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Abstract

Energy-efficiency has been an important system issue in
hardware and software designs for both real-time embedded
systems and server systems. This research explores systems
with probabilistic distribution on the execution time of real-
time tasks on homogeneous multiprocessor platforms with the
capability of dynamic voltage scaling (DVS). The objective
is to derive a task partition which minimizes the expected
energy consumption for completing all the given tasks in
time. We give an efficient 1.13-approximation algorithm and
a polynomial-time approximation scheme (PTAS) to provide
worst-case guarantees for the stronglyNP-hard problem. Ex-
perimental results show that the algorithms can effectively
minimize the expected energy consumption.

Keywords: Dynamic Voltage Scaling (DVS), Multiproces-
sor Scheduling, Probability, Expected Energy Consumption
Minimization, Energy-Efficient Scheduling.

1 Introduction

With the advancements in VLSI circuit designs, modern
processors can operate dynamically at different supply volt-
ages, which lead to different execution speeds/frequencies.
Well-known examples for embedded systems are Intel Stron-
gARM SA1100 and Intel XScale. Technologies, such as Intel
SpeedStep R© and AMD PowerNOW!

TM
, provide dynamic volt-

age scaling (DVS) for computer systems to prolong battery
life. In the past decade, energy-efficient task scheduling has
received a lot of attention. Many studies, such as [4, 16, 30],
explore DVS scheduling to minimize the energy consumption
when the tasks/jobs are executed in their worst cases.

In addition to worst-case estimations, profiling can also
help system designers get the distribution information of the
workload of a task. Given the probability distribution of work-
load, some previous studies [5,11,13,18,19,26,27,31,33] pro-
vide DVS scheduling strategies to reduce the expected energy
consumption. Lorch and Smith [18] derived an accelerating
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frequency scheduling by executing a task at a lower frequency
at the beginning and at higher frequencies for the rest, while
concurrent tasks were treated as joint workload. Gruian [11]
considered the scheduling of multiple tasks and allocated exe-
cution time to tasks based on their worst-case execution cycles.
Yuan and Nahrstedt [31] exploited the accelerating scheduling
strategy for soft real-time multimedia tasks. Xu et al. [26, 27],
Zhang et al. [33], and Lu et al. [19], and Chen [5] explored
inter-task scheduling for frame-based real-time tasks, in which
all tasks have a common deadline and arrive at the same time.

Moreover, implementations of real-time systems with mul-
tiple processors are often more energy-efficient than those with
a single processor because of the convexity of power con-
sumption functions [2]. Various heuristics have been pro-
posed for energy consumption minimization under different
task and processor models in multiprocessor environments
[1, 3, 6–8, 12, 14, 15, 20, 24, 25,29, 32].

This paper explores task partition and scheduling for the
minimization of expected energy consumption in homoge-
neous multiprocessor systems with the capability of dynamic
voltage scaling. The objective is to minimize the expected en-
ergy consumption for completing all the given tasks in time.
This problem was first explored by Xian, Lu, and Li [25], in
which a heuristic algorithm was proposed by applying a varia-
tion of the worst-fit decreasing bin packing algorithm for bal-
ancing load with respect to a mathematical parameter related
to expected energy consumption. Distinct from heuristic ap-
proaches, this paper gives polynomial-time approximation al-
gorithms for the stronglyNP-hard problem to provide worst-
case guarantees in the expected energy consumption of the de-
rived solutions.

The dynamic (or speed-dependent) power consumption
function, here, is modeled as sα, where s is the processor
speed and α is a hardware-dependent factor between 1 and
3. We show that an extension of the load-balancing approach
suggested by Xian, Lu, and Li [25] with O(|T| log |T|) time

complexity is a (α−1)α−1(3α−2α)α

(2·3α−3·2α)α−1αα -approximation algorithm,
where T is the set of the given real-time tasks. Since α is
at most 3, the approximation ratio is at most 1.13. In addi-
tion to the derivation of the approximation ratio, we also give
the physical meaning, i.e., estimated utilization, of the load-
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balancing approach to see why it works, while only math-
ematical meaning was provided by Xian, Lu, and Li [25].
Moreover, by rounding the estimated worst-case utilization of
tasks, we develop a polynomial-time approximation scheme
(PTAS) to provide a (1 + ζ)-approximated solution for any
1 > ζ > 0 for such a strongly NP-hard problem, which is
the best achievement in the development of polynomial-time
approximation algorithms unless NP = P . The proposed
polynomial-time approximation scheme allows the system de-
signer to trade the optimality of the derived solution with the
analysis time. Experimental results show that the algorithms
can effectively minimize the expected energy consumption and
derive solutions with near-optimal performance.

The rest of this paper is organized as follows. Section 2 de-
fines the system models and the problem under considerations.
Section 3 presents the polynomial-time approximation algo-
rithm and the approximation scheme for the studied problem.
Section 4 shows the performance evaluation of the algorithms
with respect to the expected energy consumption. Section 5
concludes this paper.

2 Systems models and problem definitions

Processor models We explore energy-efficient scheduling
overM homogeneous DVS multiprocessors, where the power
consumption function of each task is the same for every pro-
cessor. The power consumption function P (s) of the adopted
processor speed s has two parts Pd(s) and Pind, where Pd(s)
(Pind, respectively) is dependent (independent, respectively)
on speed s. Leakage power consumption mainly contributes
to Pind, while the dynamic power consumption resulting from
the charging/discharging of gates on a CMOS DVS proces-
sor and the short-circuit power consumption contribute to
Pd(s). The speed-dependent power consumption function
Pd(s) could be modeled as a convex and increasing func-
tion of speed s. For example, the dynamic power consump-
tion Pswitch(s), which dominates the power consumption in
function Pd(s) for processors in micro-meter manufacturing,
in CMOS DVS processors due to gate switching at speed s is

Pswitch(s) = CefV
2
dds, (1)

where s = κ (Vdd−Vt)
2

Vdd
, and Cef , Vt, Vdd, and κ denote the ef-

fective switch capacitance, the threshold voltage, the supply
voltage, and a hardware-design-specific constant, respectively
(Vdd ≥ Vt ≥ 0, κ > 0, and Cef > 0) [21]. If the leak-
age power consumption is related to the speeds/voltages the
leakage power consumption is divided into two parts that con-
tribute to Pd(s) and Pind accordingly. In other words, Pd(s)
models the voltage-dependent power consumption while Pind

models the voltage-independent power consumption [15].
As shown in the literature, for example [4, 16, 30], the

speed-dependent power consumption function can be phrased
as sα, where α is a hardware-dependent factor between 1
and 3. Therefore, Pd(s) is a convex and increasing function
of s. The number of cycles executed in an interval (t1, t2]
is

∫ t2
t1
s(t)dt, and the energy consumption is

∫ t2
t1
P (s(t))dt,

where s(t) is the speed at time t. Since the variation of execu-
tion speeds does not affect the energy consumption resulting
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Figure 1. An example for the probability function of
workload information of a task.

from the speed-independent power consumption, we do not
account for the speed-independent power consumption in our
theoretical analysis for the clarity of presentation. Hence, the
power consumption function P (s) at speed s on a processor,
here-after, is Pd(s). All the algorithms and analysis in this
paper can be adopted correctly when P (s) is Pd(s) + Pind.

We assume that the speed of each processor can be ad-
justed independently, and each processor can ideally oper-
ate at any speed in [0,∞) implicitly. To cope with systems
with an upper bound on the speeds, constraint violation ap-
proaches [17] might be used since deriving a feasible solution
is NP-complete. We will sketch the idea in Section 3.4.

Task models Tasks considered in this paper are periodic and
independent in execution. A periodic task is an infinite se-
quence of task instances, referred to as jobs, where each job
of a task comes in a regular period. Each task τi is associated
with its period (denoted as pi) and its computation requirement
in CPU cycles in the worst cases (denoted as ci). The relative
deadline of each task τi is equal to its period pi. Given a task
set T, the hyper-period of T, denoted by L, is defined as the
minimum positiveL so thatL/pi is an integer for any task τi in
T. For example, L is the least common multiple (LCM) of the
periods of tasks in T when the periods of tasks are all integers.
Note that the hyper-period is used only for the length of the
time interval to evaluate the expected energy consumption. If
it does not exist, we can use any value that is large enough with
the same analytical results. Throughout the paper, we use the
earliest-deadline-first (EDF) scheduling for task executions.

The computation requirement of task τi is profiled as a dis-
crete probability density function (discrete PDF) for the num-
ber of execution cycles. For each task τi, the range (0, ci] is
divided into βi bins with different sizes. The j-th bin of task
τi is associated with its amount of cycle Xi,j and its probabil-
ity density ψi(j). Figure 1 illustrates an example of a task τi
with βi = 3, where Xi,1 = 10, Xi,2 = 20, and Xi,3 = 30
with ψi(1) = 0.4, ψi(2) = 0.5, and ψi(3) = 0.1. Therefore,
the probability for task τi with

∑j
b=1Xi,b cycles is ψi(j). The

discrete cumulative density function (CDF) for task τi to have
cycles no more than

∑j
b=1Xi,b is Ψi(j) =

∑j
b=1 ψi(b). By

definition, Ψi(βi) = 1 and
∑βi

b=1Xi,b = ci. For notational
brevity, we define Ψi(0) as 0. Therefore, the probability that
the schedule has to execute the first

∑j
b=1Xi,b cycles of task

τi is 1 − Ψi(j − 1), denoted by Ψ†
i (j). Figure 1(a) shows the

discrete PDF, while Figure 1(b) is the discrete CDF. Hence,
Ψ†

i (1) = 1, Ψ†
i (2) = 0.6, and Ψ†

i (3) = 0.1 in the example.
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Expected Energy Consumption The expected energy con-
sumption, denoted by Êi(ti), to complete a job of task τi in
time amount ti in the worst case can be derived by solving the
following convex programming:

minimize
∑βi

b=1 s
α
i,b

Xi,b

si,b
Ψ†

i (b)

subject to
∑βi

b=1
Xi,b

si,b
≤ ti and

si,b ≥ 0, ∀b = 1, 2, . . . , βi,

(2)

where si,b is the speed to execute the computation require-
ment Xi,b. Equation (2) can be solved by applying the La-
grange Multiplier method, similarly to those in [25, 31]. The
optimal solution of Equation (2) is to execute Xi,j at speed∑βi

b=1 Xi,b
α
√

Ψ†
i (b)

ti
α
√

Ψ†
i (j)

with expected energy consumption equal

to

(∑βi
b=1 Xi,b

α
√

Ψ†
i (b)

)α

tα−1
i

. For notational brevity, let hi be(∑βi

b=1Xi,b
α

√
Ψ†

i (b)
)α

. Hence, the optimal expected energy

consumption Êi(ti) to complete a job of task τi in time ti is
hi

tα−1
i

. Moreover, the expected energy consumption Ei(ti) in

the hyper-periodL for task τi is Êi(ti) L
pi

.
Note that if only one speed is allowed (to avoid too much

speed switching) to execute task τi for a time interval with ti
time units, the expected energy consumption is hi

tα−1
i

, where hi

is cα−1
i

∑βi

b=1Xi,bΨ
†
i (b) by executing task τi at speed ci

ti
[27].

Problem Definition A schedule of a task set T is a mapping
of the executions (task partition) of tasks in T to processors
in the system with an assignment of processor speeds for each
corresponding task execution, where the job arrivals of each
task τi ∈ T satisfy its timing constraint pi. A schedule is fea-
sible if no job misses its deadline, and all jobs of the same task
execute on the same processor. By applying EDF for schedul-
ing, the problem can be formulated as the following program-
ming:

minimize
∑

τi∈T Êi(ti)
L
pi

subject to
∑

τi∈T xim · ti/pi ≤ 1, for m = 1, . . . , M∑M
m=1 xim = 1, ∀τi ∈ T, and

xim ∈ {0, 1} , ∀τi ∈ T, and m = 1, . . . , M,
(3)

where xim is a binary variable to indicate whether τi is as-
signed on processor m, ti is a variable denoting the execution
time of task τi, and Ê(ti) is hi

tα−1
i

. We denote the problem as

the multiprocessor expected-energy-efficient scheduling prob-
lem. The expected energy consumption of a schedule S is de-
noted by Φ(S). By an argument similar to [6, Theorem 1], the
multiprocessor expected-energy-efficient scheduling problem
is NP-hard in a strong sense even for the special case with
Pi(s) = s3, βi = 1, and pi = D for any fixed D > 0.

Due to theNP-hardness of the problem, we focus the study
on polynomial-time approximation algorithms with worst-case
guarantees. For any input instance, a γ-approximation algo-
rithm derives a solution with at most γ times of the expected
energy consumption of an optimal solution, where γ is re-
ferred to as the approximation ratio of the algorithm. This
paper provides a combinatorial approximation algorithm with

low time complexity. Moreover, a polynomial-time approxi-
mation scheme (PTAS) is provided to have trade-offs between
the user’s tolerable approximation ratio and the complexity.
An algorithm for a minimization problem is said to be a PTAS
if (1) it is a (1 + ζ)-approximation algorithm, and (2) its time
complexity is polynomial in the input size by treating ζ as a
constant, where ζ is a positive user-input parameter in a speci-
fied range. For aNP-hard problem in a strong sense, PTAS is
the best achievement in approximation algorithms [23].

3 Polynomial-Time Approximation algorithms

This section presents polynomial-time approximation al-
gorithms for the multiprocessor expected-energy-efficient
scheduling problem. Our proposed algorithms consist of two
phases. In the first phase, the relaxation phase, we relax the
integral constraints on the variables xim in Equation (3) and
derive an optimal solution for the relaxed problem, which will
be presented in Section 3.1. Then, a feasible schedule based
on the optimal solution of the relaxed problem are derived in
the second phase, the assigning phase. This paper presents
two different algorithms with different approximation ratios in
the assigning phase, in which one presented in Section 3.2 is
more efficient and with a constant approximation ratio, and
the other in Section 3.3 is with adjustable tradeoffs between
the complexity and the approximation ratio.

If the number of tasks in T is no more than M , an optimal
schedule would execute each task τi on an individual proces-
sor, for i = 1, . . . , |T|. For the rest of this section, we will
focus on the other cases, where the number of tasks in T is
more than M . Let S be a feasible schedule of T for the mul-
tiprocessor expected-energy-efficient scheduling problem. Let
Sm denote the partial schedule of S on processor m, and Tm

denote the set of tasks assigned to execute on processor m.
Hence, ∪M

m=1Tm = T and Tm ∩Tn = ∅ for any m �= n.

3.1 Relaxation

With the integral constraints on xim being relaxed, the con-
vex programming described in Equation (3) is rewritten as:

minimize
∑

τi∈TEi(ti),
subject to

∑
τi∈T ti/pi = M, and

0 < ti ≤ pi,
(4)

where Ei(ti) is Êi(ti) L
pi

. Let Ēi() be defined as −Ei(). The
Karush-Kuhn-Tucker (KKT) optimality condition for Equa-
tion (4) is to find (λ1, λ2, . . . , λ|T|), (t∗1, t

∗
2, . . . , t

∗
|T|), and a

constant λ such that


{
Ē′

i(t
∗
i )− λi/pi = λ/pi, t∗i /pi ≤ 1,

(t∗i /pi − 1)λi = 0, λi ≥ 0, ∀τi ∈ T, and∑
τi∈T t

∗
i /pi = M,

(5)
where Ē′

i() is the derivative of Ēi().
If t∗i is set as pi for i = 1, 2, . . . , 	, Equation (4) can be

relaxed as follows.

maximize
∑|T|

i=�+1 Ēi(ti)
subject to

∑|T|
i=�+1 ti/pi = (M − 	), (6)
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by further ignoring the inequality ti ≤ pi. Equation (6)
can be solved by applying the Lagrange Multiplier method.
Since Ē′

i(ti) = L
pi

(α − 1)hit
−α
i , given an index 	, the con-

ditions piĒ
′
i(ti) = pjĒ

′
j(tj) hold for all 	 < i, j ≤ |T|

for the Lagrange Multiplier method. Therefore, the optimal
solution for Equation (6) is to assign (t�+1, t�+2, . . . , t|T|) as
(t∗�+1, t

∗
�+2, . . . , t

∗
|T|), where

|T|∑
j=�+1

t∗�+1

pj

α

√
hj

h�+1
= (M − �), (7a)

t∗j = (t∗�+1) α

√
hj

h�+1
, ∀� + 1 < j ≤ |T|, (7b)

and the Lagrange multiplier λ is p�+1Ē
′
�+1(t

∗
�+1). Let T be a

sorted set by a non-increasing order of piĒ
′
i(pi). The follow-

ing lemma helps obtain an optimal solution for Equation (4).

Lemma 1 Suppose that each t∗j in (t∗�∗+1, t
∗
�∗+2, . . . , t

∗
|T|) ob-

tained in Equation (7) is less than pj for an index 	∗ and that
p�Ē

′
�∗(p�) is no less than p�+1Ē

′
�∗+1(t

∗
�∗+1), where 1 ≤ 	∗ <

M . Then, assigning ti as pi for i = 1, 2, . . . , 	∗ and tj as t∗j
for j = 	∗ +1, 	∗+2, . . . , |T| leads to an optimal solution for
Equation (4).

Proof. It is proved by verifying that all conditions in Equa-
tion (5) hold when (1.) λ = p�∗+1Ē

′
�∗+1(t

∗
�∗+1), (2.) λj = 0,

for j = 	∗ + 1, 	∗ + 2, . . . , |T|, and (3.) λi = piĒ
′
i(pi) −

p�∗+1Ē
′
�∗+1(t

∗
�∗+1), for i = 1, 2, . . . , 	∗.

Therefore, the optimal solution for Equation (4) can be ob-
tained in O(M |T| + |T| log |T|) by setting 	 sequentially.
Moreover, it can be obtained in O(|T| log |T|) by a binary
search of 	. Let (t∗1, t

∗
2, . . . , t

∗
|T|) be an optimal solution for the

programming in Equation (4). We have the following lemma.

Lemma 2 When t∗i < pi and t∗j < pj , piE
′
i(t

∗
i ) = pjE

′
j(t

∗
j ),

where E′
i() and E′

j() are the derivatives of Ei() and Ej(),
respectively.

Proof. The lemma comes from the fact that E′
i(t

∗
i ) = −λ

pi
and

E′
j(t

∗
j ) = −λ

pj
for a constant λ when t∗i < pi and t∗j < pj .

Properties for the derived solution in the relaxation phase
In addition to the optimality of the derived solutions in the
relaxation phase, the solutions have some interesting proper-
ties, which will be specified later in this subsection and widely
used in this paper. For the rest of this paper, let the utilization
u∗i = t∗i /pi of task τi in T derived in this relaxation phase be
defined as the estimated utilization of τi, and e∗i be the esti-
mated expected energy consumption of the jobs of task τi in
the hyper-period, i.e., e∗i = Ei(t∗i ). Let T′ be the subset of T
consisting of the tasks whose estimated utilizations are strictly
less than 1. That is, T′ = {τi | t∗i /pi < 1, ∀τi ∈ T}. For
notational brevity, let T̂ be T \T′. The following lemma con-
cerning the relationship between two tasks in task set T′ will
be widely used in this paper.

Lemma 3 For any two tasks τi, τj ∈ T′, e∗
i

u∗
i

=
e∗

j

u∗
j

.

Proof. By the equality of hi
L
pi

1
(t∗i )α · pi = hj

L
pj

1
(t∗j )α · pj in

Lemma 2, we know that u∗
i

u∗
j

= e∗
i

e∗
j

.

Algorithm 1 : LEUF

Input: (T,M);
1: if |T| ≤M then
2: return the schedule to execute each task τi in T on processor

i;
3: determine the optimal solution for Equation (4), and obtain u∗

i

for every τi ∈ T;
4: sort T in a non-increasing order of their estimated utilizations;
5: U1 ← · · · ← UM ← 0, and T1 ← · · · ← TM ← ∅;
6: for i← 1 to |T| do
7: find the smallest Um; (break ties by choosing the smallest in-

dex m)
8: Tm ← Tm ∪ {τi} and Um ← Um + u∗

i ;
9: return the schedule SLEUF which executes task τi in Tm (1 ≤

m ≤M ) on processor m;

Suppose that φ(T†) is the minimum expected energy con-
sumption in the hyper-period of the tasks in T to com-
plete all the tasks in task set T† in time on a processor.
By applying the KKT optimality condition, φ(T†) is equal
to (

∑
τi∈T† e∗i )(

∑
τi∈T† u∗i )

α−1 when all the tasks in T†

are in T′. Hence, with Lemma 3, we have φ(T†) =
e∗

r

u∗
r
(
∑

τi∈T† u∗i )
α for some task τr in T′ when T† ⊆ T′.

Moreover, suppose that T†
m contains at least two tasks to

be scheduled on processor m, the total estimated utilization
of T†

m is no less than that of task set T†
n, the total estimated

utilization of task set T†
n on processor n is no more than 1,

T†
n ⊆ T′, and

∑
τ�∈T†

m
u∗� > (

∑
τ�∈T†

n
u∗� ) + u∗k, where τk

is the task with the smallest estimated expected energy con-
sumption in T†

m. We have the following inequality:

φ(T†
m) + φ(T†

n) > φ(T†
m \ {τk}) + φ(T†

n ∪ {τk}), (8)

which indicates the convexity of the estimated expected energy
consumption.

Lemma 4 There exists an optimal schedule that executes each
task τi ∈ T̂ entirely on an individual processor.

Proof. It is proved by applying Equation (8) directly.

3.2 An efficient 1.13-approximation algorithm

We derive a feasible schedule based on the esti-
mated utilizations of tasks derived in the relaxation phase,
i.e., (u∗1, u

∗
2, . . . , u

∗
|T|), by adopting the Largest-Estimated-

Utilization-First strategy. The proposed algorithm called LEUF

is shown in Algorithm 1. Let Tm denote the set of the tasks
assigned to processor m, which is an empty set initially. Um

denotes the total estimated utilization on processor m, which
is defined as the sum of the estimated utilizations of the tasks
in Tm. Tasks are considered to execute on a selected proces-
sor in a non-increasing order of their estimated utilizations. A
task under consideration is assigned to processor m with the
smallest total estimated utilization Um (Tie-breaking is done
by choosing the smallest index m). After all of the tasks in
T are assigned to execute on a specific processor, the utiliza-
tion of τi is set as u∗

i

Um
for every task τi in Tm. That is, the
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execution time of every job of task τi is set as t∗i
Um

. The com-
putation requirementXi,j of task τi in Tm is executed at speed

Um

(∑ βi
b=1 Xi,b

α
√

Ψ†
i (b)

t∗i
α
√

Ψ†
i (j)

)
. The time complexity of Algorithm

LEUF is O(|T| log |T|). For simplicity of representation, any
schedule derived from Algorithm LEUF is denoted by SLEUF .

The load-balancing approach in [25] uses the value∑βi
b=1 Xi,b

α
√

Ψ†
i (b)

pi
, denoted by variant load here, as the load-

balancing factor to assign task τi, where Xi,b was assumed a
constant and α was 3 in [25]. It inserts the un-assigned task
with the largest variant load to the processor with the small-
est summation of the variant loads of the assigned tasks on
it so far until all the tasks are assigned. It is not difficult to
see that it derives the same task partition as Algorithm LEUF

does. Jensen’s Inequality motivates the load-balancing ap-
proach adopted in [25], but there was no theoretical perfor-
mance analysis yet. Here, by using the estimated utilization,
we can show that the approach has performance guarantees.

To prove the approximation ratio of Algorithm LEUF, our
strategy is to build a lower bound of the expected energy con-
sumption of feasible schedules and an upper bound of the ex-
pected energy consumption of the schedule derived from Al-
gorithm LEUF. The upper bound divided by the lower bound
is the approximation ratio of Algorithm LEUF.

Lower bound of the expected energy consumption of fea-
sible schedules We now derive a lower bound of the multi-
processor expected-energy-efficient scheduling problem for a
given task set T. The lower bound is based on a relaxation
of the considered problem, in which some tasks might be exe-
cuted simultaneously on more than one processor. Before pre-
senting the lower bound, we first show that Algorithm LEUF

derives optimal solutions for some special cases. In such a spe-
cial case, Algorithm LEUF derives a task partition by assigning
at most two tasks on a processor, in which moving any task on
a processor to another or switching any two tasks on two pro-
cessors does not decrease the expected energy consumption.

Lemma 5 Algorithm LEUF derives an optimal solution for
the multiprocessor expected-energy-efficient scheduling prob-
lem if |T′| ≤ 2(M − |T̂|) and u∗i+M ≥ 1

2u
∗
M−i+1 for all

1 ≤ i ≤ |T| −M .

Proof. Due to space limitations, the detailed proof is in a
tech report [10].

Based on the optimality of Algorithm LEUF described in
Lemma 5, we now derive a lower bound of the expected en-
ergy consumption of feasible schedules for any task set T. Let
k∗ be the largest index k satisfying M ≤ k ≤ 2(M − |T̂|)
and u∗i+M ≥ 1

2u
∗
M−i+1 for all 1 ≤ i ≤ k −M . Tf represents

the set of the first k∗ tasks of T. We introduce another re-
laxed problem, referred to as the semi-relaxed multiprocessor
expected-energy-efficient scheduling problem:

minimize
∑

τi∈TEi(ti)
subject to

∑
τi∈T xim · ti/pi = 1, for m = 1, . . . ,M∑M
m=1 xim = 1, ∀τi ∈ T,

xim ∈ {0, 1} , ∀τi ∈ Tf ,m = 1, . . . ,M,
xim ≥ 0, ∀τi ∈ T \Tf , and m = 1, . . . ,M.

(9)

The optimal solution for the semi-relaxed multiprocessor
expected-energy-efficient scheduling problem can be derived
efficiently as follows. First of all, we execute Algorithm
LEUF(Tf ,M ) to get an optimal partition on Tf . For the rest
of this subsection, let U †

1 , U
†
2 , . . . , U

†
M be the total estimated

utilizations and T†
1,T

†
2, . . . ,T

†
M be the resulting task partition

for Tf . Based on Equation (8), we should assign those tasks
in T \ Tf to the processors with smaller total estimated uti-
lizations as possible. Hence, we find the constant U †

min such
that

∑M
m=1(U

†
min − U †

m)δU†
min>U†

m
=

∑
τi∈T\Tf u∗i , where

δU†
min>U†

m
is 1 whenU †

min > U †
m, and 0, otherwise. For each τi

in Tf assigned to T†
m, let xim be 1 and xim′ = 0 for anym′ �=

m, while ti is set as pi
u∗

i

max{U†
min,U†

m} . For each τi in T\Tf , ti

is set as pi
u∗

i

U†
min

. For processor m with U †
min > U †

m, we assign

U †
min − U †

m estimated utilization for tasks in T \Tf . As a re-
sult, the expected energy consumption for T̂ is

∑
τi∈T̂ e

∗
i , that

for Tf \ T̂ is
∑

τi∈Tf\T̂,m:τi∈T†
m
e∗i (max{U †

min, U
†
m})α−1,

and that for T \ Tf is
∑

τi∈T\Tf e∗i (U
†
min)α−1. Therefore,

the resulting expected energy consumption for T of the semi-
relaxed multiprocessor expected-energy-efficient scheduling
problem is∑

τi∈Tf\T̂,m:τi∈T†
m
e∗i (max{U †

min, U
†
m})α−1

+
∑

τi∈T̂ e
∗
i +

∑
τi∈T\Tf e∗i (U

†
min)α−1.

The above algorithm for the semi-relaxed multiprocessor
expected-energy-efficient scheduling problem is called Algo-
rithm G-LEUF.

Lemma 6 Algorithm G-LEUF derives the minimum expected
energy consumption for the semi-relaxed multiprocessor
expected-energy-efficient scheduling problem.

Proof. It can be proved with very similar arguments to
Lemma 5.

The expected energy consumption of the solution derived
from Algorithm G-LEUF, therefore, is the lower bound of that
of any feasible solution of the input instance.

The approximation ratio of Algorithm LEUF We have
shown a lower bound of expected energy consumption of Al-
gorithm LEUF. We now show the approximation ratio of Al-
gorithm LEUF by dividing the upper bound of the expected en-
ergy consumption of the derived solution by the lower bound
derived above. The following lemma shows that the difference
of the total estimated utilizations on processors is bounded.

Lemma 7 For processor m with U †
m ≥ U †

min, U †
m is equal

to Um for Algorithm LEUF. For processors m∗ and m′ with
U †

m′ < U †
min, U †

m∗ < U †
min, and Um∗ ≥ U †

min ≥ Um′ , Um∗

is at most 3
2Um′ , where Um∗ and Um′ are the total estimated

utilizations on processors m∗ and m′ after calling Algorithm
LEUF on T, respectively.

Proof. For any processor m with U †
m ≥ U †

min, once we
consider task τi in T \ Tf in the loop from Step 6 to Step
8 in Algorithm LEUF, there must be another processor with
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smaller total estimated utilization. Hence, Algorithm LEUF

never assigns any task in T \ Tf to processor m. Namely,
Um = U †

m.
We now prove the second case. Suppose that τk is the last

task inserted into Tm∗ when we execute Algorithm LEUF for
T. By definitions, τk is in T \ Tf . Since τk is inserted into
Tm∗ instead of Tm′ , we also know that Um∗ − u∗k ≤ Um′ . If
Tm∗ \{τk} has only one task, u∗k is smaller than 1

2 (Um∗−u∗k);
otherwise, τk must be in Tf . If Tm∗ \ {τk} has more than one
task, u∗k is no more than 1

2 (Um∗ − u∗k) because of the largest
estimated utilization first strategy. Hence, u∗k ≤ 1

2Um′ . As a
result, Um∗ ≤ 3

2Um′ .
The following lemma is required to show the approximation

ratio of Algorithm LEUF.

Lemma 8 Suppose f(y) = k · (3y)α + (M̂ − k)(2y)α for
a positive number M̂ and a non-negative number k, where
0 ≤ y, 0 ≤ k ≤ M̂ , and k · 3y + (M̂ − k) · 2y = M̂ , then

f(y) ≤ (α−1)α−1(3α−2α)α

(2·3α−3·2α)α−1αα M̂.

Proof. Due to space limitations, the detailed proof is in a
tech report [10].

Based on the above lemmas, the approximation ratio of the
algorithm can be proved as follows:

Theorem 1 Algorithm LEUF is a 1.13-approximation al-
gorithm for the multiprocessor expected-energy-efficient
scheduling problem.

Proof. By the optimality of Algorithm G-LEUF, we have

Φ(S∗) ≥ ∑
τi∈Tf\T̂,m:τi∈T†

m
e∗i (max{U †

min, U
†
m})α−1

+
∑

τi∈T̂ e
∗
i +

∑
τi∈T\Tf e∗i (U

†
min)α−1,

where S∗ is an optimal schedule for T. The expected energy
consumption of the schedule SLEUF derived is

Φ(SLEUF) =
∑
τi∈T̂

e∗i +
∑

τi∈T\T̂,m:τi∈Tm

e∗i (Um)α−1. (10)

Suppose that M† is the set of processors in which
U †

m = Um for every m in M†. Let τr be some
task in T′. By Lemma 3, we know that Φ(S∗) ≥∑

τi∈T̂ e
∗
i +

∑
m∈M†

e∗
r

u∗
r
(Um)α + (M − |M†|) e∗

r

u∗
r
(U †

min)α

as well as Φ(SLEUF) =
∑

τi∈T̂ e
∗
i +

∑
m∈M†

e∗
r

u∗
r
(Um)α +∑

m/∈M†
e∗

r

u∗
r
(Um)α. The approximation ratio A is

A = Φ(SLEUF )
Φ(S∗) ≤

∑
m∈M†

e∗r
u∗

r
(Um)α+

∑
m/∈M†

e∗r
u∗

r
(Um)α

∑
m∈M†

e∗r
u∗

r
(Um)α+(M−|M†|) e∗r

u∗
r

(U†
min)α

≤
∑

m/∈M†(Um)α

(M−|M†|)(U†
min)α

,

(11)
where

∑
m/∈M† Um = (M − |M†|)U †

min. Suppose that Um̂

is the minimum total estimated utilization after calling Algo-
rithm LEUF. Based on Lemma 7, we have 1.5Um̂ ≥ Um, for
all m /∈M†. Because of the convexity of the function (Um)α

of Um, the fact 1.5Um̂ − Um ≥ 0, and Um − Um̂ ≥ 0, we
have (Um)α ≤ 1.5Um̂−Um

0.5Um̂
(Um̂)α + Um−Um̂

0.5Um̂
(1.5Um̂)α, since

1.5Um̂−Um

0.5Um̂
(Um̂) + Um−Um̂

0.5Um̂
(1.5Um̂) is equal to Um. Hence,∑

m/∈M†
(Um)α ≤ k · (1.5Um̂)α + (M − |M†| − k)(Um̂)α,

where 1.5k·Um̂+(M−|M†|−k)Um̂ = (M−|M†|)U †
min. By

applying Lemma 8 after setting y as 0.5 Um̂

U†
min

and M̂ as (M −
|M†|), we have

∑
m/∈M†(Um)α ≤ (α−1)α−1(3α−2α)α

(2·3α−3·2α)α−1αα (M −
|M′|)(U †

min)α. As a result, A ≤ (α−1)α−1(3α−2α)α

(2·3α−3·2α)α−1αα , and this
theorem is proved by observing that α ≤ 3.

3.3 A polynomial-time approximation scheme

This subsection presents a polynomial-time approxima-
tion scheme (PTAS) for the multiprocessor expected-energy-
efficient scheduling problem. By Lemma 4, we only have to
focus on scheduling tasks in T′ on M − |T̂| processors. For
the rest of this subsection, we only consider systems that exe-
cute each individual task τi in T̂ on processorM−|T̂|+i. For
notational brevity, we denote M − |T̂| by M ′. Let To

m be the
set of tasks assigned onto processorm in an optimal schedule.
Clearly, To

m ∩To
m′ = ∅ for anym �= m′ and ∪M ′

m=1T
o
m = T′.

To build the PTAS, we first categorize the tasks in T′ into
small tasks and large tasks. The estimated utilizations of those
large tasks are rounded down to proper values, and then a
polynomial-time algorithm which derives an optimal solution
based on the rounded estimated utilizations is used to parti-
tion the large tasks. At the end, the small tasks are assigned
onto processors without increasing too much expected energy
consumption. To present the PTAS, we will first derive opti-
mal solutions of special cases with a fixed number of distinct
estimated utilizations of tasks. Then, we will detail the catego-
rization of the large and small tasks, the rounding of estimated
utilizations, the use of the polynomial-time algorithm for spe-
cial cases, and the assignment of large and small tasks. At the
end, the approximation ratio and the time complexity of the
PTAS will be presented.

A polynomial-time algorithm for the derivation of optimal
solutions of special cases Here, we consider the special case
when the number of distinct estimated utilizations of tasks in
T′ is fixed. The algorithm which derives an optimal solution
for special cases will be used for tasks with rounded estimated
utilizations. For such cases, these fixed estimated utilizations
are denoted by v∗1 , v

∗
2 , . . . , v

∗
κ, where κ is the number of fixed

estimated utilizations of tasks in T. Without loss of generality,
v∗1 < v∗2 < · · · < v∗κ. The number of tasks in T′ with esti-
mated utilization equal to v∗i is denoted by ni. By Equation (8)
and the fact that

∑κ
i=1 v

∗
i · ni ≤ M ′, we have the following

lemma.

Lemma 9 For an optimal schedule, the number of tasks as-

signed on each processor is at most
⌈

1
v∗
1

⌉
.

Proof. Suppose that the cardinality of the task set To
m is at

least
⌈

1
v∗
1

⌉
+ 1 and τk is the task with the minimum estimated

utilization in To
m. Clearly, we know that

∑
τi∈To

m
u∗i ≥ 1 +

u∗k. By the pigeon-hole principle, we know that there must be
a processor m′ with

∑
τi∈To

m′
u∗i < 1. By Equation (8), we

know that φ(To
m)+φ(To

m′) > φ(To
m\{τk})+φ(To

m′∪{τk}),
which contradicts the optimality of To

1,T
o
2, . . . ,T

o
M ′ .
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A configuration for a processor is defined as a vector
�w = (w1, w2, . . . , wκ), in which wi ∈ {0, 1, . . . , ni} denotes
the number of tasks with v∗i estimated utilization in T′. By
Lemma 9, to derive an optimal solution, we only have to con-

sider configurations �w on processors with
∑κ

i=1 wi ≤
⌈

1
v∗
1

⌉
.

As a result, there are at most Q =
(⌈

1
v∗
1

⌉
+κ

κ

)
different configu-

rations on a processor for optimal solutions. For a feasible so-
lution to assigning tasks in T′ onM ′ processors, let �wm be the
corresponding configuration on processor m, in which wm,i

denotes the number of tasks with v∗i estimated utilization in
T′ in configuration �wm. As a result, we only have to consider

configurations with
∑M ′

m=1

∑κ
i=1 wm,i = |T′|, ∑κ

i=1 wm,i ≤⌈
1
v∗
1

⌉
, and

∑M ′

m=1 wm,i = ni for i = 1, 2, . . . , κ.

For a configuration �wm on processor m, the minimum
expected energy consumption on executing the correspond-
ing task set consisting of wm,i tasks with estimated uti-

lization v∗i is equal to e∗
r

v∗
r
(
∑κ

i=1 wm,iv
∗
i )α, which can be

obtained in O(κ). Since the number of configurations to

achieve
∑M ′

m=1

∑κ
i=1 wm,i = |T′| and

∑κ
i=1 wm,i ≤

⌈
1
v∗
1

⌉
is

(
M ′+Q

Q

)
= O((M ′)Q), we can derive an optimal assignment

by enumerating the different configurations for T′ on the M ′

processors with
∑M ′

m=1 wm,i = ni for i = 1, 2, . . . , κ and
picking up the solution with the minimum expected energy
consumption.

Another method is to solve an integer linear programming
with a fixed number of variables. Suppose that �q is a configu-

ration with at most
⌈

1
v∗
1

⌉
tasks, and spans the configuration set

�Q. qi is the number of tasks with estimated utilization v∗i in
configuration �q. Clearly, there are Q elements in �Q. Let x�q be
an integral variable between 0 and M ′, and Ω(�q) be the min-
imum expected energy consumption on executing the corre-
sponding task set consisting of qi tasks with estimated utiliza-
tion v∗i without violating the timing constraints. We can for-
mulate the multiprocessor expected-energy-efficient schedul-
ing of task set T′ on M ′ processors as follows:

minimize
∑

�q∈�Q x�q · Ω(�q)
subject to

∑
�q∈�Q x�q ≤M ′∑
�q∈�Q x�q · qi = ni, ∀i = 1, 2, . . . , κ, , and

x�q ∈ {0, 1, 2, . . . ,M ′} , ∀�q ∈ �Q.
(12)

There are Q variables in Equation (12), whose optimal so-
lution can be found by Lenstra’s algorithm [22, §18.4] with
time complexity exponential in the number of variables and
polynomial in the size of the coefficient of the program-
ming. Hence, an optimal solution for Equation (12) can be
obtained in O((2Q32Q(Q−1)/4)Q logO(1)(|T′| + M ′)) time.
Since |T′| > M ′ and Q is a constant when the number of dif-
ferent estimated utilizations in T′ is fixed and the minimum
estimated utilization in T′ is a constant, the time complexity
is O(logO(1) |T′|). The total time complexity to derive an op-
timal solution is O(|T| log |T|+logO(1) |T′|). As a result, we
have the following theorem.

Theorem 2 A schedule with the minimum expected energy

consumption for task set T′ with e∗
i

u∗
i

= e∗
j

u∗
j

for any two tasks

τi, τj ∈ T′ onM ′ processors can be solved inO(|T| log |T|+
logO(1) |T′|) when the number of different estimated utiliza-
tions in T′ is fixed and the minimum estimated utilization in
T′ is a constant.

The procedure of a polynomial-time approximation
scheme for general cases Our polynomial-time approxima-
tion scheme for the multiprocessor expected-energy-efficient
scheduling problem is based on rounding the estimated uti-
lization on each task so that the number of different estimated
utilizations and the number of different estimated expected en-
ergy consumptions are fixed. After rounding the parameters
on tasks, we can then adopt Theorem 2 to derive an optimal
schedule. A solution for scheduling tasks in T′ on M ′ pro-
cessors can then be determined, and can be shown energy-
efficient.

Let ε be a fixed constant specified by users. We classify
tasks in T′ into two types. For any task τi in T′ with u∗i ≥ ε,
we denote such a task as a large task. On the other hand, task
τi in T′ is referred to a small task if u∗i < ε. Let B1 (B2,
respectively) be the task set which consists of large (small, re-
spectively) tasks in T′. For each large task τi in B1, let ki

be the integer with ε + kiε
2 ≤ u∗i < ε + (ki + 1)ε2. Since

u∗i < 1 for all τi ∈ T′, we know that 0 ≤ ki <
1−ε
ε2 . For each

large task τi in B1, we create a rounded task τ 	
i by shrinking

the estimated utilization u	
i as (ε + kiε

2). Moreover, let the
estimated expected energy consumption e	

i of rounded task τ 	
i

be e∗i
ε+kiε

2

u∗
i

. The constructed set of rounded tasks is denoted

by B	
1. Hence, the number of distinct estimated utilizations in

B	
1 is at most

⌈
1−ε
ε2

⌉
.

We can derive an optimal solution on scheduling rounded
tasks in B	

1 on M ′ processors in polynomial time by apply-
ing the algorithm presented in Theorem 2. Let T	

m be the
set of tasks assigned on processor m after applying the op-
timal algorithm for B	

1. For each rounded task τ 	
i in T	

m,
we assign task τi to processor m. For notational brevity, let
U 	

m be the estimated utilization of rounded tasks in T	
m, i.e.,

U 	
m =

∑
τ�

i ∈T�
m
u	

i .

Now, we show how to assign those small tasks in B2

onto processors. First, we find the minimum U 	
min such

that
∑M ′

m=1(U
	
min − U 	

m)δU�
min>U�

m
=

∑
τi∈B2

u∗i , where

δU�
min>U�

m
is 1 when U 	

min > U 	
m, and 0, otherwise. Let task

set B′
2 be a working task set, which is initialized as task set B2.

Then, for each processormwithm ≤M ′ andU 	
min > U 	

m, we
find a subset B†

2 of task set B′
2 to be assigned. If

∑
τi∈B′

2
u∗i ≤

U 	
min−U 	

m, let B†
2 be B′

2; otherwise, let B†
2 be a subset of task

set B′
2 with U 	

min−U 	
m ≤

∑
τi∈B†

2
u∗i < ε+U 	

min−U 	
m. We

then assign all the tasks in B†
2 on processor m and shrink the

task set B′
2 by subtracting B†

2. For brevity, let B†
2,m be B†

2.

Let the resulting task assignment be T1,T2, . . . ,TM ′ . The
resulting schedule is returned. The pseudo-code of the algo-
rithm, denoted by Algorithm ROUNDING, is in Algorithm 2.
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Algorithm 2 :ROUNDING

Input: T,M, ε;

1: if |T| ≤M then
2: return the schedule to execute each task τi in T on pro-

cessor i;
3: determine the optimal solution for Equation (4), and ob-

tain u∗i for every τi ∈ T;
4: T′ ← {τi | τi ∈ T and u∗i < 1}, T̂← T \T′;
5: M ′ ←M − |T̂|;
6: schedule each task in T \T′ on an individual processor;
7: B1 ← {τi | τi ∈ T′ and u∗i ≥ ε}, B2 ← T′ \B1;
8: create a rounded task τ 	

i by setting its estimated utilization
equal to ε + kiε

2 for each large task τi in B1, where ε +
kiε

2 ≤ u∗i < ε+ (ki + 1)ε2;
9: B	

1 ← {τ 	
i | τi ∈ B1};

10: apply the algorithm in Theorem 2 to derive the task par-
tition for task set B	

1 on M ′ processors, where T	
m is the

set of rounded tasks on processor m for the partition;
11: U 	

m ←
∑

τ�
i ∈T�

m
u	

i for m = 1, 2, . . . ,M ′;

12: find U 	
min such that

∑M ′

m=1(U
	
min − U 	

m)δU�
min>U�

m
=∑

τi∈B2
u∗i , where δU�

min>U�
m

is 1 when U 	
min > U 	

m, and
0, otherwise;

13: B′
2 ← B2;

14: for m← 1; m ≤M ′; m← m+ 1 do
15: Tm ← ∅;
16: for each rounded task τ 	

i in T	
m, Tm ← Tm ∪ {τi};

17: B†
2 ← ∅;

18: if U 	
min > U 	

m then
19: for each task τi in B′

2 do
20: if

∑
τi∈B†

2
u∗i < U 	

min − U 	
m then

21: B†
2 ← B†

2 ∪ {τi};
22: Tm ← Tm ∪B†

2;
23: B′

2 ← B′
2 \B†

2, B†
2,m ← B†

2;
24: schedule each task in Tm on processor m;
25: return the resulting schedule;

An example for Algorithm ROUNDING We use the follow-
ing example to show how Algorithm ROUNDING works. Sup-
pose that we have fourteen tasks in T′ and M ′ is 3. The es-
timated utilizations of these tasks are illustrated in Table 1.
By taking ε as 0.1, five tasks, i.e., τ14, τ13, τ12, τ11, τ10, are
defined as small tasks, and the other large tasks are rounded
down to the closest ε + kiε

2 as shown in Table 1. For ex-
ample, since ε + 7ε2 ≤ 0.1786 < ε + 8ε2 when ε = 0.1,
the estimated utilization of task τ9 is rounded down to 0.17.
Then, we find the optimal task partition for the rounded tasks
in

{
τ 	
1 , τ

	
2 , τ

	
3 , τ

	
4 , τ

	
5 , τ

	
6 , τ

	
7 , τ

	
8 , τ

	
9

}
, in which rounded task set{

τ 	
1 , τ

	
2

}
is set as T	

1,
{
τ 	
3 , τ

	
5 , τ

	
6

}
as T	

2, and
{
τ 	
4 , τ

	
7 , τ

	
8 , τ

	
9

}
as T	

3. As a result, U 	
1 is 0.92, U 	

2 is 0.92, and U 	
3 is 0.96.

Then, tasks τ1 and τ2 are assigned to processor 1, tasks τ3, τ5,
and τ6 are to processor 2, and tasks τ4, τ7, τ8, and τ9 are to
processor 3. Then, Algorithm ROUNDING starts to assign
the small tasks, in which U 	

min is 0.983433. By applying
the procedures between Step 13 and Step 23 in Algorithm
2 with consideration to small tasks from τ14 to τ10, tasks

τ14, τ13, τ12, τ11 are assigned to processor 1, and task τ10 is
assigned to processor 2. The estimated utilizations of the task
partition on these three processors are 1.0205, 0.9975, and
0.982. Hence, the expected energy consumption of the solu-
tion is e∗

r

u∗
r
(1.02053 + 0.99753 + 0.9823) = 3.002254 e∗

r

u∗
r

when

α is 3 and some task τr in task set T′. By setting ε as 0.05, the
results are also shown in Table 1, where the expected energy
consumption is 3.00155 e∗

r

u∗
r

.

The analysis of the feasibility and the approximation ra-
tio of the PTAS The following lemma shows that the result-
ing task assignment assigns each task exactly to one processor,
which implies the feasibility of the derived schedule.

Lemma 10 ∪M ′
m=1Tm = T′ and Tm ∩ Tm′ = ∅ for any

m �= m′.

Proof. Since each rounded task in B	
1 is assigned to one

processor, each large task in B1 is assigned to one processor.
We only focus on showing that each small task τi in B2 is
assigned to one processor. Suppose that B′

2 is not empty after
all the processors are considered. Since B′

2 is not empty, we

know that
∑

τi∈B2
u∗i >

∑M ′

m=1(U
	
min − U 	

m)δU�
min>U�

m
=∑

τi∈B2
u∗i . We reach the contradiction.

The following lemma comes from the definition of the
shrinking of those large tasks in B1.

Lemma 11 u∗
i

u�
i

≤ 1 + ε, for any large task τ 	
i ∈ B	

1, which is

constructed from task τi in T′.

Proof. Recall that ki is the integer with ε + kiε
2 ≤ u∗i <

ε + (ki + 1)ε2 and τ 	
i is defined as ε + kiε

2. We know that

u∗i − u	
i ≤ ε2. Hence, u∗

i

u�
i

= 1 + u∗
i −u�

i

u�
i

≤ 1 + ε2

u�
i

≤ 1 + ε,

where the second inequality holds because of u	
i ≥ ε.

We need the following lemma to prove the approximation
ratio.

Lemma 12
∑m

i=1(yi + z)α ≤ ( α
√
mz+ α

√∑m
i=1(yi)α)α, for

any non-negative real numbers y1, y2, . . . , ym, any positive
real number α ≥ 1, and positive integer m.

Proof. Due to space limitations, the detailed proof is in a
tech report [10].

The minimum expected energy consumption φ	(T	
m) of

task set T	
m is e∗

r

u∗
r
(
∑

τi∈T�
m
u	

i)
α for some task τr ∈ T′. For

notational brevity, let U∗
m be U 	

min if U 	
min > U 	

m and U 	
m

otherwise, i.e.,

U∗
m =

{
U 	

min, if U 	
min > U 	

m,
U 	

m otherwise.

The following lemma shows the relationship of the expected
energy consumption of the rounded input instance to that of
the optimal schedule for T′ on M ′ processors, where To

m de-
notes the set of tasks assigned on processor m in the optimal
schedule.

Lemma 13
∑M ′

m=1
e∗

r

u∗
r
(U∗

m)α ≤ ∑M ′

m=1 φ(To
m), for some

task τr ∈ T′.
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τ14 τ13 τ12 τ11 τ10 τ9 τ8 τ7 τ6 τ5 τ4 τ3 τ2 τ1

u∗
i 0.0022 0.0084 0.0155 0.0591 0.0651 0.1786 0.1798 0.1923 0.2316 0.2353 0.4313 0.4655 0.4666 0.4687

u�
i (ε = 0.1) small small small small small 0.1700 0.1700 0.1900 0.2300 0.2300 0.4300 0.4600 0.4600 0.4600
processor 1 1 1 1 2 3 3 3 2 2 3 2 1 1

u�
i (ε = 0.05) small small small 0.0575 0.0650 0.1775 0.1775 0.1900 0.2300 0.2350 0.4300 0.4650 0.4650 0.4675
processor 1 1 2 1 2 3 3 3 2 2 3 2 1 1

Table 1. The estimated utilization and rounded estimated utilization of tasks in the example.

Proof. The proof is similar to the optimal solution
for the semi-relaxed multiprocessor expected-energy-efficient
scheduling problem in Section 3.2.

The following lemma shows the ratio of the expected en-
ergy consumption of the derived schedule to that of the optimal
schedule for T′ on M ′ processors.

Lemma 14

M ′∑
m=1

φ(Tm) ≤ (1 + 2ε)α
M ′∑

m=1

φ(To
m).

Proof. From Lemma 11, we know that
∑

τi∈Tm∩B1
u∗i ≤

(1 + ε)
∑

τ�
i ∈T�

m
u	

i = (1 + ε)U 	
m. By the definition of B†

2,m

and the fact that each task in B2 is with estimated utiliza-
tion smaller than ε, we have

∑
B†

2,m
u∗i ≤ (U∗

m − U 	
m) + ε.

Combining the two inequalities, we know
∑

τi∈Tm
u∗i ≤

(1 + ε)U∗
m + ε. Hence,

M ′∑
m=1

φ(Tm) =
e∗r
u∗r

M ′∑
m=1

(
∑

τi∈Tm

u∗i )
α

≤ e∗r
u∗r

M ′∑
m=1

((1 + ε)U∗
m + ε)α

≤1 e∗r
u∗r


 α
√
M ′ε+ (1 + ε) α

√√√√ M ′∑
m=1

(U∗
m)α




α

≤2


ε( M ′∑

m=1

φ(To
m))

1
α + (1 + ε)(

M ′∑
m=1

φ(To
m))

1
α




α

= (1 + 2ε)α
M ′∑

m=1

φ(To
m),

where ≤1 comes from Lemma 12 and ≤2 comes from
Lemma 13 with the fact that e∗

r

u∗
r
M ′ ≤∑M ′

m=1 φ(To
m).

By taking ε with (1 + 2ε)α ≤ (1 + ζ), we could reach the
following theorem since α is a constant.

Theorem 3 A schedule with (1 + ζ)Eopt for any task set T
can be solved in O(|T| log |T|+ g(1

ζ ) logO(1) |T|), where ζ is

an user-input instance, g(1
ζ ) is a function of 1

ζ , and Eopt is the
minimum expected energy consumption for T to complete all
the tasks in T before their deadlines.

3.4 Remarks

Deriving a feasible task partition for the multiproces-
sor expected-energy-efficient scheduling problem is NP-
complete if there is a speed constraint [6]. The problem is

equivalent to the programming with one additional constraint
in Equation (3) with ti ≥ ci/smax, where smax is the maxi-
mum speed of the system. Task rejection [9] or resource aug-
mentation with constraint violation [7, 17] to violate the con-
straint on the maximum speed for a little might be needed. For
resource augmentation, the relaxation phase must be revised,
and the estimated utilization can be used to derive task parti-
tions. After task partition is done, the task set on processor
m is scheduled with the approach in [24] by augmenting the
maximum speed as smax×max{1, Um}, where Um is the total
estimated utilization of the task set.

4 Performance Evaluation

This section provides performance evaluation of Algorithm
LEUF and Algorithm ROUNDING, where the user-input param-
eter ε is set as 0.1, 0.05, and 0.025.

We perform simulations that apply the algorithms to a series
of synthetic task sets with similar settings in [25]. Each task
set consists of 8, 12, or 16 periodic tasks. The period pi of each
task τi ranges from 10 millisecond to 10 second. The number
of the worst-case execution cycles ci is between 100,000 and
500,000,000. Let βi of each task τi be a random variable in the
range of [5, 20]. The worst-case execution cycles ci is evenly
divided into βi bins, i.e., Xi,b = � ci

βi
� for b = 1, 2, . . . , βi,

while ci is revised to βiXi,b after the derivation of Xi,b. Then,
we have to determine the probability density function ψi() for
each task τi. A Gaussian distribution and an exponential dis-
tribution are adopted here to determine the probability density
function of each task. For task sets that are determined by a
Gaussian distribution, the actual execution cycles of a task τi
follows a Gaussian distribution in (0, ci], where the mean µi

is chosen in (0, ci] and the standard deviation σi is ci

6 . For ex-
ponential distributed task sets, the actual execution cycles of a
task τi is exponentially distributed in (0, ci], where 1

ηi
is a ran-

dom variable in the range of (0, ci], and µi = 1
ηi

and σ2
i = 1

η2
i

.
We simulate each task set on platforms with 2, 4, 6, or 8

processors to evaluate the effect of the number of processors
on the evaluated algorithms, while the value α is set as 3. The
normalized expected energy is used to evaluate the effective-
ness of the algorithms. The normalized expected energy of an
algorithm for an input instance is the energy consumption of
the schedule derived from the algorithm in the hyper-period
of the task set divided by the energy of an optimal solution de-
rived from an exhaustive search. Each configuration is done by
simulating 64 task sets independently.1 The average normal-
ized expected energy and the maximal normalized expected
energy are reported as the experimental results.

1Since the exhaustive search is very time-consuming, we are not able to
have experiments with larger tasks, processors, and configurations.
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Figure 2. Experimental results when |T| = 8: (a) and (b) for the average normalized expected energy and (c) and
(d) for the maximal normalized expected energy.

Figure 2 shows the experimental results when there are 8
tasks for 2, 4, 6, or 8 processors. When M = 6 and M = 8,
all the evaluated algorithms derive optimal solutions because
most of the generated task sets satisfy the optimality condition
stated in Lemma 5. However, when M = 2 and M = 4, Al-
gorithm ROUNDING outperforms Algorithm LEUF no matter ε
is set as 0.1, 0.05, or 0.025. Moreover, when M = 2 in Fig-
ure 2(d), setting ε as 0.05 has better results than setting ε as
0.025 does. This is because the setting of ε only reflects the
worst-case guarantee, but the actual resulting schedule might
be better if ε has a larger value. Figure 3 and Figure 4 are the
experimental results when there are 12 and 16 tasks in T, re-
spectively. In both Figure 3 and Figure 4, Algorithm LEUF out-
performs Algorithm ROUNDING in most cases when ε = 0.1.
But by setting ε as 0.025, Algorithm ROUNDING can perform
better than Algorithm LEUF does in most cases.

5 Conclusion

This paper explores task partition and scheduling for the
minimization of expected energy consumption in homoge-
neous multiprocessor systems with the capability of dynamic
voltage scaling. The objective is to minimize the expected en-
ergy consumption for completing all the given tasks in time.
By modeling the dynamic (or speed-dependent) power con-
sumption function as sα, we show that the Largest-Estimated-

Utilization-First (LEUF) strategy is a (α−1)α−1(3α−2α)α

(2·3α−3·2α)α−1αα -
approximation algorithm with O(|T| log |T|) time complex-
ity, where s is the processor speed, α is a hardware-dependent
factor between 1 and 3, and T is the set of the given real-time
tasks. Since α is at most 3, the approximation ratio is at most
1.13. Moreover, with the rounding of the estimated worst-case
utilization of tasks, we derive a polynomial-time approxima-
tion scheme (PTAS) to provide a (1 + ζ)-approximated solu-
tion for any 1 > ζ > 0 for such a stronglyNP-hard problem.
The proposed polynomial-time approximation scheme allows
a system designer to trade the optimality of the derived solu-
tion with the analysis time.

An interesting extension for expected-energy-efficient
scheduling is to consider the reduction of leakage power con-
sumption by turning a processor off. In such a case, all the pro-
cessors might not be used for task execution [7,28]. However,
to our best knowledge, the expected-energy-efficient schedul-
ing with leakage-power consideration is still open even for

uniprocessor systems. The task re-assignment approach [7]
might be applied if the uniprocessor scheduling issue is re-
solved. It is also interesting to consider expected-energy-
efficient scheduling on heterogeneous processors.

Acknowledgments We would like to thank Sathish
Gopalakrishnan for his comments on the draft of this paper.
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Figure 3. Experimental results when |T| = 12: (a) and (b) for the average normalized expected energy and (c) and
(d) for the maximal normalized expected energy.
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(d) for the maximal normalized expected energy.

[11] F. Gruian. Hard real-time scheduling for low-energy using
stochastic data and DVS processors. In ISLPED, pages 46–51,
2001.

[12] F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low
energy systems using variable supply voltage processors. In
Proceedings of Asia South Pacific Design Automation Confer-
ence, pages 449–455, 2001.

[13] F. Gruian and K. Kuchcinski. Uncertainty-based scheduling:
energy-efficient ordering for tasks with variable execution time.
In ISLPED, pages 465–468, 2003.

[14] T.-Y. Huang, Y.-C. Tsai, and E. T.-H. Chu. A near-optimal solu-
tion for the heterogeneous multi-processor single-level voltage
setup problem. In 21th International Parallel and Distributed
Processing Symposium (IPDPS), pages 1–10, 2007.

[15] C.-M. Hung, J.-J. Chen, and T.-W. Kuo. Energy-efficient real-
time task scheduling for a DVS system with a non-DVS process-
ing element. In the 27th IEEE Real-Time Systems Symposium
(RTSS), pages 303–312, 2006.

[16] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings.
In Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 37–46, 2003.

[17] J.-H. Lin and J. S. Vitter. ε-approximations with minimum pack-
ing constraint violation. In Symposium on Theory of Computing,
pages 771–782. ACM Press, 1992.

[18] J. R. Lorch and A. J. Smith. Pace: A new approach to dynamic
voltage scaling. IEEE Trans. Computers, 53(7):856–869, 2004.

[19] Z. Lu, Y. Zhang, M. Stan, J. Lach, and K. Skadron. Procrastinat-
ing voltage scheduling with discrete frequency sets. In Design,
Automation and Test in Europe (DATE), pages 456–461, 2006.

[20] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem.
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