
VL-CDRAM: Variable Line Sized Cached DRAMs

Ananth Hegde, N. Vijaykrishnan, Mahmut Kandemir and Mary Jane Irwin
Micro Systems Design Lab

The Pennsylvania State University, University Park
{hegdeank,vijay,kandemir,mji}@cse.psu.edu

ABSTRACT
Many of the current memory architectures embed a SRAM
cache within the DRAM memory. These architectures ex-
ploit a wide internal data bus to transfer an entire DRAM
row to the on-memory cache. However, applications exhibit
a varying spatial locality across the different DRAM rows
that are accessed and buffering the entire row may be waste-
ful. In order to adapt to the changing spatial locality, we
propose a Variable Line size Cached DRAM (VL-CDRAM)
that can buffer portions of an accessed DRAM row. Our
evaluation shows that the proposed approach is effective in
not only reducing the energy consumption but also in im-
proving the performance across various memory configura-
tions.

Categories and Subject Descriptors: B.3.1 [Memory
Structures]: Dynamic Memory (DRAM)
General Terms:Measurement, Performance, Design
Keywords:Variable Line, VL-CDRAM, CDRAM, Energy

1. INTRODUCTION
The growing disparity in the performance of memory and

the processor is an important concern for many data in-
tensive embedded applications. The memory performance
is influenced by both the limited bandwidth of data trans-
fer between the processor and off-chip DRAMs [1] and the
large DRAM access latency. While advances in bus technol-
ogy have significantly mitigated the bandwidth problem [2],
the DRAM access latency has not improved much. Many
of the current memory architectures address the DRAM
latency problem by embedding a SRAM cache within the
memory [8]. These architectures rely on the fact that SRAM
accesses are faster than DRAM accesses and also exploit the
use of a wide internal data bus for data transfers from the
DRAM to the on-memory cache. A key difference between
on-memory caches and traditional on-processor L1 caches
(that can also benefit from the faster SRAM accesses) is the
width of the transfer.
There are different variants of the DRAM architectures

that employ on-memory caches such as cached DRAMs [6,
7], enhanced DRAMs and VC-DRAMs. A main distinction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

between the different approaches is in the number of cache
lines that they support. Case a in Figure 1 shows the DRAM
organization where only a single cache line is used to buffer
an entire row of DRAM. Subsequent memory accesses to the
same row are then serviced directly by the SRAM without
having to access the DRAM. However this configuration is
inefficient if successive accesses are not confined to the same
DRAM row and can cause thrashing of the cache line.

Figure 1: DRAMs with on-memory SRAM caches. (a)

Single bank configuration with a single cache line SRAM,

(b) Single bank configuration with multiple cache lines

SRAM and (c) Multi-bank configuration with single

cache line SRAM.
There are two approaches to handling this problem, one

is the use of multiple banks of DRAM and associating a
SRAM buffer with each bank(see Case c in Figure 1). The
other approach is to use multiple cache lines with the DRAM
memory (see Case b in Figure 1(b)). Prior approaches that
have used multiple on-memory cache lines either use a small
cache line as in traditional L1 caches [3] or use wide cache
lines that are of the same size as a DRAM row [4, 5]. Fur-
ther, the cache lines can either be fully-associative, direct-
mapped or set-associative. Prior investigation shows that
fully-associative configuration is preferable from a perfor-
mance perspective [12].
The on-memory caching approaches are based on the premise

that there is a significant spatial locality between the ac-
cesses in a DRAM row. Further, using fixed size cache lines
assumes uniform spatial locality across different DRAM row
accesses. However, applications may exhibit a varying ex-

132



tent of spatial locality across the different rows that are ac-
cessed.

Figure 2: Variation in the extent of spatial locality in
the different DRAM rows accessed during the execution

of tomcatv benchmark. Here we use 1KB DRAM rows.

Figure 2 shows the variation in spatial locality in differ-
ent DRAM rows that are accessed for the tomcatv applica-
tion in our suite using a metric defined as the span. The
span shown in this figure is measured by using an 8KB fully
associative on-memory cache that caches the DRAM rows
that are accessed. All DRAM rows are buffered in this on-
memory cache and the difference between the maximum and
minimum addresses accessed from this buffered row before
it is evicted is defined as the span.
There are various reasons for the variation in spatial lo-

cality observed from this figure. Scalar variables and arrays
have different spatial locality. Further, each array has a
different size and this can influence the extent of locality.
Another reason is that data reuse might occur in different
loop levels. Let us consider the following code fragment as
an example.
for j= 1 to 32

for i = 1 to 1024
a[i]
b[1024*i]
c[j]

endfor
endfor
Here, we observe that arrays a and b have different strides

in their accesses. While array a would benefit from caching
the entire row of 1024 bytes, caching array b in contrast does
not provide any performance benefits. In fact, since there
is no spatial reuse of the cached line, caching the entire row
of b wastes energy in the on-memory cache. Further, it can
affect performance as the storage of array b will conflict with
currently cached rows that exhibit more spatial locality. The
conflicts are of a concern because of the limited number of
cache lines typically available in on-memory caches. In this
example, we also note that elements of array c have little
spatial locality in the inner loop. Hence, caching an entire
row of c can be wasteful as well. Further, we can see that
only 32 elements of c are required and caching more ele-
ments from the DRAM row in which it is contained may
not be useful. Since the amount of energy expended in the
integrated DRAM ranged between 30-90% of the energy ex-
pended in the data memory hierarchy for the applications
in our suite, optimizing the DRAM energy by reducing the
wasted energy is significant.
In this paper, we propose a Variable Line size Cached

DRAM (VL-CDRAM) that uses a variable line size buffering
for the on-memory cache in order to adapt to the varying de-
grees of spatial locality. Dynamically varying cache line sizes

has been used previously for L1 caches in [13] [14] to exploit
varying spatial locality in applications. Our technique is dif-
ferent from [14], in that while [14] focuses on data-caches
in an multiprocessor environment, our work focus is on the
cache in the DRAM. [14] uses variable line sizes to reduce
false sharing between different processors. For example, if
a large line is cached in processor 1, there may be portions
that it never uses actually that may required for processor
2. Thus, variable line sizing helps reduce coherence activ-
ity in this case. Due to this inherent difference, the scheme
for choosing the line sizes is entirely different. Variable line
caching in DRAMs have been explored before in [9] [10].
Our technique is different from them in that our approach
relies on static profiling to associate the line size information
with the load/store instructions while it uses dynamic infor-
mation about the presence of adjacent lines to adjust the
fetch/store width and associates line size information with
the physical cache line (instead of the load/store instruc-
tions in our case). Due to the dynamic nature, their work
incurs a learning time overhead to adapt to the appropriate
cache size. Further, when the same load instruction accesses
different cache lines (as in the case of array codes that ac-
cess non adjacent entries), our technique is able to capture
patterns of correlation in line sizes across cache lines. In
contrast, the approach in [9] requires training across each
cache line. While the underlying goal is the same in both the
approaches, the solution for determining the line sizes are
very different. Using a set of eight array-dominated applica-
tions that exhibit good spatial locality and a VLIW proces-
sor based system, we show that the VL-CDRAM can reduce
the energy consumed in the DRAM by 31% as compared to
using a scheme that always buffers the entire DRAM row
(our default parameters explained later). We also show that
our technique is effective across different memory configura-
tions.
The rest of this paper is organized as follows. The next

section describes the operation of the on-memory SRAM
caches in our system. Section 3 shows the necessary ar-
chitectural support for the VL-CDRAM. Section 4 explains
our experimental framework and simulator. The evaluation
of the VL-CDRAM with respect to energy is performed in
Section 5. Section 6 provides the concluding remarks.

2. CACHED DRAM OPERATION
The target system is based on a VLIW processor that

contains an on-chip cache and an off-chip cached DRAM
(CDRAM). The CDRAM is an integrated memory unit con-
sisting of an on-memory cache and a DRAM core and is ac-
cessed using a memory controller whenever there is a cache
miss in the on-chip cache.
The memory controller maintains the tags corresponding

to the cache lines of the on-memory cache. Whenever there
is a read access to the memory unit, the tags in the memory
controller are checked for a hit in the on-memory cache. If
one of the tags matches, the cache line index of the matching
cache line is transferred to the memory unit along with the
column address. Then, the on-memory cache is accessed and
the column address is used to address the appropriate por-
tion of the indexed cache line. However, when none of the
tags matches, it indicates a read miss for the on-memory
cache. In addition,the index of the cache line selected for
replacement is also sent to the CDRAM. The least recently
used cache line is selected for replacement in our implemen-
tation. Next, the DRAM row is activated and the data is

133



transfered to the on-memory cache. Then, the column ad-
dress is used to find the appropriate offset of data from the
replaced cache line to read. Note that a write hit is simi-
lar to a read hit except the additional operation of setting
the dirty bit corresponding to the written cache line in the
memory controller. This dirty bit is used to identify whether
a write back is required when replacing a cache line or to
perform write backs of the cache lines whenever DRAM core
is idle. Figure 3 shows the variation in memory access la-
tencies when a memory request hits in the on-memory cache
and misses in the on-memory cache.

Figure 3: Access Sequences for CDRAM Accesses.

On-memory cache miss (left) and on-memory cache hit

(right).

3. VL-CDRAM ARCHITECTURE AND ITS
OPERATION

The proposed VL-CDRAM operates similar to the CDRAM
except that it does not buffer a fixed portion of the DRAM
row. In the VL-CDRAM the size of the cache line is smaller
than the DRAM row size. Based on the extent of spatial lo-
cality in a given DRAM row access, multiple adjacent cache
lines are used to buffer the selected width of the DRAM
row. The replacement policy identifies the least recently
used cache line and also uses the lines adjacent to it if the
buffering size is larger than a cache line. We consider the
LRU policy at the cache line size level and not the replace-
ment block size level since considering it at the replacement
block size level requires more tag comparisons and additional
hardware. This would not only complicate the design, but
would also lead to an increase in energy consmption. In or-
der to enable transfer of multiple cache lines in the same
cycle, we enforce an alignment for the variable size blocks
as shown in Figure 4 to select the adjacent cache lines.
The tag matching as usual takes place in the memory

controller. Cache hit works similar to that of the CDRAM
except that the row address and the column address are
sent to the control unit of the memory irrespective of a hit
or a miss. Since the address bus is multiplexed, the row
address and column address are sent in consecutive cycles

Figure 4: Valid alignments of DRAM row buffering in

multiple cache lines. Here four cache lines equal the size

of the DRAM row.

and get latched in the row address latch and column ad-
dress latch. On a hit, the request is serviced directly by
the on-memory cache. On the other hand a cache miss
would signal a row address strobe which would decode the
row address. The miss signal would also enable the siz-
ing control logic which would read the log n input bits
(Block size bits) being fed by the memory controller along
with the log n most significant bits of the column address,
where n = size of DRAM row/size of cache line. The
column address bits are needed to decide on the offset of
the block in the DRAM row. The sizing control logic is a
combinational logic which generates log n signals which en-
able/disable the sense amplifiers that are divided into log n

groups. When the row address gets decoded and a particu-
lar row gets activated, the sizing control logic would disable
the appropriate sense amplifiers to support variable length
DRAM row buffering. Figure 5 shows the timing diagram
for a cache miss. The additional hardware to support VL-
CDRAM shown in the Figure 6 was designed in verilog and
synthesized using 0.13 micron technology and the energy
consumed by it was calculated. We found that the energy
consumed by this additional hardware is less then 0.01% of
the total energy consumed by a DRAM access. Also the
area impact of this additional hardware is negligible.

Figure 5: Timing diagram on a cache miss.

Figure 6: Modifications to the underlying hardware.
Variable block sizes impose two other constraints that

need to be handled. First, if multiple cache lines chosen
for replacement are dirty, the delay incurred is proportional
to the number of cache lines that must be written back.
However, the probability of encountering multiple dirty lines
for replacement is small as write backs of the dirty blocks
are performed in the background whenever the DRAM core
is not busy. Second, due to the caching of multiple cache
lines of variable length, we need to ensure that there is no
duplication of the data in the on-memory cache. For ex-
ample, consider the sequence shown in Figure 7. First, the
on-memory cache buffers the entire DRAM row containing

134



A and B in two cache lines. Then, A is evicted later by a
block C. The next load that accesses A observes that there
is an on-memory cache miss and indicates the entire row
consisting of two cache lines should be buffered. While the
tag miss for A is the one that initiated an access to the
DRAM row, the tag match for B is required to avoid dupli-
cate buffering. Thus, in the variable line size buffering, we
perform the tag check for each of the multiple cache lines
that are buffered. After buffering, the valid bits of only the
cache lines whose tag does not match with that of an ex-
isting cache line are marked as valid. Instead of increasing
the number of tag ports to simultaneously check the tags of
multiple cache lines, we perform this operation of marking
tag bits valid sequentially for the adjacent cache lines in the
memory controller. This operation can be overlapped with
the column access in the CDRAM to mask any performance
penalty. In our simulation tool we have incorporated this
technique to avoid duplicates.

Figure 7: Data duplication problem.

Next, it is necessary to generate the log n bits which pro-
vide information on the extent of the DRAM row to buffer.
Our approach is based on profiling which is widely used for
optimizing embedded applications. We profiled the applica-
tions to identify the extent of spatial locality of load/stores.
All the load/stores that incur an on-memory cache miss were
tracked as they initiate the DRAM row buffering. To asso-
ciate a single value with the static load/store instructions in
the program , we average the extents observed at all dynamic
instances of that static instruction. For example, Figure 8
shows average values and standard deviations of the span

of buffered rows accessed by dynamic instances for a subset
of static load/store instructions for the mxm application in
our suite. We make use of log n bits to associate this value
with each static instruction. This associated information in-
dicates the number of cache lines that need to buffered when
the DRAM row access was initiated by that static instruc-
tion. The additional log n bits with load/store instruction
is accommodated using the unused bits in instruction for-
mat of the VLIW instruction set architecture ([11] provides
more details of such opportunities in the load/store instruc-
tion format in the case of IA64). We call this technique, the
Average Block Size(ABS) technique.

4. SIMULATION FRAMEWORK
In order to evaluate the VL-CDRAM approach, we used

a set of applications executing on a VLIW processor ar-
chitecture to generate the memory access behavior. The
VLIW architecture was simulated using the Trimaran frame-
work [15] while the VL-CDRAM simulator was custom de-
signed. Only data cache trace was considered for the simu-
lations. The default parameters used in our simulations are
shown in Table 1. Table 2 shows the applications used in our
evaluation and the last column shows the energy consumed
in the CDRAM when using the base configuration with a
fixed on-memory cache line size of 1024 bytes.

Figure 8: Average span for the blocks for each static
load/store instance and their standard deviation for the

mxm benchmark

Parameter Value

Technology 0.13micron
VLIW Issue Width 9

Number of LD/ST units 2
L1 data cache size 32KB

L1 data cache associativity 2-way associative
L1 data cache line size 32 bytes

CDRAM Internal Bus Width 1024 bytes
On-Memory Cache Size 4KB

On-Memory Cache Line Size 256 bytes
DRAM core size 16MB
DRAM Banks 1

CPU Cycle Time 2ns
On-Memory Cache Hit Latency 12 cycles

DRAM Row Access Latency 18 cycles
DRAM Column Access Latency 12 cycles
DRAM Row Activation Energy 17 nJ

DRAM Read/Write Energy per byte 2.1 nJ
DRAM internal bus energy per byte 0.48 nJ

No. of address bits used by the
size selection logic 2

No. of tag bits generated by the
compiler with each load/store 2

Table 1: Default simulation parameters
We primarily focus on the reduction in the memory energy

consumption because of the use of VL-CDRAM. Energy con-
sumption in the VL-CDRAM is modeled as follows. A hit in
the on-memory cache incurs energy consumed in accessing
the associative cache. This energy was modeled for a 0.13
micron technology using CACTI [16]. A miss on the other
hand requires a DRAM access. The energy consumed on a
miss involves the DRAM access energy in addition to the
on-memory cache access energy. A DRAM access activates
the selected row and transfers that row’s data to the sense
amps. The energy consumed by this row activation is rep-
resented as E(ACT ). This is followed by a read (write) en-
ergy during which the column address selects certain number
of cells for amplifying and latching into (from) the output
buffers. Finally, energy is consumed in the internal buses
based on the length of the DRAM row that is buffered and
driven. Thus the DRAM access involves, a row activation
energy (E(ACT )), read/write energy E(RW ), and the bus
energy E(DQ). These energy numbers were evaluated us-
ing average activation current (IDD0), active standby cur-
rent (IDD3N), read/write current (IDD4(R/W)), the row
activation cycles (Trc), supply voltage (VDD), output cur-
rent (Iout) and the DRAM cycle time obtained from data
sheets [17]. These energies are calculated as follows

Note that using the optimal sizes for the buffering the
DRAM row will reduce the read/write energy and the bus
energy as only the portions that need to be buffered in the
on-memory cache are read and transferred. Further, we also

135



Program Source Memory energy (nJ)

tsf Perfect Club 1257189667
eflux Perfect Club 1028302543
btrix Specfp92 14746347130
tomcatv Specfp95 1551753573
mxm Specfp92 3051618425
bmcm Perfect Club 365088561
vpenta Specfp92 65165438853
adi Livermore 107773748

Table 2: Benchmark characteristics.
save energy in the on-memory cache because the amount
of data written into it is smaller. Thus, reading only the
required data for buffering saves energy even if there is no
improvement in the hit rate to the on-memory caches.
We already discussed the latency reduction that can be

achieved when a read or write hits in the on-memory cache.
Hence, any improvement in hit rates to the on-memory caches
using the VL-CDRAM approach can reduce the memory
access latency. Further, hits in the on-memory cache limits
energy consumption to only the on-memory cache and no en-
ergy is consumed in the DRAM core. Finally, performance
improvements due to reduced memory access latencies can
also reduce energy consumed due to refresh and also in the
rest of the system (these savings will improve the presented
results but are not accounted for in this evaluation).

5. RESULTS
We used two techniques to simulate the VL-CDRAM.

1. Oracle Technique : This technique would know the
exact size of the block that needs to be buffered for
each dynamic instance of load/store instruction. We
profiled the applications to identify the extent of spa-
tial locality of loads/stores. All the load/store instruc-
tions that incur an on-memory cache miss were tracked
as they initiate the DRAM row buffering. We mea-
sured the extent of the buffered DRAM row that was
accessed before it was replaced from the on-memory
cache for each load/store instructions.

2. Average Block Size (ABS) technique : In contrast
to the Oracle technique, we associate the buffering
size with each static load/store instruction in the ABS
technique as discussed above in Section 4.

We show the results for the ABS technique while comparing
it with the Oracle technique. While the Oracle technique
would tell us the maximum savings that could be achieved,
the ABS technique shows how well this could be practically
achieved.
Figure 9 shows the variation of the spatial locality in the

different applications. These results were obtained by mon-
itoring the access behavior of the buffered DRAM row that
was accessed before it was replaced using an 8K on-memory
cache and other default parameters. We find buffering the
entire DRAM row would have been unnecessary in at least
30% of the cases across all applications. We also find that
using a finer granularity of buffering can potentially save a
significant amount of energy expended in reading and buffer-
ing unused portion of the DRAM row.
Next, we investigate how well this characteristic translates

into energy savings. Figure 10 shows the amount of energy
savings that can be obtained when different sizes are chosen
for the on-memory cache lines as compared to the currently
used scheme of buffering the entire row. For example, an
128 byte cache line can support buffering of either 128, 256,
512 or 1024 bytes of a DRAM row that is accessed. An
average energy savings when using 128, 256 and 512 bytes

Figure 9: Varying spatial locality in on-memory cache.

Figure 10: Percentage of DRAM energy reduction using

VL-CDRAM with base configuration and varying cache

line sizes over using fixed cache line size of 1024 bytes.

for cache line size provided on the average 31%, 31% and
30% energy savings for the ABS technique when compared
to 38%, 36% and 29% of energy savings for the Oracle tech-
nique. While one might expect the energy savings to be
higher when the block sizes are 128 and 256 when compared
to using a block size of 512, we see a much more uniform
behavior across different block sizes when using ABS from
Figure 10. This is due to the fact that different instances of
a static load/store instruction might require different block
sizes and when we average the extents, we end up using one
average block size value for each instruction. We also see
that the energy consumption increases for one of the bench-
marks bmcm, this occurs due to a very high irregularity in
the block sizes for different dynamic instances of a static
load/store instruction.
Next, we analyzed the sensitivity to the capacity of the

on-memory cache sizes. While larger cache sizes can po-
tentially capture more number of distinct cache lines, the
complexity and area overheads need to be limited. Specifi-
cally, the complexity is of concern in the on-memory cache
architecture as it is fully associative and the area overhead
is an issue because we are embedding the SRAM within the
DRAM which is preferred for its compactness. With these
limitations in consideration, we varied the on-memory cache
size with 2KB, 4KB and 8KB and analyzed the energy sav-
ings of the VL-CDRAM approach using a 256 bytes cache
line. Figure 11 shows the results for the different cache sizes.
We observe that the energy savings for the 2KB, 4KB and
8KB caches were 32%, 31% and 30% on the average respec-
tively, across all the benchmarks using the ABS technique
when compared to 36%, 36% and 33% of maximum energy
savings that we could have achieved. This shows that our
technique is quite effective across different configurations.
We also observe that the energy savings achieved increases
for smaller sized on-chip caches as there is a lesser place for
contentions for replacements.
We also tried to study the impact of these energy opti-

136



Figure 11: Percentage of DRAM energy reduction using

VL-CDRAM with 256 bytes on-memory cache lines over

fixed 1024 bytes on-memory cache lines for different on-

memory cache sizes.

Figure 12: Percentage improvements in latency for dif-
ferent sizes of on-memory cache with cache line size of

256.
mizations over the latency. We observed that if the size of
the cache is small, the latency will almost always improve.
Figure 12 shows the percentage improvements in latency for
different sizes of on-memory cache. We observed a percent-
age improvement in latency by 23%, 18% and 17% for 2KB,
4KB and 8KB using the ABS technique as compared to max-
imum achievable values of 21%, 15% and 13%. We see that
certain benchmarks do not show any improvement in latency
due to increase in miss rates since we consider the LRU pol-
icy at the cache line size level and not the replacement block
size level.
The L1 cache sizes in the processor can influence the mem-

ory access pattern. Thus, we experimented by varying the
L1 data cache size from 8KB to 32KB. Our results show
that while larger L1 cache reduces the number of memory
accesses and the overall energy expended in the CDRAM, it
does not significantly impact the extent of spatial reuse in
the on-memory cache. On the contrary, the average energy
savings increase. The average energy savings when employ-
ing the VL-CDRAM with cache line size of 256 bytes and
default parameters were 23%, 27% and 31% for L1 cache
sizes of 8KB, 16KB and 32KB, respectively using the ABS
technique, as compared to 33%, 34% and 36% for the Oracle
technique.
6. CONCLUSIONS AND FUTURE WORK
On-memory caches are being employed in most commer-

cial DRAM chips in order to reduce the effective memory
access latency. However, most of the current approaches
buffer a fixed size of an accessed DRAM row into the on-
memory cache and waste a significant portion of the energy
due to this inflexibility. In this work, we presented a VL-
CDRAM that provides adaptivity to the size of DRAM row
that can be buffered. Our analysis using various programs
showed that there is a noticeable variation in spatial locality
within different DRAM rows that are accessed. Specifically,

we find that for at least 30% of the accessed DRAM rows,
in all the eight applications that we used, caching the en-
tire row wastes energy. Our approach focuses on eliminating
this wastage by capturing the variability in the DRAM row
spatial locality and associating this information with the
load/store instructions in the application. This information
is used to direct the amount of buffering to be used when the
DRAM rows are accessed. We observe that our technique
is effective in reducing energy across different configurations
of the on-memory chip and the L1 data cache in the pro-
cessor. Using 256 bytes cache line for the VL-CDRAM and
other default parameters, on the average, 31% of the mem-
ory energy was saved as compared to using a fixed cache line
size.
Our future effort will focus more on the impact of spe-

cific code optimizations on the effectiveness of our approach.
Specifically, we will try to design better techniques which
could achieve results much closer to the Oracle technique.
We will also investigate techniques that transform the data
layout to improve the locality in DRAM row accesses. Fi-
nally, our on-going work aims at analyzing in more detail
the impact of the different bank interleaving strategies on
the spatial locality of the DRAM row accesses.

7. ACKNOWLEDGEMENTS
This work was supported in part by NSF Grant 0103583,

NSF CAREER Awards 0093082 & 0093085 and MARCO
98-DF-600 GSRC grant.

8. REFERENCES
[1] D. Burger, J. R. Goodman, and A. Kagi. Memory bandwidth

limitations of future microprocessors. In Proc. International
Symposium on Computer Architecture, 1996.

[2] V. Cuppu et al. A Performance comparison of contemporary
DRAM architectures. In Proc. International Symposium on
Computer Architecture, 1999.

[3] W. Hsu and J. E smith. Performance of cached DRAM
organizations in vector supercomputers. In Proc. International
Symposium on Computer Architecture, 1993.

[4] R. P. Koganti and G. Kedem. WCDRAM : a fully associative
integrated cached-DRAM with wide cache lines. Technical
Report CS-1997-03, Dept. of Computer Science, Duke Univ,
Durham, N. C., 1997

[5] W. Wong and J. L. Baer. DRAM on-chip caching. Technical
Report UW CSE 97-03-04, Dept. of Computer Science and
Engineering, Univ. of Washington, 1997.

[6] H. Hidaka et al. The cache DRAM architecture with on-chip
cache memory. IEEE MICRO, vol. 10, no. 2, Mar. 1990.

[7] C. A Hart. CDRAM in a unified memory architecture. In Proc.
International Computer conference (COMPCON 94), 1994.

[8] F. Jones. A new era of fast dynamic RAMs. IEEE Spectrum,
Oct. 1992.

[9] K.Inoue, K. Kai, and K. Murakami. Dynamically Variable
Line-Size Cache Architecture for Merged DRAM/Logic LSIs.
IEICE Transactions on Information and Systems, May 2000.

[10] K.Inoue, K. Kai, and K. Murakami. Performance/Energy
Efficiency of Variable Line-Size Caches on Intelligent Memory
Systems A new era of fast dynamic RAMs. Proc.2nd Workshop
on Intelligent Memory SystemsIEEE Spectrum, Nov. 2000.

[11] IA-64 Application developer’s architecture guide, Intel
corporation, 1999.

[12] Z. Zhang, Z. Zhu, and X. Zhang. Cached DRAM for ILP
processor memory access latency reduction. IEEE MICRO,
vol. 21, no. 4, July/Aug.. 2001.

[13] Weiyu Tang, Alexander V. Veidenbaum, Alexandru Nicolau,
Rajesh Gupta. Adaptive Line Size Cache. UC, Irvine,
Technical Report ICS-TR-99-56, Nov.1999.

[14] C.Dubnicki and T.J. LeBlanc. Adjustable Block Size Coherent
Caches. In Proceedings of the 19th International Symposium
on Computer Architecture, May 1992.

[15] Trimaran home page. http://www.trimaran.org.
[16] P. Shivkumar and N. Jouppi. CACTI 3.0: An Integrated Cache

Timing, Power and Area Model. WRL Research Report,
August 2001.

[17] Data Sheet for 16Mb SDRAM. http:
download.micron.com/pdf/datasheets/dram/

137


	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index




