
d-IRA : A Distributed Reachability Algorithm
for Analysis of Linear Hybrid Automata

Sumit Kumar Jha

Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213

Abstract. This paper presents the design of a novel distributed algo-
rithm d-IRA for the reachability analysis of linear hybrid automata. Re-
cent work on iterative relaxation abstraction (IRA) is leveraged to dis-
tribute the reachability problem among multiple computational nodes in
a non-redundant manner by performing careful infeasibility analysis of
linear programs corresponding to spurious counterexamples. The d-IRA
algorithm is resistant to failure of multiple computational nodes. The ex-
perimental results provide promising evidence for the possible successful
application of this technique.

1 Introduction

The verification of linear hybrid automata is a computationally expensive
procedure and is efficient only for systems with few continuous variables.
Linear hybrid automata (LHA) are an important class of hybrid systems
which can approximate nonlinear hybrid systems in an asymptotically
complete fashion [3]. We extend our earlier work [5] on applying coun-
terexample guided abstraction refinement (CEGAR) based model check-
ing algorithms [1] to the analysis of linear hybrid automata and present
a distributed algorithm for their reachability analysis.
This paper makes the following three novel contributions:

1. We present the first fault-tolerant distributed algorithm for the
reachability analysis of linear hybrid automata.

2. On the theoretical side, we establish a partial-order among coun-
terexamples and relaxations of linear hybrid automata. We find coun-
terexamples not related by the partial order and build relaxations to
refute each of them in a distributed manner.

3. The global state which needs to be preserved for failure-tolerance
of the distributed system is only a discrete finite state machine. We also
illustrate the potential for efficient online back-ups of the global state.

2 The Distributed Algorithm (d-IRA)

The distributed algorithm assumes one master computation node and (N-
1) other computational (slave) nodes. Initially, the master node initialises
a counter i to zero, chooses the empty set as an initial set of variables I0

and learns the deterministic finite automata corresponding to Σ∗ (where
Σ is the alphabet of the linear hybrid automata) as the initial discrete
over-approximate global abstraction of the language of the LHA H. Now,
we explain the distributed algorithm.
1. During the ith iteration, the jth computational node constructs its
own relaxation Hj

i of the linear hybrid automata H using the set of

variables Ij
i . This step could involve invoking the Fourier-Motzkin elim-

ination routine. Each computational node then constructs a discrete ab-
straction Tempj corresponding to the relaxed linear hybrid automata
Hj

i . This step involves making calls to the underlying reachability engine
like PHAVer [2]. Both the above steps are identical to the corresponding
steps in the IRA algorithm [5] and are not discussed here for brevity.
2. Each computational node sends to the master the discrete abstraction
Tempj which it learnt from the relaxed linear hybrid automata Hj

i . The
master node updates the discrete global abstraction Ai+1

CE by taking the
intersection of the previous discrete global abstraction Ai

CE with all the
newly learnt discrete abstractions Tempj .
3. Then, the master uses partial order relation among the counter-examples
Ai+1

CE to pick a set CE of N non-redundant counterexamples. The con-
struction of partial order relation is detailed in Section 3.
4. The master node checks if the set of counterexamples CE is empty.
If Ai+1

CE has no counterexamples, then no bad states are reachable in the
system [5] and hence, it is declared to be safe. Otherwise, the master
computational node forms a set of linear programs C, where each linear
program corresponds to one of the counterexamples in CEi+1. This step
is similar to the corresponding step in the IRA algorithm [5] and is
discussed in [6].
5. The master node checks if any of the linear programs in C is feasible.
In any of them, say C, is feasible, it stops and reports that the bad state
is reachable [6] and reports the corresponding counterexample. If none
of the linear programs is feasible, the master node finds the irreducible
infeasible subsets (IIS) for each of the linear programs. The master node
uses the support of the IIS as the choice for the next set of variables
Ii+1 which will be used to construct the relaxations. The master node
communicates the set Ij

i+1 to the jth client.

3 A Partial Order for Counterexamples and
Relaxations

In order to make the distributed computation effective, it is essential
that the various computational nodes do not solve equivalent reachabil-
ity sub-problems. In particular, we want to make sure that the relaxed
linear hybrid automata for the ith iteration Hj

i and Hk
i are different. We

achieve this goal by making a suitable choice of counterexamples from the
global abstraction Ai+1

CE . Before we present our algorithmic methods, we
define some related notions. Our definitions of linear hybrid automata,
relaxations and counterexamples are identical to those in literature [3,
5]. Given a path ρ in a linear hybrid automata H, we can derive a set
of corresponding linear constraints Constraints(H, ρ) which is feasible
if and only if the path is feasible. This construction [5, 6] is omitted here.

Definition 1. Minimal Explanation for Infeasible Counterexamples :
Given a counterexample path ρ which is infeasible in a linear hybrid au-
tomata H but feasible in a relaxation H ′ of H, (i.e. H ′ v H), a set
of linear constraints IIS(ρ) is said to be an irreducible infeasible subset
(IIS) for ρ if and only if:

– IIS(ρ) ⊆ Constraints(H, ρ) and IIS(ρ) is not feasible.
– for any set S s.t. S ⊂ IIS(ρ), S is feasible.

The special basis [5] V ar of the IIS of ρ is called a minimal explanation
for the infeasible counterexample and we write it as V ar(ρ, IIS(ρ)).

In the following, we assume that there exists a function IIS which maps
each counterexample to a unique IIS.

Definition 2. Dominance of Counterexamples : A counterexample ce is
said to dominate a counterexample ce′ if and only if V ar(ce, IIS(ce)) ⊆
V ar(ce′, IIS(ce′)). We write ce º ce′.

Definition 3. Two counterexamples ce and ce′ are said to be equivalent
iff V ar(ce, IIS(ce)) = V ar(ce′, IIS(ce′)). Then, we say ce ≈ ce′.

The relaxations of hybrid automata form a partial order. We summarize
our results based on this key observation in the following theorems. The
proofs are presented in [4].

Theorem 1. The dominance relation º among counterexamples is a
partial order relation.

Theorem 2. Let Hce be the relaxation of H w.r.t. V ar(ce, IIS(ce)) and
Hce′ be the relaxation of H w.r.t. V ar(ce′, IIS(ce′)). If the counterex-
ample ce dominates the counterexample ce′ i.e. ce º ce′, then Hce is a
relaxation of Hce′ i.e. Hce v Hce′ .

The algorithm Select CE presented below for selecting N counterexam-
ples is based on the above results.

Algorithm Select CE
Input: Global Abstraction Automata Ai

CE , LHA H, a timer TIMEOUT.
Output: N counterexamples: CE = {ce1, . . . ceN}
1. Initialize CE to be the empty set.
2. Pick a set of m (> N) distinct counterexamples C = {ce1, ce2 . . . cem} from
Ai

CE .
3. Build a set of linear programs {lp1, lp2 . . . lpm} corresponding to each of
{ce1, ce2 . . . cem}
4. For each (infeasible) linear program lpi, obtain an IIS and remember it as
IIS(lpi)
5. For each counterexample cei ∈ C,

a. Check whether there exists a counterexample cej ∈ C such that cej º cei

(i 6= j).
b. If no such counterexample cej exists, add cei to CE.
c. Remove cei from C.

6. If (|CE| < N and !TIMEOUT) , m = m× 2 ; goto step 2.
7. RETURN the first N members of CE as a set.

4 Failure Tolerance of d-IRA

Resistance to failures and restarts of slave nodes: This is possible
because the slave nodes do not store any global state information during

the distributed computation and hence, the overall distributed reacha-
bility computation is robust to failure of slave nodes. If the ith slave node
fails during the jth iteration, then the d-IRA algorithm can still proceed
by making the assumption that L(Tempi) = Σ∗.
Tolerance to failure of master node: The current state of the dis-
tributed computation is really captured completely by the global ab-
straction Ai

CE after the ith iteration. It is hence desirable to back-up the
global abstraction to a group of shadow masters during periods of low
communication activity.

5 Experimental Results and Conclusion

We implemented a version of our distributed algorithm using the IRA
infrastructure which parallelized only the relaxation step. We found up
to a 4-X improvement runtime on our four processor machine1 with this
implementation on a set of parameterized adaptive cruise control exam-
ples [5]. .

Table 1. Distributed IRA vs IRA

Example]-Variables Time for d-IRA [s] Time for IRA [s] Speedup

ACC-4 4 11 15 1.36

ACC-8 8 100 192 1.92

ACC-16 16 1057 3839 3.63

ACC-19 19 2438 9752 4.0

References

1. J. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, Cambridge, MA, USA, 1999.

2. G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past
HyTech. In HSCC, pages 258–273, 2005.

3. P.-H. Ho. Automatic Analysis of Hybrid Systems, Ph.D. thesis, tech-
nical report CSD-TR95-1536, Cornell University, August 1995, 188
pages, 1995.

4. S. K. Jha. Design of a distributed reachability algorithm for analysis
of linear hybrid automata. CoRR, abs/0710.3764, 2007.

5. S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke. Reachability
for linear hybrid automata using iterative relaxation abstraction. In
HSCC, pages 287–300, 2007.

6. X. Li, S. K. Jha, and L. Bu. Towards an Efficient Path-Oriented
Tool for Bounded Reachability analysis of Linear Hybrid Systems
using Linear Programming. In BMC, 2006.

1 We ran our experiments on a four processor 64-bit AMD Opteron(tm) 844 SMP
machine running Red Hat Linux version 2.6.19.1-001-K8.

