
Memory Layout Techniques for Variables Utilizing Efficient
DRAM Access Modes in Embedded System Design

Yoonseo Choi and Taewhan Kim
Department of Electrical Engineering & Computer Science

and Advanced Information Technology Research Center(AITrc)
Korea Advanced Institute of Science and Technology, KOREA

yschoi@jupiter.kaist.ac.kr tkim@cs.kaist.ac.kr

Abstract – The delay of memory access is one of the major bot-
tlenecks in embedded systems’ performance. In software compi-
lation, it is known that there is high variations in memory access
delay depending on the ways of storing/retrieving the variables in
code to/from the memories. In this paper, we propose an effec-
tive storage assignment technique for variables to maximize the
use of memory bandwidth. Specifically, we study the problem of
DRAM memory layout for storing the non-array variables in code
to achieve a maximum utilization of page and/or burst modes for
the memory accesses. The contributions of our work are, for each
of page and burst modes: (1) We prove that the problem is NP-hard;
(2) We propose an exact formulation of the problem and efficient
memory layout algorithms, called Solve-MLP for the page mode
and Solve-MLB for the burst mode; From experiments with a set
of benchmark programs, we confirm that our proposed techniques
use on average 20.0% and 9.9% more page accesses and 54.0%
and 86.6% more burst accesses than those by OFU (the order of
first use) and the technique in [1, 2], respectively.

Categories and Subject Descriptors
B.3 [Memory structures]: [Design styles]

General Terms
Algorithms, Performance, Embedded System

Keywords
Memory Layout, Page/Burst Modes, Storage Assignment

1. INTRODUCTION
In embedded systems, memory is one of the major sources of per-
formance bottleneck and power consumption [3]. A large number
of techniques to reduce memory access latency and increase mem-
ory bandwidth in the execution of code have been proposed. In
compiler and computer architecture literature, for example, cache
organization, cache block alignment, prefetching of predicted data
from memory and software pipelining are considered [4, 5, 6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

In high-level/system synthesis community, alleviating performance
bottleneck due to memory access is one of the major research top-
ics; Wuytack et al. [7] addressed the problem of flow graph bal-
ancing to minimize the required memory bandwidth. They added
ordering constraints to the flow graph to minimize the number of
memory ports in system-level design. Catthoor et al. [8] addressed
the customization of memory architecture, including memory al-
location, data packing into memories and memory port sharing in
embedded multimedia system design.

It should be noted that most of modern DRAMs used in em-
bedded system design support efficient memory access modes. In
particular, the page and burst access modes are extensively sup-
ported in DRAMs [9, 10]. In general, the latency of random access
is much higher than that of page/burst access. Further, memory
operates in lower power per bit in page/burst mode than in ran-
dom access mode. For example, IBM’s Cu-11 Embedded DRAM
[9] macro supports random access mode of 10ns and page mode
access of 5ns at worst. It has active current of 60mA/Mb roughly
in random cycle and 13mA/Mb in page cycle. Consequently, a full
exploitation of these memory access modes is very necessary to al-
leviate the performance bottleneck caused by the delay of memory
accesses. Panda et al. [1] modeled a number of realistic page ac-
cess modes in DRAMs and proposed an algorithm for arranging
non-array variables to memory and organizing array variables via
loop transformation techniques in high level synthesis to utilize the
access modes. The formulation of the problem of arranging non-
array variables in a memory is analogous to that in [2], which was
originally used to reduce the number of cache misses. Though the
formulation looks reasonable, it is, in a strict sense, not an exact for-
mulation. Khare et al. [11] extended the work in [1] to support the
burst mode in a dual-memory architecture, in which they focused
mainly on an efficient interleaving of memory accesses. Grun, Dutt
and Nicolau [12] proposed an approach that allows compiler to ex-
ploit detailed timing information of the memories. They showed a
further optimization (using page and burst modes) is possible when
an accurate timing of memory accesses to multiple memories is
extracted. They also presented an approach [13] of extracting, ana-
lyzing and clustering the most active memory access patterns in an
application and customizing memory architecture. Ayukawa et al.
[14] proposed an access sequence control scheme for relieving the
page-miss penalty in random access mode. They introduced an
embedded DRAM macro attached with a special hardware logic
for access sequence control. In this paper, to complement the prior
work [1, 2, 11, 12, 13, 14], we propose a new approach to the prob-
lem of arranging non-array variables in code to DRAM so that the
efficient page and/or burst modes are maximally utilized.

881

50.3

2. PRELIMINARIES AND MOTIVATING EX-
AMPLE

DEFINITION 2.1. For a sequence of variable references a1,a2,
· · · ,ai−1,ai · · · , and an assignment of the variables to the mem-
ory, let us denote v(ai) the variable referenced by ai. Further, let
fpage(v(ai)) and faddr(v(ai)) be the page and relative location of
the memory at which variable v(ai) is located, respectively.
• When normal mode and page mode are available,
the access of ai is called a page access if and only if

fpage(v(ai)) = fpage(v(ai−1)).
• When normal mode and burst mode are available,
the access of ai is called a burst access1 if and only if

fpage(v(ai)) = fpage(v(ai−1)) and
faddr(v(ai)) = faddr(v(ai−1))+1.

For a sequence of k memory references, if it is implemented with
normal mode only, k row decoding, k column decoding and k precharge
stages are needed.2 However, if it is implemented with both nor-
mal and page modes, the best solution is to use one row decoding,
k column decoding (one for initial access, k− 1 for page access),
and one precharge stages. In terms of access delay, the page and
burst access delays are usually much shorter than the initial access
delay. Consequently, applying as many page accesses as possible
to a sequence of memory accesses is a key to reduce the overall
memory access latency. Further, it is also true that an aggressive
use of burst accesses rather than normal mode accesses definitely
reduces the memory access delay.

a c a c e b d a a e d f
N P P P N N N N P N P P

page page

a b c d e f a c e b d f

(a) A memory layout and its
corresponding sequences of access

Delay(N) = 5cycles,
Delay(P) = Delay(B) = 1cycle

a c a c e b d a a e d f
N N N N N N N N N N N N

Using burst mode
#burst_access = 0,
latency = 12x5 = 60cycles

Using page mode
#page_access = 6,
latency = 6x5+6x1=36cycles

a c a c e b d a a e d f
N P P P P N P N P P N P

Using page mode
#page_access = 8,
latency = 4x5+8x1=28cycles

a c a c e b d a a e d f
N B N B B N B N N N N B

Using burst mode
#burst_access = 5,
latency = 7x5+5x1 =40cycles

(b) Another memory layout and its
 corresponding sequences of access

page size = 3

Delay(N) = 5cycles,
Delay(P) = Delay(B) = 1cycle

Figure 1: An example illustrating the effects of memory layout on the
number of page/burst accesses.

One of the most effective ways to reduce the memory access la-
tency using page or burst mode is to find the (relative) placement
of variables in memory (i.e., memory layout for variables) which
offers the maximum number of page/burst accesses. Figure 1 illus-
trates how different memory layouts affect the memory access la-
tency. The top of Figure 1(a) shows a memory layout for a sequence
of variable accesses in a program segment where variables a, b and
c are in the first page, and d, e and f are in the second page. The
sequence of normal and page accesses corresponding to the layout

1There are a number of techniques for implementing burst modes.
Our definition is an abstraction of them.
2The buffer used in row decoding stage will contain a set of m
words where the value of m is memory-dependent. The m words in
each row of memory are collectively called a page of size m.

is shown in the upper box of Figure 1(a). It consists of 6 page ac-
cesses (i.e., 6 column-decodes) and 6 normal mode accesses (i.e., 6
row-decodes+column-decodes+precharge). On the other hand, the
upper box of Figure 1(b) shows the sequence of normal and page
accesses corresponding to another layout shown in the top of Fig-
ure 1(b). Note that the number of page accesses used is two more
than the case of Figure 1(a), resulting in 22% reduction (i.e., from
36 cycles to 28 cycles) in memory access latency.

The lower boxes of Figures 1(a) and (b) show the sequences of
memory access modes used for the corresponding memory layouts
when the burst and normal modes are available, respectively. This
also clearly reveals that the arrangements of variables in memory
drastically affect the length of memory access latency. Thus, the
optimization problem we want to solve is to find an efficient ar-
rangement of variables to memory for a sequence of variable ac-
cesses so that the page/burst accesses are extensively utilized.

3. MEMORY LAYOUT UTILIZING PAGE
MODE

3.1 The Problem Formulation
The optimization problem is, given a sequence of variable accesses,
to find a memory layout with maximum number of page accesses
(e.g., ibm Cu-11 Embedded DRAM [9]). We call the problem MLP
(Memory Layout with Page mode). An instance of MLP is charac-
terized by (S, V , m) where S is a variable sequence to be accessed,
V is the set of variables in S, and m is the page size, partitioning
the variables in V into disjoint groups, each of which has m or less
than m variables.

PROBLEM 3.1. decision-MLP: For an MLP instance with (S,V ,m)
and k, where m ≥ 3, is there a memory layout, L , in which the
number of page accesses for S is greater than or equal to k? (k
is a natural number, indicating the number of page accesses in this
case.)

DEFINITION 3.1. The access graph of S is a multigraph G(V,E)
where node set V is the set of variables in S and there are n edges
between two nodes vi and v j if and only if vi and v j are adjacent to
each other in S exactly n times.

Figure 2(a) shows the access graph as in Definition 3.1 for a se-
quence of variable accesses. For example, the access graph has
three edges between nodes a and c since variables a and c are ad-
jacent to each other 3 times in S. Figure 2(c) shows an alternative
representation of the access graph in a simple graph form with edge
weights.

f
d
b
e
c
a

(b)

S: a c a c e b d a a e d f

a c e

b d f

(a) (c)

a c e

b d f

3

1

11

1
1 1

Figure 2: A sequence of variable accesses and (a),(c) its access graph
representations; (b) (a)’s implied memory layout.

A graph partitioning, Πm
G(V,E), on multigraph G(V,E), partitions

V into t disjoint subsets V1,V2, · · ·Vt , each containing at most m
vertices. The gain of Πm

G(V,E) is defined:

g(Πm
G(V,E)) = ∑

(vi ,v j)∈E, vi ,v j∈Vl ,l=1,···,t
w(vi,v j) (1)

882

where w(vi,v j) represents the number of edges between vi and v j
in G.

An optimal graph partitioning of G(V,E) is defined to find Πm
G(V,E)

that maximizes the quantity of g(·). We claim that the partitioning
problem of an access graph is NP-complete.

PROBLEM 3.2. decision-GP: For a multigraph G(V,E) and k,
is there a Πm

G(V,E) (m ≥ 3) such that g(Πm
G(V,E)) ≥ k?

PROBLEM 3.3. decision-AccGP: For an access graph G(V,E)
and k , is there a Πm

G(V,E) (m ≥ 3) such that g(Πm
G(V,E)) ≥ k?

Note that decision-GP is NP-complete since the partitioning prob-
lem for graphs without multiple edges is known to be NP-complete
[15].

THEOREM 3.1. decision-AccGP is NP-complete. (We showed
that decision-GP is reducible to decision-AccGP in polynomial time.)

THEOREM 3.2. decision-MLP is NP-complete. (We showed that
decision-AccGP is polynomial time reducible to decision-MLP.)

THEOREM 3.3. For an instance (S,V ,m) of MLP problem, every
memory layout L implied by an optimal Πm

G of the corresponding
instance G(V,E) of problem AccGP is optimal. (Note that the con-
struction procedure of the edges in E is the one we used in proof of
the previous theorem. AccGP is the optimization version.)

For example, Figure 2(a) shows an optimal graph partitioning
and Figure 2 (b) shows its implied memory layout, leading to 8
page accesses that is the same as the value of the gain of the par-
titioning. The ultimate goal we want to minimize is the access la-
tency3 of S in (S,V ,m) of MLP. The following theorem indicates
that finding a maximum gain in AccGP, which is equivalent to find-
ing a maximum number of pages accesses in MLP, also leads to
finding a minimum value of access latency in MLP.

THEOREM 3.4. The access latency in (S,V ,m) of MLP is min-
imized by the memory layout implied by the optimal graph parti-
tioning of the corresponding instance of AccGP.

Note that there is a work [1, 2] which addressed the problem of
graph partitioning to find a minimum access latency. However, its
graph derivation is different from ours in that the weight assigned
to edge (u,v) by [1, 2] represents, rather than the number of con-
secutive accesses of (u,v) or (v,u) in S, the total number of pairs
of accesses of u and v in S in which the distance between them is
within page size m. In their graph, if the access interval of two vari-
ables is close enough to be within the page size, those accesses are
considered as having a high possibility of execution in page mode.
However, this is not alway true because their representation has a
tendency of overestimating the number of page accesses. (See Fig-
ure 3)

3.2 The Proposed Algorithm
Due to the NP-completeness of the memory layout problem, we
develop an efficient (greedy) heuristic, called Solve-MLP, based
on a node clustering procedure, which is performed on the edge
weighted (simple) access graph for S (e.g., Figure 2(c)).4

3The access latency of S is the sum of latencies of all access stages
(i.e., row-decode, column-decode, precharge) used in memory ac-
cess for variables in S.
4Note that when the access graph in a multigraph form is trans-
formed into a simple access graph, the self-loops are simply deleted
since the weight of self loops is always included in the gain regard-
less of the resulting partition.

by existing approaches

S = a c a c e b d a a e d f

m = 3

edge weight assigned

1(1)3(3)

1(1)
1(1)1(1)

1(1)

3(1)

3(1)

edge weigjt assigned
by our approach

(a) Optimal graph partitioning for the access graph
 by existing approaches: #page_accesses = 4

by our approach

(1)

(1)

(1)

(1)

(1)

edge weight assigned

1(0)

1(1) (1)

(1)

(3)

b

c e

fd

a

b d

c e

f

a

(b) Optimal graph partitioning for the access graph
 by our approaches: #page_accesses = 8

2(1) (1)

Figure 3: Examples of graph formulations and solutions according to
the existing approaches [1,2] and our proposed approach.

The inputs to the proposed algorithm are the edge weighted access
graph G(V,E,W) and page size m. The algorithm is an iterative
process. At each iteration, a group of nodes whose size is m is ex-
tracted from the access graph. This process iterates for the remain-
ing nodes until all the nodes are extracted. Each group extracted
represents a distinct page, and the variables corresponding to the
nodes in the same group indicate the variables in the same page.
Each iteration of the algorithm starts from a seed which is the edge
with the largest edge weight. Let (u,v) be the edge selected, and
set P = {u,v}. We iteratively expand set P by adding nodes, one at
a time until |P| = m or no nodes are left. The selection of node to
be included at each time is determined based on the following two
measurements: For each node x not in P,

attract in(P,x) = ∑
e=(x,y)∈E and y∈P

w(e) (2)

attract out(P,x) = ∑
e=(x,y)∈E and y/∈P

w(e) (3)

We select the node with the largest value of attract in(P, ·). If
there are ties and |P|= m−1, we choose the one with the smallest
value of attract out(P, ·) because the value of attract out(P, ·) di-
rectly contributes to the number of normal accesses which require a
relatively long access delay. However, when |P|< m−1 we choose
a node among the ties in a random manner because there is no clear
clue at this point. Once a node is selected, it is added to P and
the node is deleted from the access graph G. The grouping process
then repeats for the nodes in G. Note that Solve-MLP does not re-
sult in increased page requirement since by Solve-MLP at most one
page has less thatn m variables in it, and all other pages will have
exactly m variables, where m is determined by the given memory
architecture.

Figure 4 shows the steps of clustering nodes by Solve-MLP.
First, we select the edge (a,c) because it has the largest edge weight
and set P = {a,c} as shown in Figure 4(a). Then, we expand P by
adding node e because its attract in(P, ·) is one of the largest, as
indicated in Figure 4(b). Now, we complete the grouping of size 4
by including one more node. Since |P| = 3 (m = 3) and there are
two nodes d and g whose attract in(P, ·) values are the largest. we
choose g because its attract out(P, ·) value is smaller than that of
d, as shown in Figure 4(c). Consequently, the variables to be in the
same page are a,c,e and g. We repeat the grouping process for the
updated access graph in Figure 4(d).

883

g

g

g

 P = {a, c, e},

 attract_in(P, f) = 0,

 attract_in(P, b) = 2,

 attract_in(P, g) = 4,

 attract_in(P, d) = 4, attract_out(P, d) = 4,

 attract_out(P, g) = 0

page size m = 4

2
a c e

b d f

2
6

2 2
2 4

22

 P = { },
 The largest weight: w(a,c)=6

(a)

2
a c e

b d f

2
6

2 2
2 4

22

g

(d)
Subgraph for the next grouping

 P = {a, c, e, g}

2
a c e

b d f

2
6

2 2
2 4

22

(b)

 attract_in(P, b) = 0,
 P = {a, c},

 attract_in(P, f) = 0,

 attract_in(P, d) = 2,
 attract_in(P, e) = 4,

 attract_in(P, g) = 4
2

a c e

b d f

2
6

2 2
2 4

22

(c)

Figure 4: An example illustrating the steps of grouping variables by
Solve-MLP.

4. MEMORY LAYOUT UTILIZING BURST
MODE

4.1 The Problem Formulation
In this section we consider DRAMs which allow burst mode as well
as normal mode (e.g., [10]). The memory layout problem is then to
maximize the number of burst accesses. We call the problem MLB
(Memory Layout with Burst mode). We first claim that decision-
MLB is NP-complete.

PROBLEM 4.1. decision-MLB: For an MLB instance with (S,V ,m)
and k, is there a memory layout, L , in which the number of burst
accesses for S is greater than or equal to k?

DEFINITION 4.1. The directed access graph of S is a directed
graph G(V,A) where V is the set of variables in S and there are
n arcs from vi to v j if and only if there are exactly n consecutive
references of variables vi,v j in S, denoting w〈vi,v j〉=n.

Let S = a1,a2, · · ·ai−1,ai, · · ·aN be a sequence of variable refer-
ences. Recall that ai in a memory layout L is a burst access if
fpage(v(ai)) = fpage(v(ai−1)) and faddr(v(ai)) = faddr(v(ai−1))+
1. Thus, if there are n consecutive accesses of variables v(ai−1),v(ai)
(i.e., v(ai−1) is accessed immediatedly before v(ai) n times) , and
v(ai−1) and v(ai) are located consecutively in the same page, the n
accesses of the v(ai) will be the burst accesses. (See Figure 5(a) for
an example of access sequence and its directed access graph.)

DEFINITION 4.2. A path cover of G(V,A) is a set of node-disjoint
directed paths which collectively cover all the nodes in V . A path
cover of size m is a path cover Cm

G(V,A) in which every (node-disjoint)

path in Cm
G(V,A) covers at most m nodes.

We define a gain of path cover Cm
G(V,A):

g(Cm
G(V,A)) = ∑

〈vi,v j〉∈A, vi∈p, v j∈p, p∈Cm
G(V,A)

w〈vi, v j〉 (4)

DEFINITION 4.3. A maximum weighted path cover (MWPC) of
size m in G(V,A) is a path cover Cm

G(V,A) that maximizes the quantity
in Eq.(4).

The memory layout L implied by a path cover C m
G is the one that

satisfies: Each path in Cm
G is a distinct page in L and the sequence of

variables on the path is the relative placement order of the variables
in the page. For example, Figure 5(b) is the memory layout implied
by the path cover in Figure 5(a) when m = 3 where the heavy arrows
indicate the path cover.

PROBLEM 4.2. decision-MWPC: For a directed access graph
G(V,A) and k, is there a path cover Cm

G(V,A), in which its g(·) is

greater than or equal to k?

THEOREM 4.1. decision-MWPC is NP-complete. (We showed
that MWPC is polynomial time reducible from the Hamiltonian
path problem.)

THEOREM 4.2. decision-MLB is NP-complete. (We showed that
decision-MWPC is polynomial time reducible to decision-MLB.)

From the proof of the previous theorem, we derive the following.

THEOREM 4.3. The memory layout implied by an MWPC is op-
timal.

a c e

b fd

(a) (b) (c)

1
a
c
e
b
d
f

a

f

c e

b d
1 1

111

1
2

1

S: a c a c e b d a a e d f

Figure 5: (a) A path cover; (b) The memory layout implied by the
path cover in (a); (c) The access graph in a simplified weighted graph
form for (a).

For example, Figure 5(a) shows an optimal path cover when
m=3 and Figure 5(b) shows the memory layout implied by the
path cover. The memory layout leads to 5 burst accesses, which
is w(a,c)+w(c,e)+w(b,d)+w(d, f) = 5.

4.2 The Proposed Algorithm
Due to the NP-completeness of the problem, we propose an effi-
cient heuristic algorithm, called Solve-MLB, that is similar to the
Kruskal’s maximum spanning tree algorithm. The inputs to the
proposed algorithm are the edge weighted directed access graph
G(V,A,W) (e.g., Figure 5(c))5 and page size m. The algorithm is
greedy in that at each step it selects the arc with the largest weight,
satisfying (a) it does not create a cycle, (b) it does not increase the
in- or out- degree of node to more than one, and (c) it does not make
any path length in terms of the number of nodes to be greater than
m. If there are more than one arc that satisfy the conditions (a), (b)
and (c), for each 〈u,v〉 of the arcs we compute

attract out burst(C,〈u,v〉) = ∑
∀〈x,y〉 o f types 1 and 2

w〈x,y〉 (5)

where the arc types are illustrated in Figure 6. Note that node b in
type 1 arc is not in the current path cover whereas node c in type
2 arc is in the current path cover. The arcs of types 1 and 2 with
respect to candidate arc 〈u,v〉 are the ones that should be removed

5Note that when the directed access graph in multigraph form is
transformed into a simple directed access graph, the self-loops are
simply deleted because the removals have nothing to do with the
path cover problem of maximizing g(Cm

G) in Eq.(4).

884

for further consideration if 〈u,v〉 were selected to be an element of
path cover due to path and/or length violations. We select the arc
among ties with the least value of attract out burst(·).

u v

c c

m (page size) = 4

: arcs not included in path cover due to inclusion of current arc
: arcs currently considered for inclusion to path cover
: arcs on the existing path cover

vu
b

b

cc

u v

type 2: length violatingtype 1: path violating

m (page size) = 4

Figure 6: Arc types used to break the ties in Solve-MLB.

3

a

f

c e

b d
1 1

21

1 12
1

not included
in any path

C={{e,a}}
w<c,e> = 2, attract_out_burst(C,<c,e>) = 4
w<a,d> = 2, attract_out_burst(C,<a,d>) = 7

a

f

c e

b d
1 1

21

1 12
1

3

C = {{c,e,a}}

(c)

w<b,d> = 1, attract_out_burst(C,<b,d>) = 1
w<d,f> = 1, attract_out_burst(C,<d,f>) = 1
w<d,b> = 1, attract_out_burst(C,<d,b>) = 2

3

a

f

c e

b d
1 1

21

1 12
1

The largest weight: w<d,f> = 1
C = {{c,e,a},{b,d}},

Finally, C={{c,e,a},{b,d,f}}

(d)

m = 3
3

a

f

c e

b d
1 1

21

1 12
1

C={ }
The largest weight: w<e,a>=3

(a) (b)

Figure 7: An example illustrating the steps of finding a path cover by
Solve-MLB.

Figure 7 shows the steps of finding path cover by Solve-MLP.
First, we select the arc 〈e,a〉 because it has the largest arc weight
and set C = {e,a} as shown in Figure 7(a). Then, we collect the
arcs with the next largest weight. Those arcs are 〈c,e〉 and 〈a,d〉.
Among them we select 〈c,e〉 and add it to path cover C because the
value of its attract out burst(C, ·) is smaller, as indicated in Fig-
ure 7(b). Similarly, in the next iteration we include arc 〈b,d〉 to
C as shown in Figure 7(c). Finally, there remains only one candi-
date arc 〈d, f 〉, and the arc is added to C as shown in Figure 7(d),
resulting the final path cover being {c → e → a, b → d → f}.

5. EXPERIMENTAL RESULTS

We conducted a set of experiments to check the effectiveness of the
proposed memory layout optimization algorithms Solve-MLP and
Solv-MLB. Our algorithm was implemented in C++ and executed
on a Pentium-3 500MHz Linux machine. We tested our algorithm
on a set of benchmark programs in [16, 17, 18], and then compared
our results with that produced by the OFU (the order of first use)
variable assignment and the CGB (the closeness-graph-based) al-
gorithm [1, 2]. OFU is a naive approach which places variables to
memory in the order as they apear in the code, and CGB algorithm
clusters variables into pages based on the degree of ‘closeness’ be-
tween nodes (variables) in a graph. Note that the edge weight for-

mulation in the closeness-graph model is totally different with that
of our access graph models (See Figure 3).

• Memory optimization for maximizing DRAM’s page accesses:
Table 1 summarizes the number of page accesses used by OFU,
CGB and Solve-MLP with various page sizes. |V | and |S| in the first
column of the table represent the number of variables and the ac-
cess sequence length, respectively. BIQUAD and FIR are taken from
DSPstone suite [16]. COMP and ELLIP are taken from [17]. GAU-
LEG, GAUHER, GAUJAC, CHEBEV and LMS are taken from [18].
The entries marked with ‘-’ indicate that a single page contains all
the variables of the corresponding design. In summary, the average
improvements by Solve-MLP over OFU and CGB [1, 2] are 20.0%
and 9.9%, respectively.

• Memory optimization for maximizing DRAM’s burst accesses:
Table 2 summarizes the number of burst accesses used by OFU,
CGB and Solve-MLB with various page sizes. The average im-
provements by Solve-MLB over OFU and CGB are 54.0% and
86.6%, respectively. The large reduction numbers cleraly indicate
that Solve-MLB is performing well in maximizing the number of
burst accesses.

• Checking the reductions on total memory access latency and
energy consumption: Figure 8 graphically shows how much the
total memory access latency and energy consumption are actually
saved by our Solve-MLP over the conventional methods. We used
the access figures in IBM Cu-11 Embedded DRAM [9] macro as
reference in the experiments, in which a random (i.e., normal) ac-
cess cycle is 12ns at best and a page access is 4ns at best. In addi-
tion, under the supply voltage of 1.5V an active current is 59.19mA
on average for a random access, and 11.21mA for a page access.

10,20,4 15,20,6 40,50,16
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

50,100,16 100,200,24 100,200,67 10,20,4 15,20,6 40,50,16
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

50,100,16 100,200,24 100,200,67

OFU
CGB [1,2]
solve−MLP

OFU
CGB [1,2]
solve−MLP

20

40

0

80

60

120

100

140

|V|,|S|,m

avg. gain vs. OFU = 21 %
avg. gain vs. CGB [1,2] = 31 %

0

1200

1400

800

1000

200

400

600

1600

1800

|V|,|S|,m

L
atency (ns) avg. gain vs. CGB [1,2] = 13 %

avg. gain vs. OFU = 11 %

E
nergy (nJ)

Figure 8: The comparisons on total DRAM access energy consump-
tion and latencies.

6. CONCLUSIONS

In this paper, we proposed a set of comprehensive solutions to the
problems of storage assignment for variables to achieve a full uti-
lization of two efficient DRAM access modes: page mode and burst
mode. Since memory access is one of the major bottlenecks in
embedded systems’ performance, the proposed techniques can be
effectively used in DRAM-access-intensive embedded system ap-
plications. The contributions are, for each of page and burst modes:
(1) We showed that the problem is NP-hard; (2) We propose direct
and exact formulation of the problem and efficient memory layout
algorithms, called Solve-MLP for the page mode and Solve-MLB
for the burst mode; From a set of experiments with benchmark ex-
amples, it was shown that the proposed techniques used on average
9.9%-20.0% more page accesses and 54.0%-86.6% more burst ac-
cesses over the existing techniques.

885

Table 1: The numbers of page accesses used by OFU, CGB[1,2] and Solve-MLP.

#page accesses (OFU / CGB[1, 2] / Solve-MLP) m: page size gain of Solve-MLP (%)
design (|V |/|S|) m = 3 m =4 m =6 m =8 m =10 m =12 m =16 over OFU over CGB

BIQUAD(10 / 38) 18/19/19 19/23/23 22/27/29 24/33/33 - - - 24.0 1.9
CHEBEV(12 / 33) 14/19/19 15/21/23 22/24/24 24/20/26 28/28/26 - - 19.9 6.5

COMP(10 / 18) 6/8/8 7/7/9 12/12/12 14/14/14 - - - 15.5 7.1
ELLIP (45 / 100) 19/39/42 21/37/45 34/39/52 38/46/61 48/46/63 54/52/68 58/65/76 62.4 25.7

FIR(5 / 2) 10/10/14 15/15/15 - - - - - 20.0 20.0
GAUHER(11 / 59) 31/38/38 40/43/43 42/44/48 46/48/48 - - - 12.2 2.3
GAUJAC(23 / 148) 56/67/68 63/71/80 84/81/95 104/87/106 107/107/115 117/112/116 125/125/128 10.4 9.5
GAULEG(16 / 47) 20/27/26 26/25/34 31/31/34 36/36/41 36/42/43 43/38/44 17.7 12.3

LMS(8 / 30) 19/17/19 20/19/19 25/25/25 - - - - -1.7 3.9

avg. gain 20.0 9.9

Table 2: The numbers of burst accesses used by OFU, CGB[1,2] and Solve-MLB.

#burst accesses (OFU / CGB[1, 2] / Solve-MLB) m: page size gain of Solve-MLB (%)
design (|V |/|S|) m = 3 m =4 m =6 m =8 m =10 m =12 m= 14 m =16 over OFU over CGB

BIQUAD (10 / 38) 8/9/9 10/10/10 10/6/11 11/6/11 11/6/12 - - - 6.3 53.3
CHEBEV (12 / 33) 7/7/10 9/9/10 10/6/11 10/6/11 11/6/12 11/6/12 - - 15.4 70.1

COMP (10 / 18) 5/5/6 5/3/7 6/5/7 6/4/8 6/3/8 - - - 28.7 92.0
ELLIP (45 / 100) 9/13/24 8/11/29 11/13/30 10/4/33 11/8/33 11/10/33 10/13/34 11/7/34 210.1 274.2

FIR (5 / 20) 5/5/6 5/5/8 - - - - - - 40.0 40
GAUHER (11 / 59) 8/12/13 11/13/16 11/14/16 12/7/17 12/8/17 - - - 47.3 60.2
GAUJAC (23 / 148) 13/25/25 15/26/29 17/28/31 17/24/34 17/27/34 15/20/34 17/19/34 - 92.0 34.1
GAULEG (16 / 47) 9/13/13 13/11/15 14/8/17 14/6/17 12/11/18 15/13/18 14/13/18 15/9/18 27.7 71.6

LMS (8 / 30) 7/4/8 6/5/8 8/4/9 8/6/9 - - - - 18.2 83.8

avg. gain 54.0 86.6

Acknowledgment : This work was supported by the Korea Sci-
ence and Engineering Foundation (KOSEF) through the Advanced
Information Technology Research Center(AITrc).
We would like to thank HS. Kim for his constructive discussion and
comments on this work.

7. REFERENCES

[1] P. R. Panda et al., “Exploiting Off-Chip Memory Access
Modes in High-Level Synthesis,” ICCAD, 1997.

[2] P. R. Panda et al., “Memory Data Organization for Improved
Cache Performance in Embedded Processor Applications,”
ACM TODAES, 1997.

[3] N. D. Dutt, “Memory Organization and Exploration for
Embedded Systems-on-Silicon,” Inter. Conf. on VLSI and
CAD, 1997.

[4] T. Mowry et al., “Design and Evaluation of a Compiler
Algorithm for Prefetching,” ASPLOS, 1992.

[5] M. S. Lam, “Software Pipelining: An Effective Scheduling
Technique for VLIW Machines,” PLDI, 1988.

[6] A. W. Appel, Modern Complier Implementation in C,
Cambridge, 1998.

[7] S. Wuytack et al., “Flow Graph Balancing for Minimizing
the Required Memory Bandwidth,” ISSS, 1996.

[8] F. Catthoor et al., Custom Memory Management
Methodology, Kluwer Academic Publisher, 1998.

[9] IBM, “IBM Cu-11 Embedded DRAM Macro,”
http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/
4CBB96F927E2D6D287256B98004E1D98/
$file/Cu11 embedded DRAM.10.pdf, 2002.

[10] Fujitsu, “CS70DL Embedded DRAM,”
http://www.fme.fujitsu.com/
products/asic/pdf/CS70DLFS.pdf, 1999.

[11] A. Khare et al., “High-Level Synthesis with Synchronous
and RAMBUS DRAMs,” SASIMI, 1998.

[12] P. Grun et al., “Memory Aware Compilation Through
Accurate Timing Extraction,” DAC, 2000.

[13] P. Grun et al., “APEX: Access Pattern Based Memory
Architecture Exploration,” ISSS, 2001.

[14] K. Ayukawa et al., “An Access Sequence Control Scheme to
Enhance Random-Access Performance of Embedded
DRAMs,” IEEE Journal of Solid- State Circuits, 1998.

[15] M. R. Garey and D. S. Johnson, Computers and
Intractability, A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company, New York. pp.209, 1979.

[16] V. Zivojnovic, et al., “Dspstone: A DSP-oriented
Benchmarking Methodology,” International Conference on
Signal Processing Applications and Technology, 1994.

[17] “Bench mark Archives at CBL,” http://www.cbl.ncsu.edu
/CBL Docs/Bench.html

[18] W. H. Press, et al. (Editors), Numerical Recipes in C: The
Art of Scientific Computing, Cambridge University Press,
pp.152,154-155, 1993.

886

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

