
Bus-Driven Floorplanning
�

Hua Xiang
CS Dept, UIUC

Urbana, IL 61801
huaxiang@uiuc.edu

Xiaoping Tang
Cadence Design Systems

San Jose, CA 95134
xtang@cadence.com

Martin D.F. Wong
ECE Dept, UIUC
Urbana, IL 61801

mdfwong@uiuc.edu

Abstract
In this paper, we present an integrated approach to floorplanning
and bus planning, i.e., bus-driven floorplanning (BDF). We are given
a set of circuit blocks and the bus specifications (i.e., the net list of
blocks for the buses). A feasible BDF solution is a placement of
all circuit blocks such that each bus can be realized as a rectangular
strip (horizontal or vertical) going through all the blocks connected
by the bus. The objective is to determine a feasible BDF solution
that minimizes floorplan area and total bus area. Our approach
is based upon the sequence-pair floorplan representation. After a
careful analysis of the relationship between bus ordering and block
ordering in the floorplan represented by a sequence pair, we de-
rive feasibility conditions on sequence pairs that give feasible BDF
solutions. Experimental results demonstrate the efficiency and ef-
fectiveness of our algorithm.

1. Introduction
As the deep submicron technology advances, chips become more
congested even though more metal layers are used for routing. Usu-
ally a chip includes several buses. As design increases in complex-
ity, bus routing becomes a heavy task, especially for networking
chips or data processors. Since buses have different widths and
go through several module blocks, the positions of macro blocks
greatly affect bus planning. To ease bus routing and avoid unneces-
sary iterations in physical design, we need to consider bus planning
in early floorplanning stage.

In this paper, we address the problem of bus-driven floorplan-
ning (BDF). We use top two layers for bus planning, and buses go
either horizontally or vertically on one layer in floorplanning stage.
The simple bus structure is good and efficient at planning stage,
and would facilitate bus routing in later stages. Furthermore, more
complicated bus structure can always be decomposed into several
segments of horizontal/vertical buses.

Informally, the problem can be described as follows. Given a set
of rectangular macro blocks and the bus specifications (i.e., the net
list of blocks for the buses), find a placement of all circuit blocks
such that each bus can be realized as a rectangular strip (horizontal
or vertical) going through all the blocks connected by the bus. At
the same time, the chip area as well as the total bus area is mini-
mized.

Figure 1 gives an example. Figure 1 (a) and (b) are two floor-
plans with the same chip size. Two buses u (A, C) and v (B, E, H)
are placed in the floorplan of Figure 1 (a). However, neither of the
buses can be assigned based on the floorplan in Figure 1 (b) since�
This work was partially supported by the National Science Foun-

dation under the grant CCR-0244236 and by a grant from the Ca-
dence Design System Inc.

A

B

D

u

C
 F

E

I

G

v

H

A

G

D

H
 F

E

I

B

C

u

(a) (b)

Figure 1: Two floorplans have the same chip size. (a) Two buses u
(A, C) and v (B, E, H) are assigned. (b) Neither of the buses can
be assigned since B, E, H are not aligned and the vertical overlap
between A and C is less than the width of bus u.

blocks B, E, H are not aligned and the vertical overlap between
blocks A and C is less than the width of bus u.

In some previous works, researchers have discussed some par-
ticular kinds of floorplan constraints related to alignment. However,
these kinds of alignment constraints are not suitable for bus-driven
floorplanning. The paper [8] handles a kind of alignment in which
modules involved in an alignment are required to be aligned by left
(right/bottom/upper) side. But this is not necessary in BDF prob-
lems. For example, the bottom sides of blocks B, E, H are not
aligned, but bus v still fits in the floorplan in Figure 1 (a). Tang et al.
[7] proposed another alignment constraint in which several blocks
are aligned in a row, abutting with each other. But blocks involved
in one bus do not need to be placed adjacent to each other. In Figure
1 (a), A and C are not adjacent while bus u is assigned. The paper
[1] discussed predefined coordinate alignment constraint in which
some blocks are to be placed along a predefined coordinate within a
small region. In BDF, there are no constraints on coordinates. Rafiq
et al. [3, 4] proposed bus-based integrated floorplanning. However,
the bus defined in their works is composed of bundles of wires con-
necting only two blocks. Also bus assignment is accomplished by
global routing.

Most floorplan algorithms use simulated annealing to search for
an optimal solution. The implementation of simulated annealing
scheme depends on a floorplan representation where a neighbor so-
lution is generated and examined by perturbing the representation
(called ’move’). In this paper, we use sequence pair representation
and analyze the relationship between bus ordering and sequence
pair representation. Then a fast evaluation algorithm is proposed to
transform a sequence pair representation to a floorplan with buses
inserted. Finally, we also develop an efficient algorithm to han-
dle soft modules to further improve solution quality. Experimental

66

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

results on three sets of test files (MCNC benchmarks, industry test
files, bus grid test files) demonstrate the effectiveness and efficiency
of our approach.

The rest of the paper is organized as follows. Section 2 provides
background information on the sequence pair representation. The
formal definition of BDF problem is given in section 3. In section
4, we analyze the relationship between bus ordering and sequence
pair representation. Then a fast evaluation algorithm is proposed to
transform a sequence pair to a BDF solution in section 5. In section
6, a simulated annealing BDF algorithm is presented. Finally, we
address how to handle soft blocks to improve solution quality in
section 7. Experimental results are given in section 8, and section 9
concludes the paper.

2. Preliminary
A sequence pair is a pair of sequences of n elements representing a
list of n blocks. In general, a sequence pair imposes the relationship
between any two blocks a and b as follows.

(i) If a is ahead of b in both sequences, a is to the left of b in the
floorplan.

(ii) If a is ahead of b in the first sequence while behind b in the
second sequence, a is below b in the floorplan.

The original paper which proposed sequence pair [2] presented
an algorithm to transform a sequence pair to a floorplan in Θ

�
n2 �

time. Recently, Tang et al. sped up the evaluation algorithm to
O
�
n logn � in [5], and later further to O

�
n log logn � in [6].

[5, 6] showed that the coordinates of blocks and the width and
height of a floorplan can be obtained by computing longest com-
mon subsequence (LCS) in terms of the two sequences. Given a se-
quence pair

�
X � Y � , the width of a floorplan equals the length of the

longest common subsequence of X and Y where weights are blocks’
widths. Furthermore, given a block b, let (X � Y) = (X1bX2 � Y1bY2)
and LCS(X � Y) be the length of the longest common subsequence
of (X � Y). Then the x-coordinate of block b equals LCS(X1 � Y1)
with blocks’ widths as weights. Similarly, the height of a floorplan
is determined by dealing with the longest common subsequence
of (X � Y R) where Y R is the reverse of Y and weights are blocks’
heights. Furthermore, all the computations of blocks’ x/y coordi-
nates can be integrated into a single longest common subsequence
computation for a sequence pair.

3. Problem Formulation
Suppose the routing region has multiple layers and buses can be
assigned on the top two layers. So the orientation of buses is ei-
ther horizontal or vertical. The problem of bus-driven floorplanning
(BDF) can be defined as follows.

Definition 1. Bus-Driven Floorplanning (BDF)
Given n rectangular macro blocks B ��� bi � i � 1 �	�
�
�
� n � and m

buses U ��� ui � i � 1 �	�
�
�
� m � , each bus ui has a width ti and goes
through a set of blocks Bi where Bi � B and �Bi � � ki. Decide the
positions of macro blocks and buses such that there is no overlaps
between any two blocks or between any two horizontal (vertical)
buses, and bus ui goes through all of its ki blocks. At the same time,
the chip area as well as the total bus area is minimized.

In BDF problems, buses should go through all of their related
blocks. So the positions of blocks greatly affect bus assignment.
For convenience, let � g � t ��� b1 �	�
�
�
� bk ��� represent a bus u where
g ��� H � V � is the orientation, t is the bus width, and bi (i � 1 �	�
�
�
� k)
are the blocks the bus goes through. For short, a bus is just rep-
resented as � b1 ���
�
�
� bk � . Also let

�
xi � yi

� be the lower-left corner of
block bi. And the width and height of block bi are wi and hi re-
spectively. In the following, we give the necessary conditions of
feasible horizontal and vertical bus respectively.

y
a

y
c

y
b

y
c
+
h
c

B

y
a
+
h
a

y
b
+
h
b

A
 C

y
max

y
min

>
t

x

y

u

Figure 2: A feasible horizontal bus u ��� H � t ��� A � B � C ��� . ymax �
yc � hc, ymin � yb and ymax � ymin � t.

Lemma 1. Feasible Horizontal Bus (H-Bus) If a horizontal
bus u ��� H � t ��� b1 �	�
�
�
� bk ��� is feasible, then ymax � ymin � t where
ymax � min � yi � hi � i � 1 � 2 �	�
�
�
� k � and ymin � max � yi � i � 1 � 2 �	�
�
�
� k � .

Lemma 2. Feasible Vertical Bus (V-Bus) If a vertical bus u ���
V � t ��� b1 ���
�
�
� bk ��� is feasible, then xmax � xmin � t where xmax �
min � xi � wi � i � 1 � 2 ���
�
�
� k � and xmin � max � xi � i � 1 � 2 �	�
�
�
� k � .

Figure 2 illustrates an H-bus u ��� H � t ��� A � B � C ��� . In order to
fit in bus u, the vertical overlap of the three blocks has to be larger
than the bus width t.

4. Bus Ordering via Sequence Pair
Sequence pair always entails a packing if no constraints are given.
However, when constraints are introduced, there may not exist cor-
responding packing for some sequence pairs.

In this section, we discuss the relationship between bus ordering
and sequence pair representation. First, a necessary condition is
derived when only one bus is considered. Then we discuss the rel-
ative position of any two horizontal (vertical) buses imposed by a
sequence pair. Based on the analysis of two bus ordering, we set up
a bus ordering constraint graph and propose an algorithm to remove
infeasible buses.

4.1 A Necessary Condition for One Bus
Since blocks cannot overlap in a BDF solution, blocks have at most
one-dimension overlap, i.e., if the projections on x-axis of two blocks
have overlap, their projections on y-axis cannot overlap; on the
other hand, if the projections on y-axis of two blocks have over-
lap, their projections on x-axis cannot overlap. However, in order
to fit in a bus � b1 �	�
�
�
� bk � , the projections on x-axis (y-axis) of bi

and b j (i � j � 1 ���
�
�
� k; i �� j) must have overlap. In other words, the
position relationship of any two related blocks has to be left-right
(below-above) . Thus we have the following necessary condition.

Theorem 1. (Block Ordering) Given a sequence pair
�
X � Y �

and a bus u ��� b1 �	�
�
�
� bk � , if u is feasible, then the ordering of the

67

k blocks should be either the same or reverse in the two sequences
X and Y . Furthermore, if the k blocks appear in the same order in
both X and Y , the orientation of the bus is horizontal; otherwise the
bus is vertical.

A
 B

D

y

x

C

A

C

y

x

B

(a) (b)

Figure 3: A necessary condition for one bus. (a) The sequence
pair must be

� �
�
� A �
�
� D �
�
� B �
�
� C �
�
� ���
�
� A �
�
� D �
�
� B �
�
� C �
�
� �
to fit in a horizontal bus � A � B � C � D � . (b) The sequence pair must
be

� �
�
� A �
�
� C �
�
� B �
�
�!�"�
�
� B �
�
� C �
�
� A �
�
� � to fit in a vertical bus
� A � B � C � .

For convenience, this necessary condition is also called block
ordering. Figure 3 gives two examples. The sequence pair for (a)
is
� �
�
� A �
�
� D �
�
� B �
�
� C �
�
� , �
�
� A �
�
� D �
�
� B �
�
� C �
�
� � , and a horizontal

bus � A � B � C � D � can be assigned. (b) shows another example. The
sequence pair is

� �
�
� A �
�
� C �
�
� B �
�
�#�"�
�
� B �
�
� C �
�
� A �
�
� � and the
bus is a vertical one � A � B � C � . Note that Theorem 1 deals with
only one bus. When multiple buses are considered, it is likely that
some buses cannot be assigned for the floorplan although each bus
satisfies the necessary condition.

4.2 Bus Ordering between Two Buses
The relative position of blocks is determined by a sequence pair.
Since buses go through blocks, the ordering of buses is also influ-
enced by the sequence pair.

Given a sequence pair
�
X � Y � and two horizontal buses u �$� a1 �

a2 ���
�
�
� ak � and v ��� b1 � b2 �	�
�
�
� bl � , denote the block set Su ��� a1 �
a2 ���
�
�
� ak � , Sv ��� b1 � b2 ���
�
�
� bl � , and S � Su % Sv. Suppose � S � � L
(L & k � l since the two buses may go through the same block) and�
X � Y � satisfies block ordering for the two buses. Also we assume

these L blocks appear in the sequence pair as
� �
�
� c1 �
�
� c2 �
�
�'�
�
� cL �
�
�
�

�
�
� d1 �
�
� d2 �
�
�(�
�
� dL �
�
� � where ci � S and di � S
�
i � 1 �	�
�
�
� L � , and

the subsequence pair
�
X)*� Y) � � �

c1 c2 �
�
� cL � d1 d2 �
�
� dL
� . For

convenience, let p + ci , � i
�
i � 1 �	�
�
�
� L � which denotes the position

of ci in X) , and q + di , � i representing the position of di in Y) . From
this subsequence pair

�
X)-� Y) � , we can derive the relative position

of the two buses.

Case 1. If . a � Su, p + a ,/� q + a , , and 0 a � Su, p + a , � q + a , , then
bus u is above bus v.

Suppose p + ai , � q + ai , , then
�
X � Y � must be

� �
�
� b j �
�
� ai �
�
�1�2�
�
� ai

�
�
� b j �
�
� � . b j is below ai. Since u goes through ai while v goes
through b j , bus u is above v.

Figure 4 (Case 1) shows an example. The subsequence pair is�
D A E B F C � A D B E C F � . p + A , � 2 and q +A , � 1; p +B , � 4 and

q +B , � 3; p +C , � 6 and q +C , � 5. So bus u �$� A � B � C � is above bus
v �3� D � E � F � .

Case 2. If . a � Su, p + a , & q + a , , and 0 a � Su, p + a , � q + a , , then
bus u is below bus v.

D
 E
 F

C

A
 B

y

x

v

u

D
 A
 E
 B
 F
 C

A
 D
 B
 E
 C
 F

p

q

SubSequence Pair

 (D A E B F C , A D B E C F)

Case 1

A

B

C

E
D

y

x

u

v

A
 D
 B
 C
 E

D
 A
 B
 E
 C

p

q

SubSequence Pair

 (A D B C E , D A B E C)

Case 2

A

D

B
C

y

x

u

v
 A
 C
 D
 B

C
 A
 B
 D

p

q

SubSequence Pair

 (A C D B , C A B D)

Case 3

D

C

y

x

v

A

B

E

u

v
 A
 D
 B
 E
 C

A
 D
 B
 E
 C

p

q

SubSequence Pair

 (A D B E C , A D B E C)

Case 4

Figure 4: Cases of relative positions of two horizontal buses.

Figure 4 (Case 2) shows an example. Block B is shared by both
buses. Bus u �$� A � B � C � is below bus v �4� D � B � E � .

Case 3. If 0 a � Su, p + a , � q + a , , and 0 a)5� Su, p + a) , � q + a) , ,
then the two buses u and v cannot be assigned at the same time.

Suppose p + ai , � q + ai , and p + a j , � q + a j , , then
�
X � Y � must be� �
�
� bI �
�
� ai �
�
� a j �
�
� bJ �
�
�(���
�
� ai �
�
� bI �
�
� bJ �
�
� a j �
�
� � . Block bI is

below ai while bJ is above a j . The positions of blocks are illustrated
in Figure 4 (Case 3).

In the example, the two buses are u ��� A � B � and v �6� C � D � .
Then the subsequence pair is

�
X) � Y) � is

�
A C D B � C A B D � . For

block A, p +A , � 1 and q +A , � 2 while p +B , � 4 and q +B , � 3. In this
case, the two buses cannot be assigned at the same time.

Case 4. If . a � Su, p + a , � q + a , , then the two buses have no
firm ordering. Either bus can be above the other.

Figure 4 (Case 4) illustrates an example. In this example, bus
u �3� A � B � C � can be below bus v �3� D � E � . On the other hand, u is

68

also possible above v. Therefore, the two buses have no bus order-
ing constraint.

For any two vertical buses, we can get the similar results from�
X � Y R � .

4.3 Multiple Bus Ordering
In a BDF solution, it is impossible that the ordering of several buses
forms a cycle. For example, bus u is above bus v, bus v is above bus
w, while bus w is above bus u. This kind of relationship cannot exist
in a feasible solution.

In the above section, we have discussed bus ordering imposed
by the given sequence pair. To express the relative positions among
buses, we construct bus ordering constraint graphs for horizontal
buses and vertical buses respectively. The construction rules for a
horizontal bus ordering constraint graph are listed as follows. The
graph for vertical buses can be derived similarly.

7 Each bus is represented by a node.

7 If one bus u is above another bus v (Case 1 or 2) , add one
edge

�
u � v � .

7 If one block related to bus u is above a block related to bus v,
while another block related to u is below a block related to v
(Case 3), add two edges

�
u � v � and

�
v� u � .

7 If two buses have no bus ordering constraint (Case 4), no
edge is added.

The horizontal bus ordering constraint graph serves in two ways:
(i) Given a BDF solution, the block packing must correspond to a
sequence pair. Then the horizontal bus relationship imposed by the
sequence pair can be represented by an acyclic constraint graph. (ii)
If a constraint graph contains a cycle, then at least one bus cannot be
assigned. According to the construction rules, there are two kinds
of cycles.

1. A cycle includes only two nodes. Then the relative position
of the two corresponding buses must comply with Case 3,
and at least one bus cannot be assigned. Figure 5 (a) shows an
example. Two buses u �4� A � B � and v �3� C � D � are crossing,
and the subgraph is given in Figure 5 (b).

2. A cycle includes at least three nodes. Figure 5 (c) illustrates
an example. There are 3 buses u ��� A1 � A2 � , v �6� B1 � B2 �
and w �3� C1 � C2 � . The sequence pair is

� �
�
� A1 �
�
� B1 �
�
� B2 �
�
�
C1 �
�
� C2 �
�
� A2 �
�
� , �
�
� B1 �
�
� A1 �
�
�C1 �
�
� B2 �
�
� A2 �
�
� C2 �
�
� �
From this sequence pair, we can conclude that bus u should
be below v, v should be below w, and w should be below u.
However, this is impossible in a BDF solution. Therefore, at
least one bus has to be discarded.

If a bus ordering constraint graph contains cycles, there must be
some buses that can not be assigned. Since our target is to assign
as many buses as possible, the problem becomes how to remove
minimum number of buses so that the graph is acyclic. However
this problem is a NP-Complete problem.

For convenience, if some nodes are removed from the graph G ��
V � E � , then edges connecting to/from these nodes are also removed,

and the result graph is called residual graph. Also all nodes are
indexed, and node u � v means the index of u is less than that of v.

A

D

B
C

y

x

u

v
 u
 v

(a) (b)

A
1

B
1

B
2

C
1

u
v
 w

A
2

C
2

y

x

u
 v

w

(c) (d)

Figure 5: Two kinds of cycles in bus ordering constraint graph.

Definition 2. Node-Deleting Problem (NDP)
Given a sequence pair and a set of buses, a horizontal (vertical)

bus ordering constraint graph can be constructed. Remove nodes
from the constraint graph so that the residual graph is acyclic. At
the same time, the number of deleted nodes is minimized.

Theorem 2. Node-Deleting Problem (NDP) is NP-hard.

Proof First NDP is a NP problem since whether a residual
graph is acyclic or not can be judged in O

� �Vr � 3 � .
Next we prove that Independent Set Problem (ISP) is polynomial-

time reducible to NDP, i.e., ISP & p NDP. Since ISP is NP-Complete,
we can conclude that NDP is also NP-Complete.

Let G � �
V � E � be an instance of ISP. Suppose �V � � N and

�E � � M. We form a directed graph Gd � �
V � Ed

� where Ed �
� � i � j � � � i � j � � E � % � � j � i � � � i � j � � E � , i.e., each edge in G is rep-
resented by a pair of edges with different directions in Gd . Figure
6 shows an example. (a) is an instance of independent set problem
G. (b) is Gd . Note that G is an undirected graph.

v

u

w

z

e
1
 e
2

v

u

w

z

e
1

e
2

(a) (b)

Figure 6: Independent Set Problem and Node Deleting Problem. (a)
An instance of independent set problem (ISP). (b) Gd is a horizontal
bus ordering constraint graph.

Given a node subset V̄ , we can get a residual graph Ḡd of Gd

by removing nodes in � V � V̄ � . We show that V̄ is an independent
set of G if and only if the residual graph Ḡd is acyclic. If V̄ is an
independent set of G, then there are no edges in Ḡd . Obviously,
Ḡd is acyclic. On the other hand, for any residual graph Ḡd of

69

Gd , if it contains no cycles, then there are no edges in Ḡd since
edges also appear in pairs. Therefore, the nodes in Ḡd also form an
independent set of G.

Finally we show that Gd is a bus ordering constraint graph.
For any edge ei � �

u � v � � E (u � v), let block sequence xi ��
au

i bv
i cv

i du
i
� , and block sequence yi � �

bv
i au

i du
i cv

i
� , where au

i ,
bv

i , cv
i and du

i are macro blocks. Suppose there are L independent
nodes wi (i � 1 ���
�
�
� L) in G which are not incident on any edge. Let
block sequence xM 8 i � �

aw
M 8 i dw

M 8 i
� and block sequence yM 8 i ��

aw
M 8 i dw

M 8 i
� where aw

M 8 i and dw
M 8 i are blocks.

We form a sequence pair
�
X � Y � � �

x1 �
�
� xMxM 8 1 �
�
� xM 8 L , y1 �
�
� yM

yM 8 1 �
�
� yM 8 L
� . Blocks in X and Y form the macro block set B. So

totally there are 4M � 2L blocks. Since there are N nodes in G, the
number of buses is also N. For each bus p, the blocks that p goes
through are � zp

i � zp
i � B � i � 1 �	�
�
�
� � M � L � � z � a � b � c � d � . Since the

ordering of blocks of each bus is always the same in both sequences,
all buses are horizontal buses.

For each pair of buses u and v (u � v), we get the subsequence
pair

�
X)-� Y) � � �

x)1x)2 �
�
� x)M � y)1y)2 �
�
� y)M � , where x)i is a subsequence of
xi, and y)i is a subsequence of yi. Blocks appearing in X) or Y) are
related to either bus u or v. Furthermore,

�
x)i � y)i �

�
i � 1 �
�
�M � can be

only one of the two cases.
(i)
�
x)i � y)i � �

�
xi � yi

� ;
(ii) x)i � y)i.
If 0 J,

�
x)J � y)J � �

�
xJ � yJ

� , then J is unique since there is only
one edge between two nodes u and v in G. At the same time, the
subsequence pair

�
X)-� Y) � involves bus crossing (Case 3) for bus u

and v. Therefore, the bus constraint graph contains two edges
�
u � v �

and
�
v� u � .

On the other hand, if . i �9� 1 �	�
�
�
� � M � L � � , x)i � y)i, the two buses
have no bus ordering constraint and there is no edge between the
two nodes u and v in the constraint graph. Also if x)i � y)i (x)i/y)i can
be empty), then there is no edge between u and v in G either. Thus
we can conclude that Gd is the horizontal bus ordering constraint
graph for the constructed sequence pair. :

Since NDP is NP-Complete, we derive a heuristic method to
remove nodes from a graph so that the residual graph is acyclic.
The method is based on the following lemma.

Lemma 3. Given a directed graph, if for each node, its in-degree
and out-degree are both non-zero, then each node must be incident
on a cycle in the graph.

The proof is easy and we omit it in the paper. The following is
the algorithm.

Algorithm Node Deleting (V , E)
1. for i = 1 to �V �
2. Calculate in-degree and out-degree of nodes in V
3. Find min in-degree minin and min out-degree minout

4. if (minin = 0) or (minout = 0)
5. Remove the corresponding node v from V
6. Remove edges connecting to/from v from E
7. else
8. Find the node v with max degree
9. Insert v into Remove Set
10. Remove v from V and related edges from E
11. endfor
12. return Remove Set

For each iteration, the size of V is reduced by one. If we can
find a node whose in-degree or out-degree is 0, then this node is
treated as a good node. Otherwise, we select the node v with max
degree (in-degree + out-degree) and insert it to the Remove Set,
i.e., v should be discarded in order to break cycles. This algorithm
guarantees that if the graph is acyclic, Remove Set is empty. The
running time is O

� �V � 2 � .
Figure 7 shows an example. Suppose there are 9 buses and the

constraint graph G is Figure 7 (a).We first remove nodes whose in-
degree or out-degree is zero. a, d and e are removed from G as
Figure 7 (b). Then for the rest of the nodes, they must be incident
on a cycle, and we have to delete nodes in order to break cycles.
Since c has the maximum degree, c is deleted and make b and g
free. The result is illustrated as Figure 7 (c). Finally i is deleted to
break the cycle between i and h. Therefore, there are two nodes c
and i in Remove Set. Figure 7 (d) shows the residual acyclic graph
after deleting c and i. Furthermore, based on (d), it is easy to find a
bus ordering consistent with the below-above relationship imposed
by the sequence pair. For instance, the bus ordering (from bottom
to top) could be g, d, f , h, a, b, e.

a
 b

c

f

d

g

e

h

i

b

c

f

g

h

i

(a) (b)

b

f

g

h

i

a
 b

f

d

g

e

h

(c) (d)

Figure 7: Node Deleting Algorithm. (a) An instance of bus ordering
constraint graph G. (b) Nodes whose in-degree or out-degree is zero
are removed from G. (c) Node c is deleted from G in order to break
cycles. (d) The residual acyclic graph of G after deleting c and i.

5. Evaluation Algorithm
The evaluation algorithm is to transform a sequence pair represen-
tation to a BDF solution. However, for some sequence pairs, it is
impossible to fit in all of the buses. For example, if a sequence pair
violates block ordering for a bus, then some buses can not be as-
signed. Therefore, the target of the evaluation algorithm is to find a
floorplan which assigns as many buses as possible. The algorithm
is summarized as follows. Suppose there are n blocks and m buses.

Algorithm Evaluation BDF(Seq, Bus)
1. Feasible Bus Checking Orientation
2. Bus Ordering
3. Modified LCS Computation

In the following, we explain the above three procedures one by one.

70

Feasible Bus Checking Orientation
According to Theorem 1, if the blocks of a bus violate block

ordering in the given sequence pair, the bus cannot be assigned.
Therefore, the first step is to identify these buses and remove them
from the bus set. For each bus, one scan of the sequence pair is
enough to make the judgment. At the same time, if blocks related
to a bus appear in the same order in both sequences, the bus is a
horizontal bus, otherwise, the bus is a vertical one. This step takes
O
�
mn � time.

Bus Ordering
Due to the bus ordering imposed by the given sequence pair,

some buses can not be assigned at the same time as discussed in
section 4. We apply Node Deleting algorithm to further remove
some buses. Meanwhile, since the constraint graph is acyclic, we
sort the horizontal buses from bottom to top (from left to right for
vertical buses) according to the below-above (left-right) relation-
ship. This bus order will be used in the next step. This step takes
O
�
m2 � time.

Modified LCS Computation
The algorithm is based on the engine of computing longest com-

mon subsequence (LCS) presented in [6]. LCS computation calcu-
lates x coordinates and y coordinates separately. And it always pack
blocks from bottom to top (from left to right). In this section, we
only discuss the calculation of y coordinates of blocks with the as-
signment of horizontal buses. The calculation of x coordinates of
blocks and vertical buses can be derived similarly.

For any given horizontal bus � H � t ��� b1 �	�
�
�
� bk ��� , the y coor-
dinates of the k blocks are first calculated with LCS computation.
Then these k blocks are aligned so that the bus can be inserted.
Suppose the height of bi is hi and the y-coordinate of the lower-left
corner of bi is yi. The basic alignment can be performed as follows.

ymax � max � yi � i � 1 � 2 �	�
�
�
� k �
yi � max

�
yi � ymax � t � hi

� . i �;� i � 1 � 2 �	�
�
�
� k � .

B
 C

E
 F

x

y

D

A

G

u

A

B
 C

E

x

y

D

G

u

v

F

(a) (b)

Figure 8: Insert two horizontal buses to the floorplan represented by�
E D A F B C G � A D E B C F G � . (a) One horizontal bus � A � B � C �

is assigned. (b) In order to insert another bus � B � E � G � , blocks A
and D have to move up and this makes the bus � A � B � C � changed,
too.

However, the alignment adjustment for different buses may af-
fect each other. For example, in Figure 8, the given sequence pair is�
E D A F B C G � A D E B C F G � , and two buses u �3� A � B � C � and

v �<� B � E � G � are to be inserted. Suppose bus u is first assigned as
Figure 8 (a). When we want to place bus v, block E has to move up,
which causes blocks A and D to move up too. Furthermore, due to

the change of block A, bus u has to be reassigned. Since LCS com-
putation packs blocks from the bottom up, it is important to process
buses in the same way. Each time, the lowest bus is selected and
assigned so that the bus would not be affected by later processing
of other buses. By calling Bus Ordering procedure, a sorted bus list
can be obtained.

At the same time, when multiple horizontal buses are consid-
ered, we also need to avoid overlaps between horizontal buses.
Therefore, the above basic alignment is not enough.

For example, in Figure 9, two horizontal buses u �<� C � D � and
v �4� B � E � are to be assigned. First, bus u is assigned with yu as the
y-coordinate of its bottom edge. However, according to the basic
alignment calculation, the y-coordinate of bus v’s bottom edge is
also yu. Then bus u and v are overlapped as Figure 9 (a). This is not
allowed in a BDF solution. We call this situation Bus Overlap.

B
 C

F

x

y

D

A

v
u

E

B
 C

F

x

y

D

A

v

u
 E

(a) (b)

Figure 9: Insert two horizontal buses u �3� C � D � and v �$� B � E � to
the floorplan. (a) Two buses overlap due to basic alignment adjust-
ment. (b) The assignment of two buses without overlap.

If two buses have bus ordering constraint (only Case 1 and 2
in Section 4.2 are considered since only one bus can be assigned
in Case 3), the above situation can not happen. This is because in
Case 1 or 2, there must exist a block of one bus which is above a
block of the other bus. Then the two buses cannot overlap. On the
other hand, if two buses have no bus ordering constraint (Case 4 in
Section 4.2), Bus Overlap may happen.

Suppose two horizontal buses u �=� a1 � a2 ���
�
�
� ak � and v �=� b1 � b2 �
�
�
�
� bl � have no bus ordering constraint. Denote the block set Su �
� a1 � a2 �	�
�
�
� ak � , Sv �$� b1 � b2 ���
�
�
� bl � . Still there are three cases.

B

C

y

x

u

v

A

B

y

x

A
 C

E
D

u

v
 C

y

x

A
 E

D
B

u
 v

(Case A) (Case B) (Case C)

Figure 10: (a) Two buses u �>� A � B � and v �?� A � B � C � share
blocks A and B. Bus Overlap may happen. (b) The blocks of
two buses u �@� A � B � C � and v �A� D � E � appear interlaced along
x-axis. Bus Overlap may happen. (c) Two buses u �$� A � B � C � and
v �3� D � E � have no overlaps along x-axis. Bus Overlap is impossi-
ble.

Case A Su B Sv �� φ. Two buses share at least one block.
Bus Overlap may happen, like Figure 10 (Case A) which involves
two buses u �4� A � B � and v �3� A � B � C � .

71

Case B Su B Sv � φ, and the subsequence pair
�
X)-� Y) � is

� �
�
� ai1
�
�
� b j �
�
� aik �
�
�C�	�
�
� ai1 �
�
� b j �
�
� aik �
�
� � . Figure 10 (Case B) shows an
example. In this case, the blocks of two buses appear interlaced
along x-axis. It is likely that Bus Overlap happens.

Case C Su B Sv � φ, and in the subsequence pair
�
X)-� Y) � , all

blocks in Su appear ahead of (behind) blocks in Sv. Figure 10 (Case
C) shows an example. In this case, the two buses do not have over-
lap along x-axis. Therefore, the y-coordinates of the two buses can
be decided independently, i.e., Bus Overlap cannot happen.

Based on the above discussion, we can conclude that only Case
A and B can lead to Bus Overlap. Therefore, in the basic alignment
calculation, we also need to check Case A and B so that no overlaps
between two buses are introduced. This kind of checking can be
incorporated in Bus Ordering procedure, and keep the results in a
table. If Case A or B is detected, the current bus has to move up
until there is no overlap with the buses below.

In summary, after we get the bus list from Bus Ordering pro-
cedure, we apply LCS computation m times (suppose there are m
buses in the bus list), In one iteration, after the positions of blocks
related to bus u are calculated by LCS, we check if bus u has Case A
or B with buses below u and do the move up alignment accordingly.
Once the position of a bus is calculated, the bus is not changed any
more. Therefore, each iteration fixes one bus. The running time
of LCS is O

�
n log logn � [6] where n is the number of blocks. So

Modified LCS Computation is bounded by O
�
mn log logn � m2 � .

6. BDF Algorithm
Most floorplan algorithms based on sequence pair representation
use simulated annealing (SA). In this paper, we also use SA to
search an optimal or near optimal solution to a BDF problem.

Perturbation (Move)
We use the following operations to generate a neighbor sequence

pair in simulated annealing.
Swap is to swap two blocks in either the first sequence or the

second sequence. Swap can be done in constant time.
Rotation is to rotate a block (e.g. exchange the width and height

of a block). Rotation does not cause any changes to the sequence
pair. This operation can be done in constant time.

Cost Function
The target of BDF problem is to minimize the chip area and the

total bus area. At the same time, we hope to insert all of the buses.
Therefore, we define the cost function as follows.

Cost � α D C � β D B � γ D M
where C is the chip area, B is the bus area and M is the number of
unassigned buses, α, β and γ are coefficients and defined by users.

By applying Evaluation BDF Algorithm, the positions of blocks
and buses are all calculated. Therefore, it is easy to get the value of
C, B and M.

7. Soft Block Adjustment
For floorplan, the shapes of some blocks may not be fixed. For ex-
ample, for some blocks, their areas are fixed, but their width/height
ratio can be changed in some range. This kind of blocks are called
soft block. The flexibility of soft block shapes can help us improve
BDF solution quality further. Our strategy is as follows.

After applying BDF algorithm, we get a BDF solution. Based on
this solution, each time, we select a soft block on LCS path which
decides the size of the chip [5, 6]. Reduce the width (height) of
the block a little bit, and apply Modified LCS Computation to get
a new solution. This process is executed repeated.

In order to control iterations, simulated annealing is adopted
again. The perturbation operation is to choose a soft block on LCS
path and change its width or height accordingly. The cost function
is the same as that of BDF algorithm. Figure 11 shows an example.
Figure 11 (a) shows a BDF solution. Blocks B, D and E are on an
LCS path. E is selected and its width is reduced. Figure 11 (b)
illustrates the BDF solution after repacking. Both chip area and bus
area are reduced.

A

C

D

F

E

G

B

y

x

A

C

D

F

E

G

B

y

x

(a) (b)

Figure 11: Soft Block Adjustment. (a) A BDF solution. Block E
is on an LCS path. (b) The new BDF solution after changing the
shape of block E.

8. Experimental Results
Our algorithm was implemented in C++ and tested on workstations
(2.4GHz) with 1G memory. The technique of simulated annealing
is used to search for an optimal or near optimal BDF solution with
a special annealing schedule where a very large number of temper-
atures are used but only a small number of moves are made within
each temperature.

Table 1: Test Set 1
File Block Bus Results Soft-Adjust

time dead time dead
(s) space (s) space

apte 9 5 11 4.11% 12 (+1) 0.72%
xerox 10 6 12 3.88% 13 (+1) 0.95%

hp 11 14 28 5.02% 28 (+0) 0.62%
ami33-1 33 8 61 6.02% 62 (+1) 0.94%
ami33-2 33 18 81 6.10% 86 (+5) 1.27%
ami49-1 49 9 98 5.42% 101 (+3) 0.85%
ami49-2 49 12 278 6.09% 281 (+3) 0.84%
ami49-3 49 15 265 7.40% 268 (+3) 1.09%

We tested on three sets of test files. The first set is derived from
MCNC benchmarks for block placement. We added different num-
bers of buses to the benchmarks. Once we got a BDF solution,
we also applied the soft block adjustment technique to further im-
prove the solution quality. Furthermore, we also made some post-
processing to move buses apart from each other. The test results are

72

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9
10

1112

13

1415

16

1718

19

20

21

22

23

24

25

26

27
28

29

30

31

32
33

3435

36

37

38

39

40

41

42

43

44

45

46

47

48

Figure 12: The result packing of ami49-2 after soft block adjust-
ment. Totally, there are 49 blocks and 12 buses. The buses are
� 0 � 5 � 9 � 12 � 18 � , � 1 � 10 � 21 � 25 � , � 2 � 28 � 33 � , � 3 � 19 � 22 � 26 � 29 � 34 � ,
� 4 � 23 � 27 � , � 5 � 35 � 30 � 6 � , � 32 � 31 � 17 � , � 11 � 14 � 15 � 32 � 33 � ,
� 12 � 8 � 14 � , � 44 � 43 � 7 � , � 0 � 3 � , � 2 � 47 � .

listed in Table 1. As illustration, Figure 12 displays the final pack-
ing result of ami49-2 after soft block adjustment. The second test
set (cad1 and cad2) includes two test files which are derived from
industry designs. To further test our approach, we created a set of
bus grid test files. Each test file includes n2 �

n � 4 �	�
�
�
� 7 � blocks
and 2n buses. All blocks have the same block size (600 E 700) and
each bus goes through n blocks. This kind of problems is quite hard
and the position of one bus heavily affects the assignment of other
buses. Still our approach can find an optimal solution within a short
time. Figure 13 illustrates an optimal solution to the test file grid7.
In this solution, not only the chip area is minimized, but also the
total bus area is minimized.

Table 2: Test Sets 2 & 3
File Block Bus time (s) deadspace
cad1 40 13 209 4.40%
cad2 57 16 191 5.16%

grid4 16 8 1 0%
grid5 25 10 23 0%
grid6 36 12 103 0%
grid7 49 14 150 0%

9. Conclusion
In this paper, we consider the bus-driven floorplanning (BDF) prob-
lem. We first derive necessary conditions for feasible buses. Then
based on the analysis of the relationship between bus ordering and
sequence pair representation, we develop an efficient evaluation al-
gorithm which transforms a sequence pair representation to a BDF
solution. Simulated annealing is adopted to search for an optimal or

 0 1 2 3 4 5 6

 7 8 9 10 1112 13

1415 16 17 1819 20

2122 23 24 2526 27

2829 30 31 3233 34

3536 37 38 3940 41

4243 44 45 4647 48

Figure 13: An optimal packing of grid7. There are 49
blocks and 14 buses. The buses are � 0 � 1 � 2 � 3 � 4 � 5 � 6 � ,
� 7 � 8 � 9 � 10 � 11 � 12 � 13 � , � 14 � 15 � 16 � 17 � 18 � 19 � 20 � , � 21 � 22 � 23 � 24 �
25 � 26 � 27 � , � 28 � 29 � 30 � 31 � 32 � 33 � 34 � , � 35 � 36 � 37 � 38 � 39 � 40 � 41 � ,
� 42 � 43 � 44 � 45 � 46 � 47 � 48 � , � 0 � 7 � 14 � 21 � 28 � 35 � 42 � , � 1 � 8 � 15 � 22 �
29 � 36 � 43 � , � 2 � 9 � 16 � 23 � 30 � 37 � 44 � , � 3 � 10 � 17 � 24 � 31 � 38 � 45 � ,
� 4 � 11 � 18 � 25 � 32 � 39 � 46 � , � 5 � 12 � 19 � 26 � 33 � 40 � 47 � , � 6 � 13 � 20 � 27 �
34 � 41 � 48 � .

near optimal BDF solution. We also propose a simple but efficient
way to handle soft blocks. Experimental results demonstrate that
our approach is very efficient and effective.

10. References
[1] R. Liu, X. Hong, S. Dong Y. Cai and J. Gu. “VLSI/PCB placement

with predefined coordinate alignment constraint based on sequence
pair”, Proceedings. 4th International Conference on ASIC, pp. 167-
170, 2001.

[2] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. “VLSI module
placement based on rectangle-packing by the sequence-pair”, IEEE
Transaction on CAD, vol. 15:12, pp. 1518-1524, 1996.

[3] F. Rafiq, M. Chrzanowska-Jeske, H. H. Yang, N. Sherwani. “Bus-
based integrated floorplanning” IEEE International Symposium on
Circuits and Systems, pp. 875 -878, 2002.

[4] F. Rafiq, M. Chrzanowska-Jeske, H. H. Yang, N. Sherwani. “Inte-
grated floorplanning with buffer/channel insertion for bus-based mi-
croprocessor designs”, ISPD-02, pp. 56-61, 2002.

[5] X. Tang, R. Tian and D. F. Wong. “Fast evaluation of sequence pair
in block placement by longest common subsequence computation”,
DATE-00, pp. 106-111, 2000.

[6] X. Tang and D. F. Wong. “FAST-SP: A fast algorithm for block place-
ment based sequence pair”, ASPDAC-01, pp. 521-526, 2001.

[7] X. Tang and D. F. Wong. “Floorplanning with alignment and perfor-
mance constraints”, DAC-02, pp. 848-853, Jun 2002.

[8] F. Y. Young, C. N. Chu and M. L. Ho. “A unified method to handle
different kinds of placement constraints in floorplan design”, Proceed-
ings of the 15th International Conference on VLSI Design, Bangalore,
India, pp. 661-667, Jan 2002.

73

	Main Page
	ICCAD03
	Front Matter
	Table of Contents
	Author Index

