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Abstract 
 
Robust, high yield IC design requires statistical 

simulation, and therefore statistical models. Simple 
“fast” and “slow” sets of model parameters are not 
sufficient to predict the manufacturing variations of all 
measures of circuit performance for arbitrary circuit 
topologies, device geometries, and biases. This paper 
describes an accurate and efficient approach to statistical 
modeling and characterization. The procedure is based 
on physical process parameters, and explicitly accounts 
for correlated and uncorrelated variations of statistical 
parameters. The process is generic, and so is applicable 
to any type of device, and emphasizes the accuracy of 
device electrical performance variation modeling, rather 
than model parameter variation modeling. This provides 
an accurate and simple way to model and simulate the 
statistical variation of circuit electrical performances. 

 
 

1. Introduction 
 
Integrated circuit (IC) manufacturing processes are 

statistical in nature. Besides defects, which cause 
catastrophic circuit failure, parametric variations are 
observed in electrical performances E . These occur 
between fabs, between tool sets at the same fab, over time 
within the same tool set and fab, between wafers in the 
same lot, and between die from the same wafer. 
Variations also occur between devices within the same 
die (“mismatch”). Parametric variations can cause a die to 
fail to meet specs, or fail to operate functionally. Analog 
circuits are especially sensitive to process variations, 
although high-speed digital circuits in state-of-the-art 
processes are becoming more sensitive than in the past to 
statistical variations [1]. 

Design of ICs therefore should take proper account of 
the statistical nature of IC manufacturing processes. For 
some classes of circuits this has been done effectively and 
efficiently using “generic” case files. Many digital CMOS 
circuits are topologically similar, use minimum length 
devices, and have two key figures of merit, speed and 
power, which are highly correlated. In a simplistic sense 
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so models that bracket the manufacturing variations of I  
and C  (“slow” and “fast,” or “worst” and “best,” for low 
and high current respectively, where the names relate to 
digital circuit speed) reasonably bracket manufacturing 
variations in speed and power. 

These generic models could also reasonably be 
expected to bracket manufacturing variations in amplifier 
slew rate, which is a “ tV ∂∂ ” type performance. But 
what about the hysteresis of a Schmidt trigger? or the 
phase margin or input offset voltage of an amplifier? 
These E  are not controlled just by drive current strength. 

And what about head room in an amplifier? Besides 
“fast” and “slow” MOSFET and BJT models, model 
parameter sets can include “lo” and “hi” resistance 
models. For “fastest” circuit operation it would seem you 
should mix “fast” MOSFET models with “lo” resistance 
models. But if transistors are connected to supply rails via 
resistances, then worst-case headroom comes from the 
combination of “fast” transistor and “hi” resistance cases. 

Even the names can be misleading. For many BJTs 
high cI  is physically correlated with low Early voltage, 
and so the AC gain, )( qkTVrg Aom ≈ , is at its “worst” 
(low) value when current drive is “best” (high). 

Fig. 1 Statistical Curse of Dimensionality 
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As you include “lo/hi” models for different classes of 
devices available in a technology, three things happen. 
First, the number of possible combinations increases 
exponentially with the number of classes of cased device 
models. This makes simulating all combinations of cases 
impractical. Second, the “curse of dimensionality” rears 
its head, see Fig. 1. As you introduce σn±  variations in 
each of N  variables the manufacturing likelihood 
becomes σNn± .  Third, because parameters and 
electrical performances are correlated between different 
categories of cased devices, unphysical combinations can 
occur. For example, the width variation of polysilicon 
resistors is highly correlated with the effective length 
variation of MOSFETs, and treating these as separate 
parameters overestimates the amount of variation 
predicted. A circuit designed to work with unphysical 
combinations of parameters will yield in practice, but this 
approach is uncontrolled and causes over-design. 

On top of that, even if the statistical variations in the 
model parameters are varied to specified levels, there is 
no guarantee that the “case” files give any meaningful 
qualitative predication of the manufacturing variability in 
any particular iE . This is because the sensitivities of the 
E  to the parameters varied in the case files are not taken 
into account. 

There is a solution to the problem. First, apply 
appropriate proper statistical simulation techniques, not 
just a “shot gun” combination of generic case files. And 
second, ensure that the appropriate statistical models are 
available, because different statistical simulation 
techniques require different sorts of statistical models. 
The keys to this process are physical process parameters 
as a modeling basis, sensitivity analysis, and back 
propagation of variance (BPV). 

 
2. Physical modeling basis 

 
The electrical behavior of semiconductor devices is 

controlled by the physical and geometric properties of 
materials they are made of. Geometric properties G  
include length and width, areas and perimeters of parasitic 
junctions, spacing to adjacent devices (for interconnect 
fringing and coupling capacitance), and spacing to 
adjacent trench isolation (for stress effects). These come 
from the physical design (layout) of the device. 

Physical properties P  include doping levels and 
profiles, their integrated effect in sheet resistance, lateral 
geometry variations (like poly critical dimension, and 
junction out-diffusions), recombination and generation 
time constants, and vertical dimensions like junction 
depths and metal, poly, and dielectric thicknesses. 

Some types of devices, e.g. MOSFETs and resistors, 
have SPICE models that are based on physical process 

parameters. These P  can be directly used for statistical 
modeling and simulation. Other devices, primarily BJTs, 
have SPICE models whose parameters are correlated and 
are not fundamental P , but depend on them [2]. For these 
devices, the model files must be constructed with SPICE 
model parameters written as functions of P . This can 
require some up-front investment of effort, but similar 
mappings hold for similar devices across technologies, so 
once this is done the effort required to update them for a 
new device or technology is small. 

A simplified example is: 
.par dle=0  // emitter size variation 
.par rpb=1 // pinchbase sheetrho varn 
.subckt npn (c b e s) le_um=5 we_um=5 
.par ae=(le_um+dle)*(we_um+dle) 
.par pe=2*(le_um+we_um+2*dle) 
.model mymod vbic type=npn 
+ is =(isa*ae+isp*pe)*rpb 
+ cje=(cea*ae+cep*pe)*sqrt(rpb) 
+ ver=verNom/sqrt(rpb) 
+ ... 
q1 (c b e s) mymod  
.ends 

Statistical variations in P  fall into two classes, often 
termed “global” (or inter-die) and “local” (or intra-die) 
variations [3]. For statistical simulation purposes, it is 
better to consider the two types of variations to be 
correlated (between devices, across a die) and 
uncorrelated (within a die). For a particular jP  

)(Gjujcjoj PPPP δδ ++=  (2) 

where joP  is the nominal value of the parameter, jcPδ  is 
the variation correlated between devices within a die, and 

juPδ  is the variation that is uncorrelated between 
instances of a device within a die, which is a function of 
the geometric layout attributes of the device. 

For purposes of statistical simulation, jcPδ  is a 
single statistical variable for all devices sensitive to the 
parameter jP  in the circuit. A distinct and separate juPδ  
is used for each separate instance of a device sensitive to 

jP  that is selected for mismatch analysis. 
Rather than understanding physically what causes 

variations in device performance, an alternative is to 
numerically analyze extensive model parameter sets 
extracted from a large statistical sample of devices [4]. 
While being generic, not device specific, this approach 
requires significant effort, encounters problems when 
parameters are extracted using optimization (and so are 
statistically “noisy”), gives no physical insight into root 
causes of variation, and is neither predictive nor portable. 
More important, it requires separate techniques to 
characterize uncorrelated and correlated statistical 
parameters. Physical modeling is preferred. 



 
3. Statistical characterization process 

 
There is a temptation to directly measure variations 

in the process parameters P , but there are several 
problems with this. Consider effL  of a MOSFET, a key 
statistical parameter for short channel devices. There are 
dozens of published methods to determine effL , and they 
give different values. Which should be used for statistical 
characterization?  SPICE models are approximations, so 
what guarantee is there that putting in σ3±  variations in 

effL  will give σ3±  variations in E ? And different 
SPICE models will give different values for the variations 
in E  for the same variation in effL . 

At heart, the goal of modeling is to correctly 
represent E , it is not to model P  accurately. Circuits 
function or not depending on the electrical performance of 
the devices from which they are built, not directly on 
parameter values. So given specified variations in E , 
how can variations in P  be derived that accurately model 
the desired statistics of E ? 

If the fluctuations in P  are not overly large (i.e. if a 
process is manufacturable), then to a good approximation 
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The variance in iE  then follows as 
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If 
iEσ are specified, then ji PE ∂∂  can be calculated 

from the SPICE models, and (4) gives a set of 
simultaneous linear equations that can be solved for 

jPσ . 
The procedure is termed BPV, for backward propagation 
of variance. 

With 
jPσ  characterized, this provides models that 

can be used for distributional statistical simulation, i.e. for 
Monte Carlo type analyses. 

There are some interesting properties of this 
characterization procedure. First, note that it must be 
applied separately for each SPICE model that is being 
characterized. If two different MOSFET models require 
statistical characterization, the BPV process can give 
different values for 

jPσ  for each model (because the 
sensitivities ji PE ∂∂  differ). While this at first may 
seem strange, if you are used to a mindset where 
parameters are physical and sacrosanct and should be 
measured directly, it gives the desired result: the models 
will predict the same variation in E , which is the goal of 
modeling for circuit simulation. 

Second, there may be more E  than P . When (4) are 
solved this gives a least squares solution. 

Third, if some jP  are characterized directly, then the 
associated columns of the matrix of squared sensitivities 
in (4) are subtracted from the left-hand side, and the 
variances in the remaining P  calculated. Direct 
characterization of jP  is termed FPV, for forward 
propagation of variation. 

Finally, analysis of (4) can provide very useful sanity 
checks on models, data, and the selection of E  for 
statistical modeling. If the selected E  are not sufficient 
to make the P  mathematically observable, then the 
matrix of squared sensitivities in (4) becomes 
mathematically poorly conditioned. This then tells you 
that you have chosen inappropriate E  (but does not tell 
you how to choose the E  properly, see below for more 
discussion). If sensitivities from the SPICE models are 
inaccurate, or if some FPV P  are inaccurate, then (4) can 
generate a negative variance. While this at first seems 
problematic, it is in fact a significant feature of BPV that 
it will not generate statistical models unless all the data 
and SPICE models are self-consistent and reasonable. 

How do you choose the E ? There are two criteria. 
First, they need to be measures of device performance that 
highly correlate with circuit performance. Second, they 
need to make the P  mathematically observable, i.e. so 
that as noted above the matrix of squared sensitivities in 
(4) is well conditioned. They do not need to be chosen so 
they have a one-to-one relationship with P , or are at 
some bias condition or geometry that is far removed from 
typical circuit applications. Knowledge of circuit 
applications and device operation guides this selection. 

As a specific example, one of the simplest ways to try 
to get direct information related to emitter resistance for a 
BJT is to bias it with an open collector, and with a base 
current significantly higher than used in normal circuit 
operation. This causes the device to operate so far 
removed from a normal operating regime that modeling 
tends to be poor (models are optimized for normal 
operation, and simple lumped resistance models are only 
accurate over limited bias ranges), and the device operates 
in a completely different fashion than in a real circuit. 

Besides distributional models, for Monte Carlo like 
simulations, IC design does require case files.  From the 
lines of constant iE  in Fig. 1, it is apparent that to find 
extreme case files for iE , at a defined σn  probability 
level of being manufactured, the problem to solve is 
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Applying the method of Lagrange multipliers gives 
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This gives case files specific for extremes in iE , but 
as these require simulation of the sensitivities ji PE ∂∂ , 
which are circuit dependent, the process cannot be run as 
part of a normal model generation process, but needs to 
be run dynamically during the IC design process. And the 
specific case files are valid for only one circuit topology 
and device geometry selection, and separate specific case 
files are required for each iE . 

Consequently, generic case files that can be used for 
a shotgun type approach to simulation are also valuable 
(these are the generic case files like “slow” and “fast”). 
These can be generated by selecting extreme (generally 

σ3± ) values for iE  for devices, rather than circuits, and 
using nonlinear least squares optimization to find the P  
that generate the desired E . Care must be taken in the 
process, to ensure that there is physical consistency 
between the E . For example, simultaneously specifying 
high cI  and high AV  for a BJT is physically 
unrealizable. 

This same optimization procedure is invaluable for 
tuning models to nominal process conditions. This 
obviates the need to select a “golden” wafer for modeling 
(and no wafer is ever perfectly nominal for every 
parameter), all that is required is a reasonable wafer. 

The characterization flow is: 
1. Extract models from a “reasonable” wafer. 
2. Define and add the mappings from P  to model 

parameters. 
3. Define E  and obtain distributions, verify P  are 

observable in E . 
4. Generate typical models by optimizing P  to adjust 

E  to nominal targets. 
5. Generate distributional models for P  by solving (4) 

for the variances of P  (this requires simulating the 
sensitivities ji PE ∂∂  from the SPICE models). 

6. Define targets for E  for generic case files, generate 
P  to model these E  using nonlinear least squares 
optimization. 

7. For each iE , generate specific extreme case files 
using (6). 

A general-purpose program does all appropriate 
calculations, for completely general models, to generate 
these statistical models in a few minutes on an 
engineering workstation. 

Fig. 2 and Fig. 3 show manufacturing data and 
modeled values for drain currents for wide/long and 
wide/short PMOS and NMOS devices. The dotted box is 
the manufacturing specification. The dashed hexagon is a 

convex hull connecting generic case files, shown as the 
heavy plusses at the corners. The ellipses are 1-, 2-, and 
2-σ probability contours generated from a 500 sample 
Monte Carlo simulation using the distributional model. 
The models accurately capture the spread in the data, and 
also the correlation structure, which differs between long 
and short devices. 

Fig. 2 Models and data from wide/long MOSFETs. 

Fig. 3 Models and data from wide/short MOSFETs. 
 

4. Specification of manufacturing variances 
 
Given variances for E , the procedures described 

above allow efficient generation of accurate statistical 
models. Where do the variances of E  come from? 

One source is lab measurements on a small sample of 
wafers. Lab measurements tend to be accurate, and 
especially for mismatch data can be the most reliable 
source. However, there is no guarantee that statistical 
spreads derived from a small number of wafers match the 
long-term variation, over multiple manufacturing sites 
and tools. 



Manufacturing line measurements are therefore the 
best source of statistical data for generating statistical 
models. But such data needs to be interpreted carefully. 
The accuracy of fab measurements, especially for low 
currents and for capacitances, tends not to be not as good 
as from lab measurements. How accurate is the chuck 
temperature control? Especially for BJTs, whose currents 
vary roughly exponentially with temperature, imprecise 
temperature control can be manifest as incorrectly large 
statistical variations in some E . 

Further, if during a specific time period one product 
dominates manufacturing, and fab engineers know that 
this part gives better yields if the process is skewed from 
typical, then they will often make appropriate adjustments 
to maximize yield. Data measured from these lots is not 
statistically representative of the process, and so is not an 
appropriate basis for statistical design models. 

Worse, most design activity occurs early in the life 
cycle of a manufacturing process. At this time, by 
definition, the long-term statistical distributions of E  are 
not known accurately. 

Therefore, although manufacturing data is the golden 
source of statistical variations (with the caveat that the 
accuracy of the data needs to be verified), more is needed 
for generation of statistical models. Variations defined for 
E  should be considered as specifications (upper and 
lower limits), and the models are then forced to comply 
with these limits using the process described above. The 
limits are defined based on manufacturing data, 
expectations and extrapolations based on previous 
technologies and knowledge of tool sets and expected 
manufacturing sites, and engineering judgment and 
experience. 

The E  should be chosen so that they are strongly 
correlated with circuit performances, and make the P  
mathematically observable. For example, if mobility µ , 
channel length variation effdrawnL LL −=∆ , and 
flatband voltage FBV  are considered key MOSFET 
process parameters (along with OXT , considered to be 
measured directly), then these parameters are observable 
in the threshold voltage THV  of a wide/long device and 
the saturated drain currents dsatI of both wide/long and 
wide/short devices. The dsatI  of a wide/short device is 
important for digital CMOS speed, and so is a good 
choice as an iE . However, dsatI  of a wide/long device is 
not a relevant quantity for many circuits. Rather, long 
devices are generally used in analog rather than digital 
applications, and are operated with gate voltages near 

THV  rather than at the supply (where dsatI  is measured). 
And conductances can be more important than currents 
for analog circuits. So for a wide/long device, peak mg  is 
a much better choice of iE  than dsatI  because it is more 

relevant to circuit performance, although both make µ  
observable in the BPV process. 

Note that nothing in the BPV characterization process 
specifies that the E  must be measures of device 
performance, they could be measures of circuit 
performance (like ring oscillator speeds), as long as the 
P  are observable in the E . This is a significant feature 
of the BPV process, because it does not concentrate on 
directly measuring parameters, the E  can be arbitrary 
and can include circuit, rather than device, performances. 
For both types of data, note that it is critical that as part of 
the BPV characterization process, the calculation of E  
from the models is done in exactly the same manner as it 
is done in measurement.  

Most important, there should be an on-going process, 
generally termed “loop closure,” in which statistical 
manufacturing data is regularly compared to models, and 
to the specifications from which the models were derived. 
This flags any discrepancies between the models to which 
circuits are being designed and actual performance of 
devices in manufacturing. 

A final word on comparing manufacturing data to 
models. By definition, models are an imprecise 
representation of reality, models have errors. Sometimes 
there are observed discrepancies between data and SPICE 
models that cannot be fixed just by adjusting parameters. 
In this case an offset between statistical limits of modeled 
and actual performance needs to be accepted, and 
accounted for in design if necessary. 

 
5. Correlated and uncorrelated components 

 
The analyses above did not distinguish between 

correlated and uncorrelated components of statistical 
variation. This is a major benefit of the generic approach, 
it is valid for both types of variation, correlated and 
uncorrelated. In other words, BPV provides an identical 
modeling basis and characterization formalism for both 
global and mismatch variation. This is not true of other 
approaches, for example PCA for global variation 
modeling is generally coupled with direct characterization 
of THV  and gain factor PK  mismatch for local 
variations. Not only does this require separate 
measurement and characterization procedures, it 
introduces modeling inconsistencies, because THV  and 

PK  are correlated via oxide thickness, yet the 
characterization procedure does not account for this. 

From (2), the total measured variance in some 
parameter jP  is 

)(222 G
jujcj PPP σσσ += . (7) 



Historically, the uncorrelated components of variations 
have been small compared to the correlated component 
variations. This meant that characterization of the 
correlated and uncorrelated components could be handled 
separately. Typically it was assumed that 

jcj PP σσ ≈ ,  (8) 

so although data measured in manufacturing lines 
includes both components of variation, to a good 
approximation it can be directly used just to characterize 

jcPδ . Characterization of juPδ  was then a completely 
decoupled and separate step, based on mismatch 
measurements (although still using the BPV process). The 
two types of variations are then combined additively in 
models. 

This is no longer the case. 
juPσ  increases as 

geometry decreases, and in modern technologies for the 
smallest devices the “uncorrelated” or local variation can 
be significant compared to the “correlated” or global 
variation. Fig. 4 shows this diagrammatically; see [5] for 
more specific details. 

Fig. 4 Global and local variation over geometry 
There are several very important ramifications of the 

increasing contribution of juPδ  to variations in jP . First, 
mismatch characterization cannot be done as an 
independent and subsequent step to jcPδ  
characterization. It needs to be done first, and then (4) 
becomes 
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where the measured (or specified) 
iEσ  include both 

global and local components. If the subtraction of the 
FPV’d mismatch variances in (9) is not done, then the 
mismatch variances are double counted in modeling. 

Second, for purposes of statistical simulation, a major 
assumption of case file simulation is that devices are 
correlated. If juPδ  dominates variations, as is starting to 
be the case for small geometry devices, then case file 
simulation can drastically overestimate the variability in 
circuit performance. This means circuits designed with 
case files will yield, however they will be over-designed. 

Third, if case file simulation only involves 
perturbations in jcPδ , then from Fig. 4 it is apparent that 
the geometric dependence of the overall variation of jP  
will not be modeled. Again, this leads to inaccuracies in 
circuit simulation. 

These issues are just starting to become important, as 
the industry moves into a regime where juPδ  becomes 
comparable to or greater than jcPδ . 

 
6. Conclusion 

 
This paper has detailed an approach for defining 

statistical models, based on physical process parameters, 
and for characterizing statistical models for both case file 
simulation and distributional simulation. The process is 
efficient, taking several minutes to run on an engineering 
workstation, and accurate, in that it guarantees that 
variations in electrical performances important for circuit 
design are matched. The BPV process is identical for 
characterization of both global and local variation, and is 
independent of specific SPICE models. 
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