
Checking Satisfiability of a Conjunction of BDDs

Robert Damiano
Advanced Technology Group

Synopsys, Inc.
Hillsboro, OR

robertd@synopsys.com

James Kukula
Advanced Technology Group

Synopsys, Inc.
Hillsboro, OR

kukula@synopsys.com

ABSTRACT
Procedures for Boolean satisfiability most commonly work
with Conjunctive Normal Form. Powerful SAT techniques
based on implications and conflicts can be retained when the
usual CNF clauses are replaced with BDDs. BDDs provide
more powerful implication analysis, which can reduce the
computational effort required to determine satisfiability.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic

General Terms
Algorithms, verification

Keywords
Satisfiability, BDD

1. INTRODUCTION
Determining whether a Boolean formula has a satisfy-

ing assignment is a fundamental problem with many ap-
plications in CAD. Automatic test pattern generation and
formal verification, both combinational equivalence check-
ing and sequential model checking, are primary applica-
tions. Boolean formulas can be directly derived from cir-
cuit designs at register transfer or gate levels. The formula
to be analyzed may also include logic derived from other
parts of the problem specification, such as the temporal
logic formula to be checked, etc. Whatever the applica-
tion, a Boolean formula can be created in some standard
form and given to a satisfiability engine. A more powerful
satisfiability engine can thereby benefit a variety of applica-
tions. Engines in industrial use are based on binary decision
diagrams (BDDs) [3], conjunctive normal form (CNF), and
logic circuits, as well as various hybrids of these. We intro-
duce here a new approach, where powerful non-chronological

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

backtracking techniques developed for use with CNF can be
applied to an implicit conjunction of BDDs.

Non-chronological backtracking techniques have a long
history (see [1] for a sketch of the history), but broke into
CAD usage primarily with the introduction of GRASP [7].
Further refinements were incorporated in CHAFF [8]. Our
new approach reproduces the basic mechanisms of GRASP
in a different context. We will first sketch how GRASP
works with CNF, and then show how we have used a similar
approach with BDDs.

2. PARTIAL ASSIGNMENT SEARCH
A boolean formula in CNF consists of a set of clauses,

where each clause is a set of literals, and each literal is an
instance of a variable or of its complement. A clause repre-
sents the disjunction of its literals, and a CNF formula the
conjunction of the clauses. It is in general difficult to find an
assignment of values to variables for which a CNF formula
evaluates to true - indeed, this is a canonical instance of the
NP-complete class of problems. To find such a satisfying so-
lution, GRASP (and many other SAT solvers) searches the
space of partial assignments.

In a partial assignment, some variables are assigned a 1
value, some are assigned 0, and the remaining variables are
left unassigned. Each clause of a CNF formula can then
be evaluated, yielding an evaluation for the entire formula.
If the partial assignment gives a 1 value to any literal in a
clause, the clause has value 1. If all the literals have value
0, then the clause has value 0. If no literal has value 1 but
some literal has an unassigned value, then the clause itself
has unassigned value. The entire CNF formula then has
value 0 if any clause has value 0, 1 if all clauses are 1, and
unassigned otherwise.

By evaluating partial assignments in this way, GRASP
searches for an assignment for which the CNF formula eval-
uates to 1. The basic operations in the search either extend
a partial assignment by assigning more variables to 0 or 1,
or contract it by unassigning some variables.

When a partial assignment leaves the value of the CNF
unassigned, GRASP extends the partial assignment. First,
clausal implications are propagated. If a partial assignment
leaves any clause with only one unassigned literal and all
other literals with value 0, then for the clause (and CNF) to
be true, that last literal must be assigned the value 1. The
partial assignment can therefore be extended to include this
implied value. Each such extension may trigger further im-
plications. When no further implications can be drawn, the
partial assignment may have been extended enough that the

48.1

818

CNF formula itself has reached an assigned value. If not,
a second mechanism, called decision, is invoked to further
extend the assignment: an unassigned variable is heuristi-
cally selected and assigned a value. This new assignment
may then trigger further implications. Interleaving these
two mechanisms, the partial assignment is extended until
the CNF formula has reached an assigned value.

Once the CNF formula has a value, if that value is 1 then a
satisfying value has been reached and the procedure is com-
plete. If a partial assignment gives the CNF formula a value
of 0, then GRASP engages in a process of conflict analysis.
One or more sub-assignments are found for which pure im-
plication propagation would still give a 0 value to the CNF.
For each of these conflicting sub-assignments, a new clause,
called a conflict clause, is added to the CNF. This conflict
clause is constructed to contain literals for just the variables
assigned in the sub-assignment, and to evaluate to false for
just the variable values of the sub-assignment. Once the con-
flict clauses are constructed, the partial assignment is con-
tracted to return the CNF to an unassigned value, and the
search procedure returns back to the extension mechanisms.
Conflict analysis determines how much contraction is re-
quired to return to the narrowed space of possibly satisfying
assignments. GRASP is capable of non-chronological back-
tracking, contracting back through multiple decision layers.
See [7] for details.

With conflict clauses added to the CNF, the implication
mechanism will steer the search process away from partial
assignments already found to yield 0 values for the CNF.
As the procedure iterates between extension and contrac-
tion, more and more conflict clauses are added to the CNF.
Eventually either the search will be steered to a satisfying
assignment, or enough conflict clauses will be added that
pure implication yields a conflict when starting from the
empty assignment, in which case unsatisfiability of the CNF
can be concluded.

The various mechanisms of GRASP can be broken into
two layers: a formula level that extends and contracts par-
tial assignments and performs conflict analysis; and a clause
level that determines whether, for a given clause, a partial
assignment induces a conflict, i.e. a 0 value for the clause,
or an implication, i.e. further variable assignments required
for the clause to have value 1. The CHAFF [8] SAT solver
maintained this structure while improving on details at both
levels. One of the key advantages of CHAFF is a clause
level watcher mechanism for detecting implications. At the
formula level, CHAFF provided new mechanisms such as
random restart.

Our new approach preserves the formula level mechanisms
of GRASP intact, but extends the clause level to support a
heterogeneous set of clauses.

3. BDDS AS CLAUSES
Our basic approach is to extend CNF so that the set of

clauses includes types of clauses beyond just simple disjunc-
tions of literals. Conceptually, a clause could be any boolean
formula at all. The entire boolean formula whose satisfiabil-
ity is to be determined is then a conjunction of such various
types of clauses. To fit within the GRASP framework, ef-
ficient mechanisms are required for each type of clause to
determine whether a given partial assignment results in a
conflict or implication for that clause.

Several advantages can potentially be gained from thus

110 0

c

a

b

c

n1

n2

n4n3

0

0

0

1 0 1

1

1

Figure 1: A simple BDD

extending CNF. Under some circumstances, part of a larger
Boolean formula might be hidden in a way that makes rep-
resentation in CNF difficult, for example part of a design
might be provided as an actual physical device. Some func-
tions might be more compactly represented in an alternative
form. Generally the introduction of auxiliary variables gives
CNF the power to express functions as compactly as most
other representations, but these auxiliary variables can in-
terfere with the detection of conflicts and implications. Al-
ternative representations may support more powerful con-
flict and implication detection.

Note that the conflict clauses that are constructed during
the search process continue to be normal CNF disjunctive
clauses. Even if the original problem is expressed homo-
geneously using clauses of some other type, as soon as the
search process begins, disjunctive clauses will be introduced
and the set of clauses will become heterogeneous.

Here we will explore in particular the use of BDDs for
clauses. Before delving into the details of conflict and impli-
cation mechanisms for BDDs, we first address the potential
advantages we might anticipate for BDD clauses. One can
always convert a BDD to equivalent CNF; the advantages of
the BDD approach must be compared to some CNF equiv-
alent. We consider two approaches to converting a BDD to
CNF.

• One can convert a BDD to CNF without introducing
any auxiliary variables. However, this can result in
exponential space explosion for common functions such
as exclusive-or. Thus BDDs can provide a much more
compact representation than CNF without auxiliary
variables.

• By introducing auxiliary variables, a BDD can eas-
ily be converted to CNF whose size is proportional to
that of the BDD. A BDD can be viewed as a circuit of
multiplexors. An auxiliary variable can be introduced
for each BDD node, and for each node a collection of
clauses defining a multiplexor added to the CNF. Thus
CNF can be as compact as BDDs. However, BDDs can
provide more powerful conflict and implication mech-
anisms than the corresponding CNF clauses.

To see how auxiliary variables can interfere with detection
of implications, examine Fig. 1. Introducing auxiliary vari-
ables n1, n2, n3, n4 for the nodes, one can convert this BDD

819

to the CNF

(a + n3)(a + n2)

(n2 + b + n3)(n2 + b + n3)(n2 + b + n4)(n2 + b + n4)

(n3 + c)(n3 + c)(n4 + c)(n4 + c)

Consider the partial assignment b = 0. Every clause here
will then be either satisfied or will still have at least two
unassigned variables, therefore no implications are possible.
We will show below, however, how the implication c = 1
can be detected using the BDD in Fig. 1. Thus BDDs can
support more powerful implication mechanisms than simply
derived equivalent CNF. Of course, CNF can in general be
supplemented by additional clauses that do not change the
function represented but which support more direct impli-
cations - this is exactly what conflict clauses do. Eventually
enough clauses could be accumulated to support the same
implications as a BDD can. The advantage of a BDD is sim-
ply that it supports detection of conflicts and implications
directly, without supplementary accumulation of informa-
tion.

It should be no surprise that a BDD can support more
powerful detection of conflicts and implications than equiva-
lent CNF generally can. If one converts CNF into an equiv-
alent BDD, then satisfiability can be checked in constant
time, and satisfying solutions (if they exist) constructed in
linear time. The difficulty lies in constructing the BDD,
which runs into space explosion problems often enough to
demand alternative methods. CNF is a flexible represen-
tation that can efficiently encode a wide range of problems,
but which supports only weak mechanisms for detecting con-
flicts and implications. A BDD is a canonical representation
that supports very powerful conflict and implication detec-
tion mechanisms, but which too often demands infeasible
resources to construct. By extending CNF to include BDDs
as clauses, we can take advantage of the power of BDDs
while avoiding their potential for space explosion.

3.1 Implication and Conflict Detection
The set of satisfying assignments of a boolean function

maps onto the set of paths from the root node to the 1 ter-
minal of the BDD representing that function. Given some
arbitrary partial assignment, there will be some subset, pos-
sibly empty, of the satisfying assignments compatible with
that partial assignment, and correspondingly some subset of
the paths in the BDD. Our mechanism for detecting conflicts
and implications in BDDs works by computing the subset
of paths compatible with a partial assignment.

• A conflict is detected if no path to the 1 terminal exists
that is compatible with the partial assignment.

• A given partial assignment may potentially imply val-
ues for any subset of the unassigned variables. Let
v denote some unassigned variable. If every path to
the 1 terminal compatible with the partial assignment
passes through a BDD node labeled by v and along
the v = 0 edge of that node, then the value v = 0 is
implied by that partial assignment. Similarly, if every
compatible path traverses a v = 1 edge, then v = 1
is implied. If, however, any compatible path does not
include a v node, or if some compatible paths traverse
v = 0 edges while others traverse v = 1 edges, then
the partial assignment does not imply any value for v.

Detecting implications is the more comprehensive of these
two mechanisms, so we focus on that. A BDD node is on
a compatible path from the root to the 1 terminal if there
is a compatible path from the node to the root and also a
compatible path from the node to the 1 terminal. A simple
algorithm for marking which nodes and edges are on com-
patible paths from root to 1 terminal is therefore:

1. Traverse the BDD in topological order from root to
terminals, marking every node that can be reached by
a compatible path from the root. More concretely, let
n be some node labeled by variable v, and n0, n1 be the
nodes referenced by the outgoing edges of n. Initially
mark the root node. Then when a node n is reached
during traversal, if n is marked, mark either both n0

and n1 (when v is unassigned), or na (when v has been
assigned the value a).

If the 1 terminal remains unmarked at the end of this
first traversal, then a conflict has been detected.

2. Traverse the BDD in the reverse topological order,
from the terminals to the root. Start by unmarking
the 0 terminal. When a marked node n is reached, if
neither n0 nor n1 are marked (when v is unassigned),
or if na is not marked (when v has been assigned the
value a), then unmark n.

During the second traversal one can accumulate counts for
each variable v of how many 0 edges, 1 edges, and skipping
edges are on compatible paths, and thus whether a value is
implied for v. This algorithm is derived from the weight and
walk procedures of Yuan et al. [11]

We can improve the efficiency of the overall procedure by
exploiting the fact that during the search for a satisfying
solution to the full extended CNF formula, the partial as-
signment changes incrementally. Thus an event-driven ap-
proach can eliminate redundant computation. Our event-
driven conflict and implication detection mechanism adds
the following data to each BDD node:

• List of incoming edges.

• Count of how many incoming edges are on compatible
paths to the root.

• Count of how many outgoing edges are on compatible
paths to the 1 terminal.

A node is considered marked, i.e. on a compatible path from
root to 1 terminal, if both the incoming and the outgoing
counts are positive.

For each variable, we maintain a list of nodes labeled by
that variable together with counts for how many 0 edges
and how many 1 edges are currently on compatible paths
between the root node and the 1 terminal. When a edge on
a compatible path skips over a variable v, going from a node
with a label less than v in the BDD order to a node with a
label greater than v, we count that as both a 0 edge and a
1 edge for v, thus blocking the detection of any implication
for v.

We can incrementally update this data as the partial as-
signment evolves. The update operations required are those
to assign a variable, extending the partial assignment, and
to unassign a variable, contracting the partial assignment.
Assigning a variable can decrement the compatible outgo-
ing edge counts for each node n labeled by that variable,

820

as well as potentially its incoming nodes recursively up to
the root. Assigning a variable can also decrement the com-
patible incoming edge counts for the outgoing nodes of n
recursively down to the 1 terminal. Conversely, unassigning
a variable can increment the outgoing edge counts recur-
sively up to the root, and the incoming edge counts down to
the 1 terminal. As these edge counts are incremented and
decremented, the corresponding 0 and 1 edge counts for each
variable are maintained. An implication is detected when-
ever an unassigned variable has only one of its edge counts
positive.

3.2 Conflict Analysis
As the search for a satisfying solution progresses, conflict

clauses of the normal CNF disjunctive form are constructed
to record where the possibility of such solutions has been
eliminated. Conflict clauses steer the search process toward
satisfying assignments by blocking off those infeasible parts
of the search space. The smaller the conflict clause, the
larger the subspace blocked off. A primary objective of con-
flict analysis is to generate conflict clauses as small as pos-
sible.

Conflict clauses are derived from an implication graph
whose elements are the conflicts and implications detected
at the clause level. When a partial assignment causes an im-
plication to be detected at a clause, all of the assigned vari-
ables in that clause could be considered to have caused the
implication. With normal disjunctive clauses no smaller set
of assignments could have caused that implication, since im-
plication only occurs for the last unassigned variable. With
BDD clauses, however, implications are possible with arbi-
trary subsets of the variables assigned. If a smaller set of
assignments can be recognized to have caused a conflict, the
resulting conflict clause will be smaller. We use a simple
greedy approach to find a minimal partial assignment caus-
ing an implication when performing conflict analysis and
constructing conflict clauses.

4. MEASURING EFFECTIVENESS
To see how well BDD clauses work, we chose 22 SAT

problems expressed in normal CNF with purely disjunctive
clauses. We then translated these to extended CNF that
includes BDD clauses. We could then compare a conven-
tional SAT solver working with the normal CNF against our
new SAT solver working with BDD clauses. Our translation
scheme involves three steps:

1. Each disjunctive clause is converted to a simple BDD.

2. The set of resulting simple BDDs is partitioned. A
single more complex BDD is built for each block of
this partition, by conjoining all of the simple BDDs in
the block.

3. Whenever a variable occurs in only a single complex
BDD, that variable can be existentially quantified from
the BDD and removed from the problem, preserving
the (un-)satisfiability of the problem.

Our translator actually interleaves steps 2 and 3, greedily
trying to eliminate as many variables as possible. This ap-
proach is an adaptation of the VarScore method of Chauhan
et al. [5]. The coarseness of the clause partitioning is con-
trolled by a simple BDD size threshold parameter. This lets

Original CNF BDD Thrshd 100
name res vars clauses vars clauses
X1 U 9118 26484 1028 1108
X2 U 4390 12741 725 951
X3 U 4179 13667 809 1667
X4 U 2583 7410 540 702
X5 U 1784 5269 331 243
X6 S 11828 33928 3013 3827
X7 S 4566 13987 957 1545
X8 U 4672 12810 815 960
X9 U 5765 17886 1324 2166
X10 U 19665 65263 4916 9160
X11 U 3331 9296 605 893
X12 U 106 496 49 104
ssa7552-038 S 1493 3567 73 107
ii32e4 S 387 7106 219 1699
hanoi4 S 718 4934 358 2112
par16-1 S 1015 3310 174 119
bf0432-007 U 1028 3656 396 693
bf2670-001 U 1387 3428 98 54
bmc-ibm-1 S 9685 55855 3589 23175
bw large.a S 459 4675 382 3612
3blocks S 283 9690 273 9392
hole8 U 72 297 60 181

Table 1: Problem Characteristics

us easily explore the tradeoff between static BDD computa-
tion and dynamic clause-based search.

Table 1 shows characteristics of the problems we used for
our measurements.

name The problems with names with an initial “X” are
derived from a variety of industrial problems. The
other problems are standard benchmark problems.

res “U” denotes unsatisfiable problems, “S” denotes satis-
fiable.

Original CNF vars All these problems are initially speci-
fied as CNF. This column gives the number of variables
in the original CNF.

Original CNF clauses This column gives the number of
clauses in the original CNF.

BDD Thrshd 100 vars As discussed above, after blocks
of CNF clauses have been conjoined, some variables
can be eliminated through existential quantification.
This column shows the number of variables remain-
ing when the clause partitioning is controlled by a
BDD size threshold of 100. Sometimes a large fraction
of variables could be eliminated, e.g. in ssa7552-038,
while in other cases only a small fraction, e.g. 3blocks.

BDD Thrshd 100 clauses This column shows the num-
ber of BDDs in the final formula used for search in
the threshold 100 case, i.e. the number of blocks in
the partition of the original CNF clauses. The reduc-
tion in the number of clauses tend to track with the
reduction in the number of variables.

Table 2 shows cpu times for each problem for each of three
different procedures. These times were all measured on an
Intel XEON processor with clock speed 2.2GHz, running the
LINUX operating system.

821

thrshd thrshd
1 100

name limmat BDD sat a-s sat
X1 119 8 59 20 18
X2 10 2 47 5 32
X3 1674 2 2140 4 16
X4 0 1 2 1 2
X5 58 1 79 1 57
X6 1049 12 29 38 2
X7 0 2 2 5 0
X8 1 2 7 4 3
X9 5 4 15 9 33
X10 >3600 34 332 118 467
X11 0 2 2 2 0
X12 38 0 96 0 37
ssa7552-038 0 0 0 0 0
ii32e4 0 2 1 0 0
hanoi4 17 0 16 0 32
par16-1 3 0 21 0 10
bf0432-007 0 0 1 0 0
bf2670-001 0 0 0 0 0
bmc-ibm-1 2 15 45 33 14
bw large.a 0 0 0 0 0
3blocks 0 1 3 0 1
hole8 1 0 0 0 22
Totals > 6577 88 2897 240 746

Table 2: Run times in cpu seconds

limmat We used Biere’s limmat [2] SAT solver on each
problem, as a basis for comparison of our new method
against current state of the art technology. This col-
umn shows the run time required for limmat to solve
each problem. We aborted one run because of exces-
sive cpu time.

BDD This column shows the time to build simple BDDs
for each of the clauses.

thrshd 1 sat We ran our solver for each problem directly
on the simple BDDs which directly correspond to the
original CNF clauses. The clause-level conflict and im-
plication analysis in this case will correspond exactly
to a conventional CNF SAT solver. These results show
the effectiveness of our formula-level procedures such
as conflict clause construction, etc. The total run time
for this mode of operation is the sum of this column,
labeled “sat”, with the column labeled “BDD”.

thrshd 100 a-s For each problem we also ran our solver
using complex BDDs constructed from a partition of
the original CNF clauses using a BDD size threshold
of 100. This column gives the time to construct the
complex BDDs from the simple BDDs, using the BDD
and-smooth operation.

thrshd 100 sat This column gives the time to determine
whether the implicit conjunction of complex BDDs has
a satisfying assignment. The total run time for each
problem is the sum of the times to construct the simple
BDDs (column labeled BDD), to combine the simple
BDDs to form complex BDDs (column labeled thrshd
100 a-s) and the time recorded in this column.

thrshd thrshd
name limmat 1 100
X1 669859 327073 101146
X2 26576 33190 34557
X3 254264 557913 14103
X4 3010 3206 6357
X5 99874 88938 140172
X6 890109 53463 2419
X7 1243 783 210
X8 69838 79246 29018
X9 91180 61450 128172
X10 >1906851 673907 2476695
X11 1892 2676 836
X12 33173 68283 48219
ssa7552-038 153 156 23
ii32e4 37 112 39
hanoi4 29500 19009 35943
par16-1 9309 12135 16613
bf0432-007 1835 1328 1129
bf2670-001 87 102 40
bmc-ibm-1 8564 47076 8776
bw large.a 49 46 36
3blocks 1662 1036 288
hole8 8151 3564 38472

Table 3: Number of decisions

Our main contribution here is to show how BDDs can sup-
port powerful conflict and implication detection mechanisms.
A state of the art SAT solver requires additional mechanisms
as well as careful engineering of implementation details. The
comparison between our tool running with simple BDDs, at
threshold 1, and with complex BDDs, at threshold 100, iso-
lates most effectively the effect of using the more powerful
detection mechanisms available with BDDs. In 14 of 22
problems, the search process was faster using the complex
BDDs than using the simple BDDs which are equivalent to
the original disjunctive CNF clauses. In 4 problems their
was no measurable difference in run-times, and in 4 prob-
lems the complex BDD approach was slower.

Table 3 shows the number of decisions required for each
run of each problem. This more precise measurement pro-
vides some visibility into behavior of the smaller problems.
In 3 of the 4 problems where cpu times could not be distin-
guished, fewer decisions were required when complex BDDs
were used. In several cases complex BDDs took more de-
cisions even though the search CPU time was smaller. In
these cases, referring to Table 1 one can see that combining
the simple BDDs into complex BDDs allowed many vari-
ables and clauses to be eliminated. This simplification of
the problem was also reflected in implication counts, another
measure of the work required by a SAT solver. For example,
par16-1 required 21 million implications with simple BDDs
and only 6 million with complex BDDs. For comparison,
limmat reported using 15 million implications on this prob-
lem.

Table 4 shows the results when the BDD threshold is var-
ied for the single problem X3. Eventually of course if the
BDD threshold is set high enough, all the clauses will be
merged into a single BDD and the SAT problem solved us-
ing BDD operations alone. The disadvantage of a pure BDD
approach is that the BDD operations can be quite expensive.
This can be seen in the row labeled “and-smooth cpu sec”:

822

threshold 100 1000 10000 100000
variables 809 665 566 529
clauses 1667 1087 882 790
and-smooth cpu sec 4 16 244 885
sat cpu sec 16 16 157 771
decisions 14103 2530 2379 2477

Table 4: Varying Partition Threshold for Problem
X3

as the BDD threshold is increased, the time required for
BDD operations quickly grows. The numbers of clauses and
variables continues to decline as the threshold is increased,
but not very quickly. The most interesting thing to observe
in this table is that as the BDDs grow more complex, the
search cpu time goes up while the number of decisions stays
relatively flat. This is apparently caused by the cost of the
conflict and implication detection mechanisms, which grows
as the BDD sizes grow.

5. RELATED WORK
Many approaches to combining the strengths of SAT solvers

and BDDs have been explored. Most [9, 10] involve perform-
ing BDD operations, i.e. creating new BDD nodes, during
the search procedure. Our approach certainly requires BDD
operations to construct the initial problem, but during the
search procedure no nodes are created or destroyed. The
search procedure involve only walking existing BDDs and
updating data associated with existing nodes and variables.

The work closest to ours appears to be that of Burch and
Singhal [4]. A minor difference is that, rather than working
with a conjunction of BDDs, they work with a composition
of BDDs. The major difference is that their formula level
procedure is WALKSAT rather than GRASP, so they are
always working with complete rather than partial assign-
ments, and do not detect implications or construct conflict
clauses.

Another very closely related paper is that of Gupta and
Ashar [6]. They divide their problem up into a SAT-CNF
part and a BDD part. They do work with partial assign-
ments and describe an efficient conflict detection mechanism
for BDDs. However they do not detect implications from
BDDs. Since they only work with a single BDD, they do not
provide or need conflict analysis to coordinate the simulta-
neous search for solutions across multiple BDDs. Working
with a single BDD severely limits the benefit that introduc-
ing BDDs can provide.

6. FUTURE WORK
Our current plans are focussed on improving the efficiency

of the conflict and implication detection mechanism. Just as
CHAFF improved upon GRASP by moving from a count-
based mechanism to a watcher-based mechanism for detect-
ing implications in disjunctive clauses, we plan to develop
a watcher-based mechanism to work with BDDs. This may
permit larger BDDs to be used efficiently, thereby providing
even more powerful implications.

A secondary direction for research involves refining the ini-
tial construction of the BDDs. Currently we take problems
expressed in CNF and partition the CNF clauses to form the
complex BDDs upon which the search is performed. Our
current partitioning mechanism has been crudely adapted

from another application. By tuning the partitioner to the
present application, we should be able to create complex
BDDs that support more efficient search. It may also be ad-
vantageous to cluster and conjoin conflict clauses on the fly
to form additional complex BDDs. Beyond that, most in-
dustrial problems are not initially specified as CNF. Transla-
tion directly to an implicit conjunction of BDDs, by-passing
CNF, should enable us to leverage more of the natural struc-
ture of these problems.

7. CONCLUSION
We have showed how to build a BDD conflict and implica-

tion detection mechanism and incorporate it into a GRASP-
like SAT engine. Measurements on industrial examples show
that the more powerful detection mechanism provided by
BDD clauses can improve the efficiency of the search pro-
cedure in many cases. We expect that this approach will
prove even more advantageous on problems originally posed
in a form more conducive to BDD construction than CNF.

8. REFERENCES
[1] A. R. Baker. Intelligent Backtracking on Constraint

Satisfaction Problems: Experimental and Theoretical
Results. PhD thesis, Univ. Oregon, 1995.

[2] A. Biere.
www.inf.ethz.ch/personal/biere/projects/limmat/.

[3] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on
Computers, C-35(8):677–691, August 1986.

[4] J. R. Burch and V. Singhal. Tight integration of
combinational verification methods. In Proc. Intl.
Conf. on Computer-Aided Design, pages 570–576,
1998.

[5] P. Chauhan, E. Clarke, S. Jha, J. Kukula, T. Shiple,
H. Veith, and D. Wang. Non-linear quantification
scheduling in image computation. In Proc. Intl. Conf.
on Computer-Aided Design, pages 293–298, 2001.

[6] A. Gupta and P. Ashar. Integrating a boolean
satisfiability checker and bdds for combinational
equivalence checking. In Proc. Int’l Conf. on VLSI
Design, pages 222–225, 1997.

[7] J. P. Marques Silva and K. A. Sakallah. GRASP—a
new search algorithm for satisfiability. In Proc. Intl.
Conf. on Computer-Aided Design, pages 220–227,
1996.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT
solver. In Proc. of the Design Automation Conf., pages
530–535, 2001.

[9] R. Mukherjee, J. Jain, and D. Pradhan. Functional
learning: A new approach to learning in digital
circuits. In Proc. VLSI Test Symposium, pages
122–127, 1994.

[10] V. Paruthi and A. Kuehlmann. Equivalence checking
combining a structural sat-solver, bdds, and
simulation. In Proc. Intl. Conf. on Computer Design,
pages 459–464, 2000.

[11] J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz.
Modeling design constraints and biasing in simulation
using bdds. In Proc. Intl. Conf. on Computer-Aided
Design, pages 584–589, Nov. 1999.

823

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

