s built-in starvation
prevention scheme. The second is to prevent requests from
being sent to the disk when real-time requests are waiting
to be served. The third is to limit the length of the on-disk
queue in addition to the second technique. Our results show
the ability to guarantee a wide range of desired response
times while still allowing the disk to perform scheduling op-
timizations. These techniques can be generalized to disks
from different vendors.

∗Based upon work supported in part by the National Science Founda-
tion under Grant No. 0509131, and a DURIP equipment grant from the
Army Research Office.

1 Introduction

The request service time of a disk drive is many orders
of magnitude slower when compared to most other elec-
tronic components of a computer. To minimize the mechan-
ical movements of the disk and improve its performance,
one common optimization is to reorder requests. For many
decades, the I/O scheduler component of an operating sys-
tem (OS) has been responsible for providing request re-
ordering to achieve high throughput and low average re-
sponse time while avoiding starved requests.

Typical operating systems have a general notion of
the disk’s hardware characteristics and interact with disks
through a rigid interface which largely hides the detailed
data layout and capabilities of the disk. For instance, com-
mon intuition suggests that the disk’s logical block ad-
dresses (LBA) start from the outside perimeter of the disk
and progress inwards, but [12] has observed that LBA 0 on
some Maxtor disk drives actually starts on track 31. An-
other example is the popular perception that issuing re-
quests with consecutive disk addresses will give the best
performance. Again, some disks support zero-latency ac-
cess, which permits the tail end of a request to be accessed
before the beginning. This capability enables the disk head
to start transferring data as soon as a part of the request is
under the disk head, not necessarily at the beginning. This
out-of-order data access scheme reduces the rotational delay
to wait for the beginning of the data request to be positioned
under the disk head before the data transfer begins [16].

Given that the OS has limited knowledge of the lay-
out, capabilities, timing characteristics, and the real-time
state of individual disks, disk manufacturers provide tai-
lored optimizations such as built-in schedulers to better ex-
ploit vendor-specific knowledge. To schedule requests on-
disk, a drive needs to provide an internal queue that can take
multiple requests from an OS and reorder them. Figure 1 il-
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Figure 1. Disk-request queuing schemes.

lustrates the key difference between disks with an internal
queue/scheduler and those without. Instead of requiring the
OS to maintain all requests in the I/O scheduler framework,
disks with a built-in queue allow the OS to issue multiple
requests to the disk without waiting for the completion of a
previous request. This permits multiple requests to be pend-
ing at the OS level as well as the hardware level. Reordering
may occur at both levels, but once requests have been sent
to the disk, control over their service order shifts from the
OS to the built-in disk scheduler.

Although on-disk schedulers have shown promise, they
introduce concerns for real-time systems. Since the disk can
change the ordering of requests, the individual request ser-
vice times can be difficult to control and predict from the
viewpoint of an OS. In order for an OS to provide comple-
tion time guarantees, rather than just having to determine
the completion time of one request at a time the OS needs
to predict the order in which the disk will serve multiple re-
quests. Further, the worst-case service time of requests sent
to the disk can be increased to many times that of a disk that
does not contain an internal queue. All these concerns need
to be addressed in order to use these disks to serve real-time
requests.

2 Motivation

Certain characteristics of disk drives make it difficult to
predict I/O response times accurately. One such character-

istic is the variability of service times caused by the state of
the disk due to a prior request. With disks that allow just
one outstanding request at a time, a new request sent to the
disk from a device driver must wait until the completion of
the previous request. Only then can a new request be issued
from a device driver to the disk. Next, based on the location
of the previous request, the disk must reposition the head to
a new location. Given these factors, the variability of tim-
ings can be in the order of tens of milliseconds.

Many contemporary disks, including most SCSI and new
SATA drives, have an additional state parameter in the form
of an internal queue. To send multiple requests to the disk,
the command queuing capability provides the protocol with
three common policy variants: simple, ordered, and head-
of-the-queue [1]. Policies are specified with a tag as each re-
quest is sent to the disk. The “simple” tag indicates that the
request may be reordered with other requests also marked as
“simple”. The “ordered” tag specifies that all older requests
must be completed before the “ordered” request begins its
operation. The “ordered” request will then be served fol-
lowed by any remaining “ordered” or “simple” tagged com-
mands. Finally, the “head-of-the-queue” tag specifies that
the request should be the next command to be served after
the current command (if it exists).

With an internal queue, the variability in request service
time is significantly larger. Once a request is released to
the disk for service, the time-till-completion will depend on
the service order of the queued requests established by both
the disk’s internal scheduler and the given insertion policy.
Now, instead of having to wait tens of milliseconds for a
particular request to return, the maximum service time can
be increased to several seconds.

2.1 Observed vs. Theoretical Bounds

To demonstrate and quantify problems of real-time disk
I/Os resulting from disks with internal queues/schedulers,
we conducted a number of simple experiments. These tests
were run on the RT Preempt version of Linux [2], which is
standard Linux patched to provide better support for real-
time applications. The hardware and software details are
summarized in Table 1.

To estimate service times for a particular request by a
real-time application, one could make simple extrapolations
based on the data sheets for a particular disk. Consider-
ing disk reads, a naive worst-case bound could be the sum
of the maximum seek time, rotational latency, and data ac-
cess time. According to the Fujitsu drive’s data sheet [9],
the maximum seek time and rotational latency are 9 and 4
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Hardware/software Configurations
Processor Pentium D 830, 3GHz,

2x16-KB L1 cache,
2x1-MB L2 cache

Memory 2-GB dual-channel DDR2 533
Hard disk controller Adaptec 4805SAS
Hard disks Maxtor ATLAS 10K V,

73-GB, 10,000 RPM,
8-MB on-disk cache,
SAS (3Gbps) [11]
Fujitsu MAX3036RC,
36.7-GB, 15,000 RPM,
16-MB on-disk cache,
SAS (3Gbps) [9]
IBM 40K1044,
146.8-GB, 15,000 RPM,
8-MB on-disk cache,
SAS (3Gbps) [7]

Operating system Linux 2.6.21-RT PREEMPT

Table 1. Hardware and software experimental
specifications.

milliseconds respectively. Assuming that the disk head can
read as fast as the data rotates underneath the head, the data
transfer time would then be the time spent rotating the disk
while reading the data, which is a function of the request
size. Consider a request of size 256-KB, as in our experi-
ments. Since modern disks store more information on outer
tracks than inner tracks, the span of such a request could
range from half of a track to sometimes more than one track
on various disks. Thus, a request could potentially take two
rotations to access the data, resulting in a worst-case bound
of 17 msec. Clearly, this crude estimation overlooks fac-
tors such as settling time, thermal recalibration, read errors,
bad sectors, etc. However, the aim is to develop a back-of-
the-envelope measurement on the range of expected service
times.

To validate these estimated service times empirically,
we created a task that issues 256-KB requests to random
disk locations. Each request’s completion time was plot-
ted as shown in Figure 2. The first observation is that al-
most all requests were completed within the predicted 17
msec time frame. However, a few requests exceeded the ex-
pected maximum completion time, the latest being 19 msec.
These outliers could be attributable to any of the above
mentioned causes that were not included in our coarse es-
timation method. With the observed maximum completion
time of 19 msec, using disks for some real-time applications
seems quite plausible.

Figure 2. Observed disk completion times with no inter-
ference.

2.2 Handling Background Requests

The above bound does not consider environments with
mixed workloads, where real-time requests (with deadlines)
and best-effort requests coexist. This mixture increases the
worst-case service completion time of the disk. On a disk
that can accept just one request at a time, this worst-case
completion time for a request could be estimated at twice
the maximum completion time for one request, that is: one
time period for a request being served, which cannot be pre-
empted; another time period to serve the request. However,
disks with internal queues show a very different picture.

Internal queues allow multiple requests to be sent to the
disk from the device driver without having to wait for pre-
vious requests to be completed. Given several requests, the
disk’s scheduler is then able to create a service order to max-
imize the efficiency of the disk. This capability, however,
poses a problem regarding requests with timing constraints,
since meeting timing constraints can be at odds with servic-
ing the given requests efficiently.

Consider a scenario with both real-time and best-effort
requests. For real-time requests, the I/O scheduler at the de-
vice driver should send real-time requests to the disk ahead
of best-effort requests. Otherwise, a backlog of best-effort
requests could easily accumulate in the on-disk queue, caus-
ing high real-time I/O latencies.

In order to give priority to real-time requests the OS must
be able to distinguish them. One way in which this can be
done is through I/O priorities. For example, the Linux op-
erating system call ioprio set() allows setting the I/O class
and priority of a process. Unfortunately, among the Linux
disk schedulers, only the the “complete fairness queueing”
(CFQ) scheduler pays any attention to these I/O scheduling
attributes. While we did perform some experiments using
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the CFQ scheduler, it incurs additional complexity that hin-
ders the understanding of disk service times, and generally
performs poorly for tasks with deadlines. The results of
those experiments are reported in Section 4.

2.3 Prioritized Real-Time I/Os are not
Enough

To investigate the latencies associated with using disk
drives, we implemented a basic real-time I/O (RTIO) sched-
uler in Linux. This scheduler honors the priorities set by
the individual applications and does not merge requests.
It issues the requests within individual priority levels in
a first-come-first-served fashion. All disk-location-based
sorting and merging are handled by the on-disk scheduler
which frees the device-driver-level scheduler from making
assumptions about the physical layout of logical sectors on
the disk, eliminates the burden of ordering requests, and re-
duces CPU load.
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Figure 3. Completion times for real-time requests in the
presence of background activity using the RTIO scheduler.

With RTIO, we designed an experiment to measure real-
time request latencies where two processes generated 256-
KB read requests to random locations on disk. One is a
real-time task that repetitively performs a read and waits
for its completion. The second task is a best-effort multi-
threaded process that generates up to 450 concurrent read
requests continuously. The idea is to generate significant
interference for the real-time task. The results for the com-
pletion times of the real-time requests using the Fujitsu
drive are graphed in Figure 3. The reordering of requests
by the disk can cause unexpectedly long response times.
The largest observed latency was around 1.9 seconds. The
best-effort throughput, however, was respectable at 39.9

MB/sec1. This tradeoff seems to be favored by the on-
disk internal scheduler. Although ideally one would like
high throughput and low worst-case response time, these
two goals are often in conflict.

Disks with an internal scheduler/queue can significantly
increase the variance of I/O completion times and reduce
their predictability as opposed to disks without. However,
the internal queue does provide some benefits. Not only
does it provide good throughput, it also allows the disk to
remain busy while waiting for requests to arrive from the
device driver queue. Particularly, in the case of real-time
systems, the code for the hard disk data path might have a
lower priority than other tasks on the system, causing delays
in sending requests from the device driver to the disk, to
keep the disk busy. Without an internal queue, a disk will
become idle, impacting both throughput and response times
of disk requests. The severity depends on the blocking time
of the data path. Even with an internal queue, the problem
of reducing and guaranteeing disk response time remains.
Without a way to address these issues, it is unlikely anyone
would choose to use a disk in the critical path of real-time
applications.

3 Bounding Completion Times

This section describes the various ways in which we ex-
plored bounding the completion times of real-time requests
that were sent to the hard disk. These include using the
built-in starvation prevention algorithm on the disk, limiting
the maximum number of outstanding requests on the disk,
and preventing requests being sent from the device driver to
the disk when completion time guarantees are in jeopardy
of being violated.

3.1 Using the Disk’s Built-in Starvation
Prevention Schemes

Figure 3 shows that certain requests can take a long time
to complete. There is, however, a maximum observed com-
pletion time of around two seconds. This maximum sug-
gests that the disk is aware of starved requests, and it forces

1The maximum observed throughput of the disk on other experiments
in which we fully loaded the disk with sequential read requests ranged
from 73.0 to 94.7 MB/sec, depending on the cylinder. Clearly, that level of
throughput is not possible for random read requests. A rough upper bound
on random-access throughput can be estimated by taking the request size
and dividing it by average transfer time, rotational delay, and seek time
for 20 requests. For our experiment, this is 256KB/(3 msec (to transfer
256KB) + 4 msec (per rotation)/2 + 11 msec (worst-case seek time)/20),
giving a throughput of 46.1 MB/sec. This is not far from the 40 MB/sec
achieved in our experiments.
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these requests to be served even though they are not the
most efficient ones to be served next. To test this hypothe-
sis, we created a test scenario that would starve one request
for a potentially unbounded period of time. That is, one re-
quested disk address would be significantly far away from
the others, and servicing the outlier request would cause
performance degradation. Better performance would result
if the outlier request were never served. The point at which
the outlier request returns would be the maximum time a
request could be queued on a disk without being served.
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Figure 4. Disk’s observed starvation prevention.

To be specific, best-effort requests were randomly issued
to only the lower 20 percent of the disk’s LBAs. At the same
time, one real-time request would be issued to the disk’s up-
per 20 percent address space. A maximum of twenty best-
effort requests and one real-time request were permitted to
be queued on the disk at one time. The idea was that the disk
would prefer to serve the best-effort requests, since their ac-
cess locations are closer to one another and would yield the
best performance. Figure 4 shows the results of this exper-
iment on a Fujitsu drive. The spike, at just over 2 seconds,
appears to be the maximum read response time of the disk.
Given this information, real-time applications that do not
require a response time less than 2.03 seconds do not need
anything special to be done. The on-disk scheduling will
provide best-effort throughput of 40 MB/sec, while prevent-
ing starved requests. Intriguingly, the spike is cleanly de-
fined suggesting that this particular disk has a strong notion
and control of completion times rather than simply count-
ing requests before forcing a starved request to be served.
Note that all disks do not have the same maximum starva-
tion times. It is likely that most disk’s do have some sort of
built-in starvation mechanism, since not having one could
lead to unexpectedly long delays at times. On the disks that
we have tested, the maximum starvation time ranges from
approximately 1.5 to 2.5 seconds.

Should a real-time application require lower completion
time than the disk-provided guaranteed completion time,
additional mechanisms are needed.

3.2 “Draining” the On-Disk Queue

The reordering of the requests queued on the disk is not
the only cause of the extended completion times observable
in Figure 3. As on-disk queue slots become available, newly
arrived requests can potentially be served before the pre-
viously sent requests, leading to completion times greater
than that of just servicing the number of possible requests
permitted to be queued on a disk.
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Figure 5. Effect of draining requests on the Fujitsu hard
disk.
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Figure 6. Effect of draining requests on the Maxtor hard
disk.

To discover the extent of starvation due to continuous ar-
rivals of new requests, we first flooded the on-disk queue
with 20 best-effort requests, then measured the time it takes
for a real-time request to complete without sending further

335335335



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  100  200  300  400  500

c
o

u
n

t

response time (milliseconds)

Figure 7. Effect of draining requests on the IBM hard
disk.

requests to the disk. As can be seen in Figure 5, the com-
pletion times are significantly shorter than the worst cases
shown in Figure 3. However, contrary to our intuition, real-
time requests are more likely to be served with a shorter
completion time, while it might seem that a real-time re-
quest should have had an equal chance of being chosen
among all the requests to be served next. With an in-house
simulated disk, we realized that, with command queuing,
the completion time reflects both the probability of the real-
time request being chosen as the nth request to be served, as
well as the probability of various requests being coalesced
to be served with fewer rotations. In this case, serving a
real-time request as the last request while taking all twenty
rotations is rather unlikely.

Applying the “draining” mechanism used for this exper-
iment, we have a new means to bound completion times.
Draining gives the disk fewer and more bounded choices to
make when deciding the next request to serve. As each best-
effort request returns, the likelihood for the disk to serve the
real-time request increases. In the worst-case, the real-time
request will be served last.

While draining can prevent completion time constraints
from being violated, this technique relies on knowing the
worst-case drain time for a given number of outstanding
requests on the disk. Predicting this time can be diffi-
cult. One approach is to deduce the maximum possible
seek and rotation latencies, based on possible service order-
ings for a given number of requests. However, the built-in
disk scheduler comes preloaded in the firmware, with undis-
closed scheduling algorithms. Also, our observations show
that on-disk scheduling exhibits a mixture of heuristics to
prevent starvation. To illustrate, Figures 5, 6, and 7 used
the same draining experimental framework on disks from
different vendors. From the diversity of completion-time

distributions, the difficulty of inferring the scheduling algo-
rithm is evident. Furthermore, even if one drive’s schedul-
ing algorithm is discovered and modeled, this does not gen-
eralize well with the diversity and rapid evolution of hard
drives.
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Figure 8. Empirically determining the drain time for 20
outstanding disk requests on the Fujitsu drive.

Given these issues, simple and general analytical predic-
tion of the drain time may not be realistic. However, the
maximum drain time can be determined empirically with a
relatively high confidence level. To obtain the drain time
for a given number of requests x, an experiment can be per-
formed by sending x reasonably large requests to the disk
with a uniformly random distribution across the entire disk.
The time for all requests to return is then logged. The graph
of the experiment for the drain time of 20 256-KB requests
on the Fujitsu drive is shown in Figure 8, which will allow
us to bound the completion time for a real-time request with
the presence of 19 outstanding best-effort requests.

3.3 Experimental Verification

To implement the proposed draining policy, we modified
our RTIO scheduler, so that once a real-time request has
been issued to the disk, RTIO stops issuing further requests.
If no real-time requests are present, RTIO limits the maxi-
mum number of on-disk best-effort requests to 19. For the
experiment, we created two processes. One process was a
periodic real-time task that reads 256-KB from a random
disk location every 160 msec, which was also the deadline.
The deadline was based on maximum drain time in Figure 8.
The other process is a best-effort task that continuously is-
sues 256-KB read requests with a maximum of 450 out-
standing requests. Figure 9 shows that no completion times
exceeded 160 msec, and no deadlines were missed. (This
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Figure 9. Draining the queue to preserve completion
times of 160 msec.

is compared to the 2.03 second worst-case raw latency of
the disk.) The throughput for best-effort requests remained
at 40 MB/sec, suggesting that draining the entire queue oc-
curred rather infrequently.

3.4 Limiting the Effective Queue Depth

While draining helps meet one specific completion time
constraint (e.g., 160 msec), configuring draining to meet ar-
bitrary completion times (e.g., shorter deadlines) requires
additional mechanisms. One possibility is to further limit
the number of outstanding requests on disk, creating a more
general case of draining. This mechanism artificially lim-
its the queue depth of the disk, thereby reducing maximum
drain times. By determining and tabulating the drain time
for various queue lengths (Figure 8), we can then meet ar-
bitrary completion time constraints (subject to the timing
limitations of physical disks of course).
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Figure 10. Maximum observed drain times for on-disk
queue depths.

For instance, one can see from Figure 10 that to meet
the completion time constraint of 75 msec using a queue
depth of less than 9 would suffice. We would like to use
the largest possible queue depth while still maintaining the
desired completion time for real-time I/O requests. A larger
queue length grants the disk more flexibility when choosing
requests to service, resulting in better scheduling decisions.
Therefore, in this case, we would choose a queue depth of
8. The best-effort tasks must be limited to a queue depth of
7, with one slot reserved for the real-time request.
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Figure 11. Limiting and draining the queue to preserve
completion times of 75 msec.

To verify our tabulated queue length, a similar experi-
ment was performed as before, changing only the period
and deadline to be 75 msec. While Figure 11 shows that all
deadlines are met as expected, we noticed that the through-
put (not shown) for the best-effort requests dropped to 34
MB/sec. Interestingly, a 60% decline in queue length trans-
lates into only a 15% drop in bandwidth, demonstrating the
effectiveness of on-disk queuing even with a relatively short
queue.

4 Comparisons

To show the benefits of our approach to bound I/O com-
pletion times, we conducted experiments to compare the
performance of RTIO with disk scheduling algorithms pro-
vided by the standard Linux kernel.

One of the standard Linux disk schedulers is called the
“deadline scheduler”. It might seem that this scheduler
should be effective in bounding I/O completion times, how-
ever, the name is misleading. First, the “deadline” in this
case means the time before sending a request to the disk
drive. Second, the so-called deadline scheduler does not
support the use of I/O priorities, or more than one relative

337337337



deadline, meaning that all real-time I/Os will be handled the
same as non-real-time I/Os. Figure 12 shows the results of
constantly sending 450 best-effort requests to the disk while
at the same time recording the completion time of the real-
time request being issued periodically. When comparing the
results of the deadline scheduler with those of Figure 3 the
importance of honoring I/O priorities becomes apparent.
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Figure 12. Completion times for real-time requests using
the Linux deadline I/O scheduler.

While the so-called deadline scheduler in Linux could be
modified to take advantage of the I/O priorities, the reorder-
ing problem of the disk’s internal scheduler would still exist.
That is, deadline scheduling is not just getting the requests
to the disk in deadline order, but also getting the results
back from the disk within a specified deadline. The dead-
line scheduler could be further modified to take advantage
of “draining” by setting a deadline on requests that have yet
to return from the disk as well as requests residing in the
I/O scheduler’s queue. When a request has been on the disk
longer than a specified time, the draining mechanism should
then be invoked. Draining would then last until no requests
submitted to the disk have exceeded their deadlines. While
this approach would not provide exact completion times for
any given request, it would allow for much better deadline
performance than seen currently.

We also studied the default CFQ I/O scheduler for Linux.
CFQ is the only standard Linux scheduler that uses I/O
priorities when making scheduling decisions. Without this
support, it is easy to see situations where a backlog of best-
effort requests at the device driver level may prevent a real-
time request from reaching disks in a timely manner, not to
mention the requests queued on disk. Given that the com-
bined queue depth can be quite large, a real-time request
may potentially be forced to wait for hundreds of requests
to be completed.
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Figure 13. Completion times for real-time requests using
the Linux CFQ I/O scheduler.

To get an idea of the worst-case completion times of real-
time requests sent to the disk using the CFQ scheduler, we
repeated similar experiments to those in Figure 3. These ex-
periments provided a continuous backlog of 450 best-effort
requests to random locations on disk, in addition to one real-
time request sent periodically. The request size was again
limited to 256-KB. The only difference was in the use of
CFQ rather than RTIO.

Figure 13 shows that real-time completion times can ex-
ceed 2 seconds. Inspecting the kernel code in search of an
explanation, we found that the real-time request handling
is not correctly being implemented. When a new real-time
request arrives, the CFQ scheduler does not always allow
the newly issued real-time request to preempt preexisting
requests in the driver’s queue. In an attempt to alleviate this
problem, we made a minor modification to the code to force
the newly-issued real-time request to preempt all best-effort
requests residing in the driver queue. This change, however,
had the side effect of allowing only one request on the disk
at a time. Although this change yielded low completions
times with a maximum of 17 msec, the best-effort through-
put degraded to 18 MB/sec.

Further understanding of the CFQ code showed that the
low throughput may be attributed to how CFQ treats each
thread as a first-class scheduling entity. Because our exper-
iments used numerous threads performing blocking I/Os,
and since CFQ introduces artificial delays and anticipates
that each thread will issue additional I/Os near the current
requests location, our multi-threaded best-effort process can
no longer result in multiple requests being sent to the on-
disk queue. It might seem that asynchronous requests could
be used; however, the current Linux C library only em-
ulates the asynchronous mechanism by spawning worker
threads that perform blocking requests. Further, the max-
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imum number of worker threads is limited to 20. Our final
solution was to modify the CFQ code to schedule according
to two groups of requests: one real-time and one best-effort.
This modified CFQ now can forward multiple requests to
the on-disk queue.
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Figure 14. Completion times for real-time requests using
a modified Linux CFQ I/O scheduler.

After the modifications, the real-time completion times
are shown in Figure 14. Without the limit imposed by the
disk’s starvation control algorithm, the real-time response
might have been even worse. The real-time performance
is still poor because CFQ continuously sends best-effort re-
quests to the disk, even though there may be real-time re-
quests waiting to be served on the disk. Since the disk
does not discern real-time and best-effort requests once they
are in the on-disk queue, many best-effort requests can be
served before serving the real-time request. At first it may
seem peculiar that the completion times for the majority of
real-time requests are over 2 seconds, considering the re-
quests are randomly distributed across the entire disk, and
real-time requests should have a good chance of not be-
ing chosen last. This problem occurs because CFQ sorts
the random collection of best-effort requests, resulting in a
stream of arriving requests that are more likely to be closer
to the current disk head location than to the real-time re-
quest. Therefore, servicing the best-effort requests prior
to the real-time request is more efficient. With the combi-
nation of merging and sorting, CFQ issues near-sequential
reads for the best-effort tasks, and can achieve throughput
of 51 MB/sec. However, the cost is severe degradation of
real-time performance.

5 Multiple Real-Time Requests

In this section we evaluate how our approach extends
to handle multiple real-time disk requests. We provide
only preliminary results and leave further analysis to future
work.

Draining ensures that the disk has sufficient time to ser-
vice all requests currently residing on the disk’s queue with-
out violating a real-time request that has been issued to the
disk. To allow for multiple real-time requests, this strategy
can be extended by ensuring enough time exists to service
all requests on the disk before the earliest real-time request’s
deadline. This gives the advantage that draining for one
request will also assist other real-time requests in meeting
their deadlines.

A potential pitfall occurs when a second real-time re-
quest must be issued to the disk to ensure meeting of its
deadline. However, sending the request to the disk will
jeopardize the deadline of an already existing request on the
disk. To overcome this problem we allow real-time request
to reserve slots on the disk’s queue. Reserving a slot means
that the scheduler will assume that a real-time request ex-
ists on the disk whether or not it is present. This allows the
draining of the previous scenario with 2 real-time requests
to be alleviated. Even if the second real-time request gets
serviced before the first real-time request we will have ac-
counted for this case and should not miss any deadlines.

To evaluate this approach, we chose an experiment sim-
ilar to that of Figure 11. The difference being that we will
use, an arbitrarily chosen, 4 real-time requests instead of 1.
Having 4 real-time tasks requires the reservation of 4 slots
for the real-time requests and leaves 4 slots for best-effort
requests. All real-time requests will have a period and dead-
line of 75 msec. The real-time tasks are offset from one and
other by 18.75 msec. That is, after the first real-time task
is started, the next task is started 18.75 msec later, the third
at 37.5 msec and so on. This reduces the likelihood that
all real-time requests will drain together and potentially in-
creases interference. The completion times of real-time re-
quests are shown in Figure 15. The throughput of the best-
effort requests was recorded to be 26 MB/sec. All real-time
requests completed within their deadline constraints, sug-
gesting that our draining approach does generalize to multi-
ple real-time requests. Given that the longest response time
was only 54 msec, implies that more aggressive issuing of
requests to increase best-effort throughput may be possible.

339339339



 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60

c
o

u
n

t

response time (milliseconds)

Figure 15. Completion times for four real-time requests.

6 Related Work

Many researchers have investigated scheduling real-time
and best-effort hard disk requests. Some examples include
Shenoy and Vin [15], Bosch, Mullender and Jansen [5], and
Bosch and Mullender [4]. However, the majority of such
studies do not consider the reordering effect of the internal
disk scheduler. Also, many – for example, see Reddy and
Wyllie [13] and Cheng and Gillies [6] – require detailed
knowledge of the disk’s internal state, as well as its lay-
out and timing characteristics. Such information is becom-
ing increasingly difficult to obtain with the rapid growth in
complexity and evolution of disk drives.

Reuther and Pohlack [14] and Lumb, Schindler and
Ganger [10] have been able to extract disk characteristics
and perform fine-grained external scheduling. They show
that they can out-perform the on-disk scheduler in some
cases. However, determining such timing information from
disks can be very challenging and time-consuming, and can
be expected to become more so as disk drives become more
sophisticated.

Fine-grained CPU-based disk scheduling algorithms re-
quire that the disk device driver keep track of the disk’s state
accurately. In a real-time system, device drivers compete
for CPU time with hard-real-time application tasks [18, 3].
Therefore, it may be necessary to schedule the processing
of disk I/O requests by the device driver at a lower priority
than some other tasks on the system. Interference by such
tasks may prevent a CPU-based disk scheduling algorithm
from accurately keeping track of the disk’s state in real time,
even if the layout and timing characteristics of the disk are
known. Also, if the on-disk queue is not used, there is a risk
of leaving the disk idle while it waits for the next request
from the CPU, thereby affecting the utilization of the disk
with a severity proportional to the amount of time that the
device driver is blocked from executing.

Internal disk scheduling algorithms do not have these
problems since they are executed by a dedicated processor
inside the disk with immediate access to the disk’s internal
state and timing characteristics, which can be highly ven-
dor specific. Even if the device driver is run at maximum
priority, an off-disk scheduler will have (1) less complete
and less timely information, (2) a reduced amount of control
due to the limited information provided by the disk I/O in-
terface, and (3) contention and transmission delays through
the intervening layers of bus and controller.

The need to consider the internal scheduler of disks has
been discussed in [8], which uses a round-based scheduler
to issue requests to the disk. This scheduler allows real-
time requests to be sent to the disk at the beginning of each
round. The SCSI ordered tag is then used to force an order-
ing on the real-time requests. This approach prevents inter-
ference of requests sent after the real-time requests. How-
ever, it forces all real-time requests to be present at the be-
ginning of the round. If the arrival of the real-time requests
just misses the beginning of the round, the worst-case re-
sponse times can be just under two rounds. Further, using
the ordered tag may impose a first-come-first-served policy
on the disk even when missed deadlines are not in jeopardy,
which reduces the flexibility of the disk to make scheduling
decisions and decreases the performance.

Another thread of research on real-time disk scheduling
is represented by Wu and Brandt [17]. Noting the increas-
ing intelligence of disk drives, they have taken a feedback
approach to scheduling disk requests. When a real-time ap-
plication misses its deadline, the rate of issuing the best-
effort requests is reduced. While their work provides a way
to dynamically manage the rate of missed deadlines, it does
not provide precise a priori completion time guarantees.

7 Conclusion

In this paper, we discussed how to use a hard disk’s in-
ternal queue and scheduler without jeopardizing completion
time constraints for real-time requests. While this goal may
also be achieved by doing disk scheduling within the operat-
ing system, allowing the disk to make scheduling decisions
offloads the device-driver-level I/O scheduling and permits
optimizations that cannot be easily achieved in the operat-
ing system. The approaches we explored allow a disk to
perform the work with its intimate knowledge of low-level
hardware and physical constraints. Therefore, the disk can
have a more informed view of its near-future requests while
reordering requests to realize efficient use of the disk’s re-
source. Additionally, the disk can achieve a higher level
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of concurrency with CPU processing, servicing on-disk re-
quests without immediate attention from the operating sys-
tem. These approaches further allow high-priority real-time
processes to use the CPU with little impact on disk perfor-
mance. The techniques in this paper can be applied on many
different disk drives and are not vendor specific.
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