
Improved Global Routing through Congestion Estimation

Raia T. Hadsell and Patrick H. Madden
SUNY Binghamton CSD Box 6000 Binghamton NY 13902

raia@math.binghamton.edu pmadden@cs.binghamton.edu
http://vlsicad.cs.binghamton.edu

ABSTRACT
In this paper, we present a new method to improve global routing
results. By using an amplified congestion estimate to influence a
rip-up and reroute approach, we obtain substantial reductions in
total congestion. In comparisons with a recently published tool
on publicly available benchmarks, our new router is roughly twice
as fast, obtains 15.1% reductions in total wire length, and 65.2%
reductions in the number of overcongested graph edges. A direct
implementation of an old approach also performs extremely well,
indicating that some known techniques have been overlooked.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: CAD

General Terms
Algorithms

Keywords
Global routing, Steiner trees, congestion

1. INTRODUCTION
As designs have become larger and more congested, global rout-

ing has become more difficult. Routing can fail to complete, or
can take an unacceptably long time; [14] discusses these issues in
the context of routability-driven placement. Optimization of con-
gestion in global routing problems is NP-hard; thus, it is unlikely
that there can be any efficient algorithm that guarantees success. In
this paper, we extend a well known heuristic approach, improving
the quality of global routing solutions substantially, with minimal
impact to run time.

In this paper, we present the Chi Dispersion Global Routing tool,
which extends an earlier graph-based global router[8]. We consider
over-the-cell routing in this paper, using the grid-based model that
has been used in recent works (for example [6, 1, 12]). Using the
benchmarks provided by the authors of [6], we are able to obtain
average wire length reductions of 15.1%, and a 65.2% reduction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’03, June 2–6, 2003, Anaheim, California,USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

in an “over-congestion” metric. In addition to improved routing
quality, our new tool is also substantially faster.

Our approach to the routing problem utilizes an earlier method
by Linsker for printed circuit board (PCB) routing[11]; this work
has apparently been overlooked by many in the modern VLSI IC
routing community. We enhance this method by introducing a feed-
back loop to each rip-up and reroute iteration, in order to inform
the maze router of congested areas that should be avoided. The
congested areas are determined in two ways: static estimates about
congestion are given by a probabilistic algorithm, and dynamic in-
formation about congestion is obtained from previous iterations
of the rip-up and reroute process. The composite information is
used to introduce an artificial weight to the congested edges in the
graph, causing subsequent routes to disperse from these areas dur-
ing reroute.

Our primary contributions are the following. (1) We highlight
previous research results from PCB routing, showing that they im-
pact modern VLSI IC routing. A direct implementation of [11]
in fact outperforms more recent tools by a wide margin. (2) We
present methods to weight routing graphs using congestion esti-
mates; this results in significantly improved routing results. (3)
We develop an amplification approach that allows the congestion
estimates to impact the most dense regions, while avoiding the in-
troduction of detours in less congested regions.

The remainder of this paper is organized as follows; we first de-
scribe the routing model in more detail, and survey recent work
in the area. We next describe our routing approach, which en-
hances an earlier rip-up and reroute technique with congestion es-
timation. We then compare our tool to recently published tools on
widely available benchmarks; the improvements are surprisingly
large. The paper concludes with a summary of results, and a con-
sideration of future work.

2. PREVIOUS WORK
For many years, a channel-based global routing model was ap-

propriate. With limited numbers of routing layers, all connections
were restricted to the area between standard cell rows, or around
macro blocks. Global routers (for example [15]) assigned nets
to these routing channels, and inserted feedthrough space in cell
rows; this is illustrated in Figure 1(a). With added numbers of rout-
ing layers, the space used for channel routing can be eliminated,
and aggressive over-the-cell routing is now popular. This is illus-
trated in Figure 1(b). Global routing tools using this formulation
include Labyrinth[6] and the multi-commodity flow based router
of Albrecht[1].

In the modern routing model, the problem is normally formu-
lated as a variant of multi-commodity flow. We are given a graph
G
�
V � E � , where each edge ei j between vertices vi and v j has a ca-

28

3.3

Routing channel

Feedthrough

(a) Traditional channel-based routing model (b) Over-the-cell routing model

Figure 1: A traditional channel-based routing model, and the
current over-the-cell routing model. The vertices in the over-
the-cell model represent rectilinear regions, while edges in this
model represent the borders between regions.

pacity ci j . We must form Steiner trees to connect subsets of ver-
tices, such that the capacity constraints are obeyed, and we mini-
mize total tree length. Normally, rectangular “global cell” or “GCell”
regions are defined over the circuit area, and these regions are the
vertices of a routing graph. The borders between regions are rep-
resented by edges; as there is finite routing space on the borders,
each edge has a capacity.

In [14], it was observed that detail routing becomes difficult
when routing demand approaches physical capacity; if demand ex-
ceeds capacity, failure is assured. Thus, the capacity of an edge in
a global routing graph is generally tuned towards levels where suc-
cessful detail routing is likely. A routing solution which exceeds
capacity is said to be over congested, but may still be routable. A
common optimization objective in global routing is to minimize
both total wire length, and the number of over-congested graph
edges.

Many global routing tools utilize rip-up and reroute; this is a
well-known and popular technique. Generally, the approach begins
with decomposition of multipin nets into pairs of pins (using either
Spanning Tree algorithms[13, 9] or Steiner Tree heuristics[5, 2]).
Following the decomposition, each tree edge is routed using a maze
router. Normally, Dijkstra’s algorithm[4] is used, with the routing
cost for each edge or vertex in the graph being adjusted when the
usage of the resource increases.

The global router by Albrecht[1] utilizes a new multi-commodity
flow approximation algorithm, to obtain results that can be proven
to be close to optimal. The approximation algorithm uses fractional
flows; thus, it is necessary to perform randomized rounding, with
traditional rip-up and reroute to complete the process.

The formulation for over-the-cell VLSI IC global routing is in
fact surprisingly close to a formulation used for PCB routing. In
[11], a global routing tool which used a formulation as described
above was presented. A key contribution of this work was the study
of routing cost functions, to allow consideration of routing conges-
tion. We use these results in our work, and describe this in more
detail in the following sections.

3. GLOBAL ROUTING WITH CONGESTION
ESTIMATION

Our routing approach extends previous work through the intro-
duction of a congestion estimation method; this influences the rout-
ing of individual connections, improving the solution quality. In
this section, we first describe the routing method of [11] in more
detail. We then present our method of predicting congestion (which
is similar to techniques found in some placement tools). The rout-
ing costs are influenced by the congestion estimates; our objective
is to disperse routes from areas we expect to be congested.

(a) (b)

Routing cost

Routing demand Routing demand

Figure 2: In rip-up and reroute approaches, routing cost is a
function of the demand for graph edges. In many recent works,
cost increases abruptly when demand reaches (or approaches)
capacity (a); in the routing tool by Linsker, routing cost is a
linear function of demand (b).

Basic Routing Approach
The basic approach in our routing tool is well known; we follow

the general outline of Linsker[11]. We first decompose multi-pin
nets into sets of point to point connections, and then route each
connection.

In our work, we use the Steiner tree heuristic of Borah, Owen,
and Irwin[2]. This heuristic obtains good quality trees (close to
optimal on random problems), and also has low complexity; our
implementation is O

�
n2 � . We will refer to edges of an interconnect

tree as wires, to avoid confusion with the edges of the routing graph.
Each wire is routed using a maze router; we have implemented

Dijkstra’s algorithm, taking care to ensure that our implementation
is efficient. We rip-up and reroute each edge, in order, for a number
of iterations; we find that solution quality converges quickly, and
that large numbers of iterations seldom improve quality.

As is done in most global routing tools, we monitor the number
of routes using any particular edge in our routing graph, and use
this to adjust routing cost. We consider this to be an extremely im-
portant issue in the construction of an effective global routing tool.
In [11], it was observed that having routing cost increase linearly
with congestion was far more effective than having a “step” cost
function; these observations were confirmed in [3]. Despite this,
several recent global routers (for example, Labyrinth[7], and the
global router used for reference by Albrecht[1]), have routing cost
which increases abruptly when the number of routes on a graph
edge reaches the edge capacity. The routing cost functions are il-
lustrated in Figure 2.

In [7], route cost is defined as α � over f low � length; the route
is penalized only if it exceeds the routing capacity. By contrast,
we assign unit cost to an edge until it reaches 80% of capacity, and
increase cost linearly (to a maximum cost of 10) until it reaches
40% above capacity. [3] used a similar technique, but dynamically
updated routing cost because no capacity constraints were included
with their benchmarks.

The intuition for the “linear” cost function is clear: early routes
will encounter an uncongested routing graph, and will utilize the
resources without consideration for the demands of later routes.
Later routes will then detour around congested regions, increas-
ing the overall routing demand considerably. During rip-up and
reroute, the connections routed in the early stages will have diffi-
culty in being rerouted, because of the added wire length.
Congestion Estimation and Amplification

Prior to initial routing, the method of Linsker has no indication
as to where congestion is to be expected; thus, the first routes may
pass through areas that will have high demand, even when there

29

are viable alternatives. During rip-up and reroute, the sub-optimal
routings of some wires impacts the routes considered for others;
our objective with congestion estimation is to minimize the number
of poorly routed connections in the early stages of routing, and to
provide an effective tie-breaking method when there are multiple
routes with similar cost.

Our main contribution is the consideration of congestion esti-
mates as part of the routing cost function. We calculate a “static”
congestion estimate using methods similar to those of [10] and [14].
We also calculate a “dynamic” congestion based on the current
routing solution. These estimates are combined, providing a “hint”
to the global router as to which areas should be avoided (because
we anticipate congestion).

The “static” and “dynamic” congestion estimates influence rout-
ing cost; prior to use, however, we amplify them. Motivation for
this comes from the following observations. (1) In heavily con-
gested areas, we have a strong desire to push routes to other areas.
Routing in congested areas should cost substantially more than un-
congested areas. (2) In lightly congested and moderately congested
areas, we would wish to avoid introducing routing detours. Routing
cost should not be increased in this case.

To amplify the congestion estimates, we apply a relatively sim-
ple scaling factor. For any given wire wi in a dynamic congestion
estimate, we consider the estimated demand along all routing edges
used by the wire. If no routing edge has demand greater than 80%
of capacity, we set the amplification factor α

�
wi � to 0. If a routing

edge has demand greater than 1.2 of capacity, α
�
wi � is set to 1.2.

Otherwise, α
�
wi � is set to 1. The amplified dynamic demand for

routing edge e j is ddynamic
�
e j ��� ∑wi

α
�
wi ��� p

�
wi � e j � . The static

amplified demand is calculated in a similar manner.
The “amplification” step increases the significance of wires in

congested regions while reducing the impact of wires in non-congested
regions. While the general structure of the congestion map is simi-
lar to prior methods, the congested regions are “more intense.” We
use this estimate to strongly influence routes in congested areas,
without unduly influencing routes in less congested areas. The
static estimation is performed prior to any routing, while the dy-
namic estimation is performed once per iteration of rip-up and reroute.
A Modified Cost Function

The static and dynamic congestion estimates are combined to
influence routing cost in the following manner. We first calculate
estimated congestion for routing edge e j as described above. This
estimate is then added to the actual routing demand used to deter-
mine route cost. We refer to this routing demand as “ambient;” it is
derived directly from the congestion estimates, is persistent across
an iteration of rip-up and reroute, and is not directly related to any
specific wire.

During the course of multiple rip-up and reroute iterations, we
then scale the ambient routing demand down. Initially, the ambient
demand is “full strength,” and has a substantial impact on routing;
at later iterations, the effect is slight. In the routing tool by Linsker,
routing cost was a linear function of routing demand. In our work,
routing cost is a linear function of routing demand plus the ambient
demand, that is derived from our amplified congestion estimates.

While the linear cost function of Linsker results in an “erosion
effect,” we would describe the contribution of our routing estimate
as a “volcano effect.” Initially, the areas where we would expect
heavy congestion have routes strongly pushed away, leaving a void.
Illustration of the Approach

To illustrate the behavior of our routing tool, we present a num-
ber of “congestion maps.” Lightly congested regions are shown in
dark colors, while high congestion is shown in light colors. If a
routing cell exceeds the target capacity, the cell is boxed in. Note

(a) (b)

Figure 3: Original and amplified congestion estimates.

IBM07 through multiple iterations of rip-up and reroute
Linsker Linsker with Congestion Prediction

Iteration 0
Overflow 3665

Iteration 1
Overflow 619

Iteration 8
Overflow 251

Iteration 0
Overflow 2803

Iteration 1
Overflow 728

Iteration 8
Overflow 422

Figure 4: Congestion through repeated iterations of rip-up and
reroute. The initial results obtained when using predicted con-
gestion to influence routing cost are worse, but the routing
quickly converges to significantly better solutions.

that while we exceed the target capacity, that does not mean that
the solution is necessarily unroutable.

Figure 3 shows estimated congestion, and the amplified esti-
mated congestion, for the benchmark IBM01. Figure 4 shows the
congestion levels for a routing of the benchmark IBM07, at differ-
ent iterations of the rip-up and reroute process. The left set of maps
uses a direct implementation of Linsker-style rip-up and reroute
approach. The right set shows congestion maps when we include
amplified congestion estimates into the cost function.

Several observations can be made from this figure. (1) The con-
gestion levels in the first iteration of the rip-up and reroute process
are much higher for our approach. This is due to large numbers of
routes detouring significantly to avoid the areas with high estimated
congestion. This is the “volcano effect,” where areas with the high-
est expected congestion may in fact have lower congestion than the
surrounding regions. (2) After the first iteration, congestion levels
improve dramatically, and our modified approach obtains substan-
tially better results. (3) At termination, much of the detour intro-
duced by the estimated congestion has been removed, resulting in
only slight changes to the total wire length.

4. EXPERIMENTAL RESULTS
In this section, we present our experimental results. Of the re-

cently published academic routers, we were able to obtain bench-
marks and executable versions for only two: Labyrinth[7] and the
Force-Directed router[12]. The Force-Directed router was unable
to handle any of the benchmark problems correctly, so we do not re-
port results for this tool here. We were not able to obtain the multi-
commodity flow based router of [1], so direct comparisons are not
possible. We do not compare with commercial routing tools due to
license constraints, and the fact that these tools generally optimize
a number of factors other than congestion.

The Labyrinth routing tool is intended for “predictable routing,”

30

Chi Dispersion Router Linsker Router Labyrinth Predictable Router
Benchmark overflow wirelength Time m:s overflow wirelength Time m:s overflow wirelength Time m:s
ibm01 64x64 13k nets 189 64355 00:22 249 63839 00:18 242 76228 1:12
ibm02 80x64 19k nets 66 175368 01:17 103 174610 01:08 214 202235 1:54
ibm03 80x64 26k nets 7 149695 01:03 43 149535 00:56 117 191500 2:38
ibm04 96x64 31k nets 411 170440 01:24 564 169632 01:11 786 198181 4:48
ibm06 128x64 34k nets 16 284700 02:16 55 283374 02:02 130 339379 2:51
ibm07 192x64 46k nets 251 373739 03:23 422 372451 02:52 407 450855 6:21
ibm08 192x64 49k nets 71 410507 03:06 98 409609 02:53 352 466556 6:14
ibm09 256x64 59k nets 35 420691 03:41 118 419875 03:20 310 481841 9:05
ibm10 256x64 66k nets 116 589503 05:56 211 587893 05:35 288 680113 11:19

Table 1: Comparison of our dispersion-based routing tool, a direct implementation of the approach by Linsker, and the Labyrinth
predictable router, using benchmarks provided by the authors of Labyrinth.

but contains the basic elements of a traditional rip-up and reroute
approach. Many routes are implemented using a simple pattern-
based approach; [7] suggests that 70% of the shortest connections
are appropriate for pattern routing, and this is what we use here;
the remainder of the routes are found using a rip-up and reroute
process with routing cost being determined by a “step” function.
We have also run this routing tool without using the pattern rout-
ing option–all connections are subject to rip-up and reroute; total
run times increase, but the over-congestion results do not change
significantly.

To compare routing quality with other tools, we use the bench-
marks provided by the authors of [7], and measure wire length and
total over-congestion in the manner they suggest. These experi-
ments are summarized in Table 1. The benchmark circuits define a
rectilinear routing mesh, with fixed routing capacities on each edge.
All experiments were performed on a 1.4ghz PentiumIII worksta-
tion running Linux.

Compared to Labyrinth, we obtain average wire length reduc-
tions of 15.1% and total over-congestion reductions of 65.2%. Our
routing tool is roughly a factor of two faster; the original algorithm
by Linsker also outperforms Labyrinth by a wide margin. We note
again that these comparisons are not ideal. Unfortunately, there
are relatively few global routing benchmarks, and not all published
global routing tools are available for experimentation.

5. CONCLUSION
In this paper, we focus on improving congestion in global rout-

ing, using the current over-the-cell routing model. Our work im-
proves a classic routing approach by integrating congestion esti-
mates with the routing. By amplifying estimated congestion, we
can target “problem” areas without introducing detours in uncon-
gested regions. Compared to recent global routing work, our new
approach produces excellent results. We improve over-congestion
and routing length significantly. The method is also surprisingly
fast, even when compared to tools that perform pattern routing. We
have been extremely careful in our maze routing implementation,
allowing us to consider large routing problems easily.

We have also shown that a result that was known for printed cir-
cuit board design has direct application to modern integrated cir-
cuit routing. Use of a linearly increasing cost function improves
the solution quality; many current routing tools may be improved
substantially by adopting this approach. Some recently published
global routing tools have surprisingly poor performance when com-
pared to this approach.

As part of our current work, we are integrating this tool into a
placement and floorplanning framework.

Acknowledgements: This work was supported by the IEEC and
an IBM Faculty Partnership Award. We would like to thank Ralph

Linsker and Shaodi Gao of IBM, and the anonymous reviewers, for
their helpful comments.

6. REFERENCES
[1] C. Albrecht. Global routing by new approximation

algorithms for multicommodity flow. IEEE Trans. on
Computer-Aided Design of Integrated Circuits andSystems,
20(5):622–631, May 2001.

[2] M. Borah, R. M. Owens, and M. J. Irwin. An edge-based
heuristic for Steiner routing. IEEE Trans. on
Computer-Aided Design of Integrated Circuits andSystems,
13(12):1563–1568, December 1994.

[3] J. Cong and P. H. Madden. Performance driven multi-layer
general area routing for pcb/mcm designs. In Proc. Design
Automation Conf, pages 356–361, 1998.

[4] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[5] Andrew Kahng and Gabriel Robins. A new class of steiner
tree heuristics with good performance: the iterated 1-steiner
approach. In Proc. Design Automation Conf, pages 428–431,
1990.

[6] Ryan Kastner, Elaheh Bozogzadeh, and Majid Sarrafzadeh.
Predictable routing. Proc. Int. Conf. on Computer Aided
Design, pages 110–113, 2000.

[7] Ryan Kastner, Elaheh Bozorgzadeh, and Majid Sarrafzadeh.
An exact algorithm for coupling-free routing. In Proc. Int.
Symp. on Physical Design, pages 10–15, 2001.

[8] C.-K. Koh and P. H. Madden. Manhattan or non-manhattan?
a study of alternative vlsi routing architectures. In Proc.
Great Lakes Symposium on VLSI, pages 47–52, 2000.

[9] J. B. Kruskal. On the shortest spanning subtree of a graph.
Proc. American Math Society, 7:48–50, 1956.

[10] Kusnadi and Jo Dale Carothers. A method of measuring nets
routability for MCM’s general area routing problems. In
Proc. Int. Symp. on Physical Design, pages 186–194, 1999.

[11] Ralph Linsker. An iterative-improvement
penalty-function-driven wire routing system. IBM Journal of
Research and Development, 28(5):613–624, September
1984.

[12] Fan Mo, Abdallah Tabbara, and Robert K. Brayton. A
force-directed maze router. In Proc. Int. Conf. on Computer
Aided Design, pages 404–408, 2001.

[13] R. C. Prim. Shortest connecting networks. Bell System
Technical Journal, 31:1398–1401, 1957.

[14] A. Rohe and U. Brenner. An effective congestion driven
placement framework. In Proc. Int. Symp. on Physical
Design, pages 1–6, 2002.

[15] W. Swartz and C. Sechen. A new generalized row-based
global router. In Proc. Design Automation Conf, pages
491–498, 1993.

31

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

