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Abstract
Architecture and CAD are closely related issues in FPGA design. Routing ar-

chitecture design shall optimize routability and facilitate router development; on
the other hand, router design shall consider the specific properties of routing ar-
chitectures to optimize the performance of the router. In this paper, we propose
effective and efficient unified matching-based algorithms for array-based FPGA
routing and segmentation design. For the segmentation design, we consider the
similarity of input routing instances and formulate a net-matching problem to con-
struct the optimal segmentation architecture. For the router design, we present a
matching-based timing-driven routing algorithm which can consider a versatile set
of routing segments. Experimental results show that our designed segmentations
significantly outperform those used in commercially available FPGAs. For exam-
ple, our designed segmentations achieve, on average, 14.6% and 19.7% improve-
ments in routability, compared with those used in the Lucent Technologies ORCA
2C-series and the Xilinx XC4000E-series FPGAs, respectively.

1 Introduction
Due to their low prototyping cost, user programmability and short time-to-

market, Field Programmable Gate Arrays(FPGAs) have become a popular choice
for ASIC designs. Routing architectures and algorithms play a pivotal role in the
implementation of circuits on FPGAs, especially for the large-scale FPGAs in the
very deep submicron era [23]. A well-designed architecture could not attain its best
performance without a corresponding router that can consider the specific proper-
ties of the routing architecture. Therefore, the designs of architectures and CAD
tools are inseparable. This paper focuses on the unified design of routing architec-
tures and routing tools for array-based FPGAs.
1.1 FPGA Architecture

Figure 1 shows a multi-segmented array-based FPGA architecture [18, 27]. A
multi-segmented array-based FPGA consists of two-dimensional logic modulesand
routing resources (see Figure 1(a)). The logic modules, denoted by L, are cus-
tomized for implementing various logic functions. The logic modules can be con-
nected with the routing resources. The routing resources comprise vertical and
horizontal routing channels and their intersection areas. A routing channel is com-
posed of a set of tracks with segments of different lengths. (See Figure 1(b) for an
example.) The area which a vertical and a horizontal channels intersect is referred
to as a switch module, denoted by S. Each side of a switch module is linked with
a set of segments. Segments on different sides of a switch module can be joined
together through the switch module to form a longer connection.
1.2 Previous Work

Segmentation designs for FPGAs have been studied to some degree in the lit-
erature [3, 6, 11, 19, 22, 24, 29]. Most of the previous work either only deals with
the segmentation design for row-based FPGAs (����, channel segmentation design),
or just points out their ideas for array-based FPGA segmentation design without
providing specific algorithms or implementation. El Gamal et al. showed that a
segmented routing channel can achieve comparable routability through appropriate
arrangement of segment lengths. Roy and Mehendale in [24] and Zhu and Wong
in [29] used stochastic methods for channel segmentation design. Pedram et al.
in [22] later presented an analytical model for the design and analysis of segmented
channel architectures.

Not much work has been reported for the segmentation design for array-based
FPGAs. Zhu et al. observed that segmentation design for an array-based FPGA can
be done in two stages—a segmentation design followed by a switch-module con-
struction [28]. Based on the similar idea, Mak employed a decomposition procedure
and showed how the two-stage approach can be done [19]. Chang et al. presented
a matching-based algorithm for channel segmentation design and pointed out that
the similar idea could be extended to the design for array-based FPGAs [6]. Betz
and Rose explored the best routing architectures for multi-segmented array-based
FPGAs with the considerations of buffer insertion and switch types [3].

Many routing algorithms for array-based FPGAs have been reported in the lit-
erature, e.g., [1, 2, 4, 5, 7, 9, 10, 14, 15, 16, 20, 25]. Most of these algorithms
either consider routability only, without considering timing constraints [5, 7, 20],
or just deal with one type of segments [1, 5, 7, 14, 16, 25]. Research on timing- and
routability-driven routing for array-based FPGAs with segments of multiple lengths
is still limited. Brown et al. in [15] proposed the SEGA detailed router which can
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Figure 1: (a) The multi-segmented array-based FPGA architecture. (b) Segments of
different lengths in a channel.

deal with routability, timing, and multi-length segments at the same time. Based on
the Pathfinder negotiated congestion algorithm (a maze router variant) [4, 9], Betz
and Rose developed a combined placer and router called VPR [2] which considers
only single-length lines. Betz et al. in [4] extended it to a combined placer and
router that can consider more sophisticated area and timing models. A hierarchical
timing-driven router for multi-segmented array-based FPGAs was presented in [8]
by Chang et al.. The work intends to minimize the number of connections that
violate timing constraints under area constraints.

1.3 Our Contributions
In this paper, we present unified matching-based algorithms for multi-

segmented array-based FPGA routing and segmentation design. We extend the ap-
proach for the channel segmentation design used in [6] to the array-based segmen-
tation design. We first consider a net-matching problemand describe a matching-
based algorithm to optimally solve the problem. Using the solution to the problem
as a subroutine, we develop an effective matching-based algorithm for array-based
FPGA segmentation design. For the multi-segmented array-based FPGA timing-
driven routing, we propose a matching-based routing algorithm that can take ad-
vantage of the special properties of segmented routing architecture to optimize
routablility, timing, or both. Unlike most existing algorithms that route net by
net [1, 5, 7, 10, 14, 20, 26], our matching-based method, in particular, routes a
set of nets at a time. Thus, with this more global perspective, our router can utilize
various segments more effectively. We first consider delay-bound distribution and
redistribution for each net, then formulate a subnet allocation problem for effec-
tively utilizing wire segments for routing under timing constraints, and develop an
efficient matching-based approach to solve the problem. Experimental results show
that the segmentations constructed by our algorithm significantly outperform those
used in commercially available FPGAs. For example, our designed segmentations,
on average, achieve 14.6% and 19.7% improvements in routability, compared with
those used in the Lucent Technologies ORCA 2C-series and the Xilinx XC4000E-
series FPGAs, respectively.

The remainder of this paper is organized as follows. Section 2 formulates
the segmentation design and segmented routing problem. Section 3 presents
our matching-based algorithm for segmentation design. Section 4 proposes our
matching-based approach for timing-driven routing. Finally, experimental results
are reported in Section 5.

2 Problem Formulation
For an �� � �� (number of logic modules) array-based segmentation, there

are �� � � horizontal and �� � � vertical routing channels. The channels in a



multi-segmented array-based FPGA are labeled �� �� �������� from the top to the
bottom, and ����� � �� ������ � �� � � from the left to the right. The length
of a channel is measured by the number of columns. We number the columns
�� �� � � � � �� � � (�� �� � � � � �� � �) from the left (or top) to the right (or bot-
tom). A net � is divided into several subnets, namely ��, � � � � �, where
� is the number of subnets in the net � . Let 	�� denote the channel associated
with the subnet ��. A subnet �� of net � in channel 	�� is represented by a three-
tuple �
������ � ������� � 	�� �, where 
������ and ������� are the leftmost
(or topmost) and the rightmost (or bottommost) points of the subnets in a horizontal
(or vertical) channel. Figure 2(a) shows a �� � array-based FPGA which contains
four channels. There exists a net (global route) � which is composed of six subnets,
namely ��� ��� � � � � �� . The subnet �� which ranges from column 2 to column 3 in
channel � is represented as ��� �� �� (see Figure 2(b)), and the net � is denoted by
���� �� ��, ��� �� ��, ��� �� ��, ��� �� ��, ��� �� ��, ��� �� ��� (see Figure 2(a)).
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Figure 2: Representation of a net � in an array-based FPGA.

The spanof subnet �� is from 
������ to ������� . One subnet overlaps
another if two subnets have the same channel number and the spans of the two
subnets intersect. One net overlaps another if there exits a subnet in the net overlaps
a subnet in the other. A segment coversa subnet if the span of the subnet is within
the bounds of the segment, and the segment and the subnet are in the same channel.
A set � of segments covers a routing instance � (i.e., a set of nets) if for each net
� in �, there exists a set of consecutive segments in � that cover the net and no
segment in the set covers more than one net. Let � be the timing constraint for a
net, determined by the maximum number of segments allowed for the critical path
in a net. For the K-segment routing, each routing path of a net can use up to �
segments.

We formulate two closely related problems: one for segmentation design, and
one for router design. The Segmentation Designand the Timing-Driven Routing
Problems for Multi-segmented Array-Based FPGAsare formulated as follows:

� The Segmentation Design Problem: Given a set of routing instances (�� ,
� � � � �), a channel width ��, and a timing constraint � (the maxi-
mum number of segments used for the critical path), design an array-based
segmentation to maximize the success rate for �-segment routing.

� The Timing-Driven Routing Problem: Given a multi-segmented array-
based FPGA, a netlist of global routes, and a timing constraint � (the max-
imum number of segments used for the critical path), determine the detailed
routing paths for each net so that the routability is optimized and their tim-
ing constraints are satisfied.

3 Matching-Based Segmentation Design
We first formulate a net matching problem to find a most economicalset �

of segments which can cover each of given two input routing instances. Then,
we apply a weighted bipartite matching algorithm to optimally solve the problem
in polynomial time. Using the solution to the problem as a subroutine, we then
develop an effective bottom-up matching-based algorithm for array-based FPGA
segmentation design for an arbitrary number of input routing instances.
3.1 The Net Matching Problem

To formulate the net matching problem, we need to consider the spans of nets
in a routing channel to quantify the “similarity” (overlap length) between two nets.
Intuitively, it is more economical to design specific segments for nets with greater
similarity. Since a net may contain multiple subnets in onechannel, we shall first
quantify the similarity between two subnets, then between two sequencesof subnets
in a channel, then between two nets, and finally between two sets of nets.

Let � and � be two overlapping nets. The overlap length between nets
� and � , denoted by ������� �	. If nets � and � are merged, the result-
ing net, defined as �������� �	. Let � and � be two finite sets of nets.
A net matching� between � and � is a set of ordered pairs of intersect-
ing nets ���� ��	� ���� ��	� � � � � ���� ��	, where 	
 ���� ��� � � � � ��� and 



���� ��� � � � � ��� are two sets of distinct nets from � and � , respectively. We can
replace �� and �� by ��������� ��	, replace �� and �� by ��������� ��	,
� � �, and replace �� and �� by �������� � ��	. After the replacement, the set of
nets � � � is represented as follows:

��������� 	 
 ���������� ��	���������� ��	� � � � �

��������� ��	� � �� � 		 � �� � 
	� (1)

Let Length(�) be the total length of all nets in set � . We formulate the Net
Matching Problemdescribed as follows:

� The Net Matching Problem: Given two finite sets � and � of nets, find a
matching � such that �����	���������� 		 is minimized.

To solve the Net Matching Problem, we reduce the problem to computing the max-
imum matching in a weighted bipartite graph. Based on the weighted bipartite
matching theory, we can optimally solve the Net Matching Problem in polyno-
mial time. Given two finite sets � and � of nets, a weighted bipartite graph
� 
 ������	 can be constructed. For each net � in � (� in � ), we introduce
a vertex �� (�� ) in the set � (� ) of vertices. For each pair of overlapping nets,
�� � , � � � and � � � , connect �� to �� by an edge ��� 
 ��� � �� 	 � � with
a weight computed by the weight function � � �   � defined as follows:

����� 	 
 ������� �	� (2)
Then we can apply a maximum weighted bipartite matching algorithm [21] on �

to solve the Net Matching Problem optimally.
A matching � of a graph � 
 ��� ���	 is a subset of the edges with the

property that no two edges of � share the same vertex. Edges in � are called
matched edges; they are unmatched, otherwise. Let ����	�!���� 	 be the set of
the matched edges in a weighted bipartite graph induced by the finite sets � and
� of nets, and "���	������	�!���� 		, ����	�!���� 	 � �, denotes the
total weight of the edges in ����	�!���� 	. We have the following lemma and
theorem.
Lemma 1 �����	���������� 		 

�����	��	 � �����	�� 	�"���	������	�!���� 		.
Theorem 1 The maximum weighted bipartite matching algorithm optimally solves
the Net Matching Problem in#��$� � $�	� � ����	 time, where$� and$� (��
and��) are the numbers of nets (subnets) in the two input sets.
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Figure 3: A matching-and-merging example for nets. (a) Two sets of nets. (b) The corre-

sponding weighted bipartite graph. (c) The matching result for the two sets of nets.

Example 1 Figure 3(a) shows two sets� 
 ���� ��� ��� ��� and � 

���� ��� ��� of nets in a multi-segmented array-based FPGA.The induced



weighted bipartite graph is given in Figure 3(b). The spans of subnets of a net
is shown next to its corresponding vertex. (Note that in this example, each net con-
tains only one subnet in a channel.) The weight for each edge is computed by the
function� and shown beside the edge. The maximum weighted bipartite matching
� between� 
 ���� ��� ��� ��� and� 
 ���� ��� ��� is illustrated in Fig-
ure 3(b) by heavy lines. In this example,� 
 ����� ��	� ���� ��	� ���� ��	�.
Note that�� is unmatched. Figure 3(c) shows the resulting configuration of
replacing �� and �� by ��������� ��	, �� and �� by ��������� ��	,
and �� and �� by ��������� ��	. Let ��� 
 ��������� ��	� ��� 

��������� ��	� ��� 
 ��������� ��	, and��� 
 ��. After the replacement,
the set of nets� � � becomes��������� 	 
 ����� �

�
�� �

�
�� �

�
��. The reader can

verify that�����	���������� 		 
 �������	� �����
�
�	� �����

�
�	� �����

�
�	 


 � � � � � � 
 � is the minimum possible total union length for merging
� and� . (Note that�����	���������� 		 
 �����	��	 � �����	�� 	 �
"���	������	�!���� 		 
 ��������	�������	�������	 
 �.)

3.2 The Matching-Based Segmentation Design Algo-
rithm

Similar to the work in [6], our design algorithm consists of three stages: (1)
the matching-and-merging stage, (2) the tuning stage, and (3) the filling stage. In
the matching-and-merging stage, we repeatedly apply the aforementioned weighted
bipartite matching algorithm to merge input routing instances and generate a set �
of nets that can cover each of the input routing instances. In the tuning stage, we
find a set �� of nets from � , �� � � , which can be packed (routed) into channels. In
the filling stage, we fill the empty space between each pair of subnets and determine
the switch locations in the �� tracks of each channel to form a set of segments.

The matching-and-merging stage proceeds in a tree-like bottom-up manner.
Given � routing instances ��� ��� � � � � �	 , each with $�� $�� � � � � $	 nets, re-
spectively. We apply the aforementioned weighted bipartite matching algorithm to
merge �� and �� , �� and �� , �� and �� , � � �. The process proceeds level by
level in a bottom-up manner until a final merged routing instance is obtained. Then,
subnets belonging to the same channel are extracted for further process.

Let �
 be the set of the nets in the final merged routing instance. We have the
following theorem.
Theorem 2 �
 covers��, ���� � � � �.

By Theorem 2, using a set � of segments covering �
 for 1-segment routing can
route all routing instances ��� ��� � � � � �	 . As mentioned earlier, however, there
is usually a limitation on the number of tracks �� in a routing channel. Therefore,
it is not always possible to construct channels formed by all the segments in �.

In the tuning and the filling stages, we construct a segmentation architecture
from the final merged routing instance �
 channel by channel. First, we apply the
basic left-edge algorithm [17] to route the subnets in each channel. In the tuning
stage, we sort the resulting tracks in the non-increasing order of their total lengths
occupied by the subnets. The first �� tracks are chosen for further construction,
and the tuning stage is done. In the filling stage, we determine the switch locations
on the tracks and fill the empty space between each pair of subnets in each track to
form a set of segments. We place a horizontal switch on the position that makes the
two resulting segments most balanced in length, if there is an empty space between
two subnets on a track.

By Theorem 3, the time complexity of our algorithm is given by #���$� �
����	, where � is the number of input routing instances and $ (�) is the max-
imum number of nets (subnets) in an input routing instance. Note that empiri-
cally the number of resulting nets per routing instance grows only linearly as the
matching-and-merging process proceeds, instead of exponentially in ����� steps
($� �$� �$� � � � � ���		�$) as shown in the theoretic analysis.

Theorem 3 Algorithm SegDesigner runs in#���$� � ����	 time, where�
is the number of input routing instances and$ (�) is the maximum number of nets
(subnets) in a routing instance.

4 Matching-Based Timing-Driven Routing
The goal of timing-driven routing is to route all nets in a circuit under the tim-

ing constraint. To perform timing-driven routing, we initially determine the delay
bound for each subnet so that the timing constraint of each net is satisfied. Then,
we formulate a subnet allocation problem to route subnets on wire segments; this
problem is solved in polynomial time by a weighted bipartite matching algorithm.
By repeatedly applying the solution to the problem as a subroutine, we present an
effective matching-based algorithm for the segmented routing problem. After a
subnet is routed, its remaining delay bound may be redistributed to increasing rout-
ing fexibility of other subnets. Thus, we also present a delay-bound redistribution
algorithm to optimize the routing.

4.1 Delay-Bound Distribution
In this subsection, we shall first discuss the delay bound allocation for each

subnet and then for each net. We use a tree to represent a net (global route) � (could
be a two- or multi-terminal net). For each terminal or each junction of subnets, we
introduce a vertex �. For each subnet �� of net � , we introduce an edge ��. The
delay bound of the edge �� (i.e., the maximum number of segments allowed to be
used by a subnet) is denoted by !�� . We will use �� and �� interchangeably in the
rest of the paper.

We need the following notations to explain our procedures:
� % : A routing tree representing a net.

� : Root of thhe tree % .
� �: A longest path rooted at the root of a tree.
� ��: Number of subnets on a path �; i.e., the path length of �.
� ���&�	: Source (Sink) of � (i.e., �� 
 ).
� '� : Delay bound for the tree rooted at vertex �.

Since the delay bound for a tree is � (' 
 �), the delay bound of the longest
path � of the tree is also � .

The delay bound !� for the edge � on a path � can be computed by Algorithm
Path Delay Bound Distribution. We distribute the delay bound !� of edge � on �
proportional to the ratio of the edge length to the total length of �. After edge delay
bound for each edge on the longest path is determined, we should compute the delay
bounds for trees rooted at the vertices on the longest path, and then record them at
the vertices (denoted by '�). The delay bound '� of a vertex � on � is the sum
of the edge delay bounds from � to &�, or equivalently the difference between the
delay bound of the longest path and the sum of the edge delay bounds from �� to �,
i.e.,

'� 

�

��� 
�����

!� 
 ' �
�

��� 
�����

!��

where ( ��� )	 is the path from vertex � to vertex ). More specifically, we have
the following lemma.
Lemma 2 '� 


�
��� 
�����

!� � �� 
�����
for each� on the path�.

Algorithm Net Delay Bound Distribution for computing the delay bounds for
the subnets of net � is described as follows. We first construct a tree % for the
net � as described earlier. The root  of % is extracted and assigned the delay
bound �—the timing constraint of net � . Then, for all paths from the root to sinks
in % , number of subnets on the paths are computed and sorted in non-increasing
order. (If two paths have the same number of subnets, they are sorted according
to their lengths.) We repeat the following process to compute the delay bounds for
all subnets. The first path � is extracted, and the delay bounds for all subnets on �
is then computed by Algorithm Path Delay Bound Distribution. After edge delay
bounds on � are determined, we can compute the delay bound for each path rooted
at a vertex on the � by Equation (3). The processing for the path � is then finished
and removed from % , and then we repeat the same process on the resulting tree. By
careful analysis, we have the following time complexity.
Theorem 4 Algorithm NetDelay BoundDistribution runs in#�� �� �	 time for a
net�, where� is the number of subnets in�.
4.2 The Subnet Allocation Problem

A clique is a set of subnets in a channel, and all the subnets in the clique overlap
each other. A maximal clique* is a clique in which there exists no subnet �� such
that �� �� * and * � ���� forms a new clique. For easier presentation, we use
�� and �� to denote two subnets of differentnets throughout the rest of this paper.
A maximum cliqueis a maximal clique * with the maximum cardinality. Our
approach is based on the following observation. If one subnet overlaps another, the
two subnets cannot be assigned to the same track. Therefore, subnets in a clique
must be allocated to different tracks.

Before detailing the subnet allocation process, we shall first define the
utilization-timing ratio, ����� �	, for a subnet routing on a set of consecutive seg-
ments in the track � of channel 	�� � ����� �	 is used to measure the utilization of
occupied segments in the track � by the subnet �� as follows:

����� �	 

������	�

�����
����
�	

�
+

,
� (3)

where ������	 and ����
�	 are the respective lengths of the subnet �� and the
segment 
� , where 
� , � � ) � ,, is a segment occupied by the subnet �� in the
track � of channel 	�� , , is the number of segments used, and + is a user’s specified
parameter. If routability is the only concern, + is set to zero and ����� �	 becomes
a pure segmentation utilization ratio. On the other hand, + is set to a positive
real number for simultaneous routability and timing optimization. The subnet �� is
routable on the track � if all segments 
� , � � ) � ,, in the track � are not used by
other net; it is unroutable, otherwise.

A subnet allocation� between a clique * of subnets and a set - of tracks in
a channel is a set of ordered pairs of routing results ���� ��	, ���� ��	, � � �, ���� ��	,
where . 
 ���, ��, � � �, ��� and / 
 ��� , �� , � � �, ��� are a set of subnets and a set
of tracks from * and - , respectively. The total ratio of subnets in * routed on the
tracks in - , defined as ������*�-	, is computed as follows:

������*� -	 

�

�����

����� ��	� (4)

We define the Subnet Allocation Problemas follows:
� The Subnet Allocation Problem: Given a clique * of subnets and a set
- of tracks in a channel, find an allocation � such that ������*� -	 is
maximized.

We can solve the Subnet Allocation Problem in polynomial time based on a
weighted bipartite matching algorithm. Given two finite sets * of subnets and -
of tracks in a channel, we construct a weighted bipartite graph � 
 ��� ���	 as
follows. For each subnet �� in * and each track � in - , we introduce a vertex ���
(��) in the set � (� ) of vertices. If a subnet �� is routable on a track � (�� � *
and � � -), connect ��� to �� by an edge ����� 
 ���� � ��	 � � with a weight
computed by the weight function � � �  �� defined as follows:

�������	 
 ����� �	� (5)



A matching� of a graph� 
 ��� ���	 is a subset of the edges with the property
that no two edges of � share the same vertex. Edges in � are called matched
edges; they are unmatched, otherwise. For each edge ����� � �, we would route
the subnet �� on the track �, and thus the segments occupied by �� in the track
cannot be used by other nets. If there exists a subnet in * which cannot match
any track in % , then the routing fails in the given number of tracks. We have the
following theorem:
Theorem 5 The maximum weighted bipartite matching algorithm optimally solves
the Subnet Allocation Problem in#���*�� �-�	�	 time, where* is the maximum
clique of subnets and- is the set of tracks in a channel.
4.3 Delay-Bound Redistribution

A subnet is relaxableif its delay bound is greater than the number of segments
consumed by the subnet. To systematically reallocate the remaining delay bound
of a relaxable subnet to unrouted subnets to increase routing flexibility without
violating the timing constraint of a net, we propose the Delay Bound Distribution
algorithm.
4.4 The Matching-Based Timing-Driven Routing Algo-

rithm
Our timing-driven routing algorithm consists of two stages: (1) the distributing

stage and (2) the allocating-and-redistributing stage. In the distributing stage, we
determine the delay bound for each subnet to satisfy the timing constraint. In the
allocating-and-redistributing stage, we repeatedly find a maximum clique and apply
the the aforementioned weighted bipartite matching alogrithm to route subnets to
tracks; the delay bounds of unrouted subnets may be redistributed after a maximum
clique (a set of subnets) is routed into the track.

Given a routing instance with $ nets, we determine the delay bounds for all
subnets by applying Algorithm Net Delay Bound Distribution described in Sub-
section 4.1. Then, subnets belonging to the same channel are extracted for further
processing in the next stage. We shall process “critical” channels first. Therefore,
those nets in the channel with higher density should be routed first than those in the
channel with lower density. We compute the densities '������’s of all channels
to determine the routing ordering of channels. In each iteration of the while loop,
an unprocessed channel with the highest density is extracted, and we repeatedly
extract the maximum clique * from the remaining subnets in the channel and find
the maximum matching between the subnets in * and the tracks in - by apply-
ing the aforementioned weighted bipartite matching algorithm. After all subnets in
* are routed into the tracks, we should redistribute the remaining delay bounds to
unrouted subnets for those relaxable subnets.

Note that finding the maximum clique in a given interval graph (which corre-
sponds to the subnets in an FPGA routing channel) can be solved in#�� �� �	 time,
where � is the number of intervals (subnets) in the graph [12]. Also, the number of
subnets in a clique cannot exceed the number of tracks in a routing channel. There-
fore, the aforementioned weighted bipartite matching can be solved in#���� 	 time,
where ��

� is the number of tracks in a channel. We have the following theorem.
Theorem 6 Algorithm MatchingBasedRouter runs in#�������	 time, where
�� is the number of tracks in a channel,� is the length of channel, and�� is the
number of channels in a multi-segmented array-based FPGA.

5 Experimental Results
We implemented our segmentation design and timing-driven routing algorithms

in the C++ programming language on a PC with a Pentium II 266 microprocessor
and 128 MB RAM. The weighted bipartite matching code was adopted from the
public LEDA package. The routability of the segmentation architectures designed
by our algorithm was compared with that of the Lucent Technologies ORCA 2C-
series [18] and the Xilinx XC4000E-series [27] FPGAs, based on the timing-driven
router presented in this paper.

Each routing channel in an ORCA 2C-series FPGA constains 8 single-length
lines, 8 quad-length lines, and 4 longlines [18] (number of tracks � 
 ��), and
that in an XC4000E-series FPGA contains 8 single-length lines, 4 double-length
lines, and 6 longlines [27] (number of tracks � 
 ��). The single-length lines
form a grid of horizontal and vertical lines that intersect at switch modules. The
double-length (quad-length) lines consist of a grid of segments twice (quadruple)
as long as the single-length lines. The longlines are a grid of segments that run
the entire vertical or horizontal channel. Our experiments were based on the same
numbers of tracks as those used by the two types of FPGAs.

To prepare for a suite of benchmark circuits for experimentation, we first gen-
erated pins on a �� � �� (number of logic modules; � 
 ��) FPGA, with their
Manhattan distances based on the discrete, geometric, normal, and Poisson dis-
tribuitons, represented by “D”, “Ge”, “No”, and “Po”, respectively. We then routed
each pin instance by the global router used in [7].

For the purpose of fair comparisons, we constructed two segmentation architec-
tures, one with 18 tracks per channel (� 
 ��) and one with 20 tracks (� 
 ��)
per channel for comparison with the respective XC4000E-series and ORCA 2C-
series architectures, based on eight new sets of routing instances generated by the
aforementioned procedure (each set with 100 routing instances and each instance
with 400–700 routes). We then routed the 800 instances by the timing-driven router
presented in this paper on our designed, the XC4000E-series, and the ORCA 2C-
series architectures. Tables 1 and 2 list the comparisons for routing success rates
between our designed and the XC4000E-series architectures and between our de-
signed and the ORCA 2C-series ones, respectively. The results shows that our
design, on average, outperforms the XC4000E-series (ORCA 2C-series) architec-
ture by 14.8% and 22.6% (9.5% and 15.6%) improvements for 5- and 8-segment
routing, respectively.

���� 5-segment 8-segment
Ours XC4000E Ours XC4000E

�� (0.9, 0.1, 0, 0, 0) 74 63 84 67
�� (0.8, 0.1, 0, 0, 0) 72 62 85 68
��� ��,� = 0.1 72 64 82 68
��� ��,� = 0.5 99 93 99 93
�	� 
 = 5, �� = 4 78 66 89 69
�	� 
 = 3, �� = 5 83 72 91 76
�	� �������,  = 5 78 66 89 70
�	� �������,  = 7 60 51 76 56

Average - 77.0 67.1 86.9 70.9
Comparison - 1.148 1.000 1.226 1.000

Table 1: Comparison between our designed architecture and the XC4000E-series one for
the success rates for 5- and 8-segment routing (� � ��� � � ��).

���� 5-segment 8-segment
Ours ORCA 2C Ours ORCA 2C

�� (0.9, 0.1, 0, 0, 0) 75 67 86 73
�� (0.8, 0.1, 0, 0, 0) 72 66 87 74
��� ��,� = 0.1 72 66 84 72
��� ��,� = 0.5 99 94 99 94
�	� 
 = 5, �� = 4 84 71 90 77
�	� 
 = 3, �� = 5 79 76 92 80
�	� �������,  = 5 79 71 90 77
�	� �������,  = 7 60 55 78 64

Average - 77.5 70.8 88.3 76.4
Comparison - 1.095 1.000 1.156 1.000

Table 2: Comparison between our designed architecture and the ORCA 2C-series one for
the success rates for 5- and 8-segment routing (� � ��� � � ��).

Both of our routing and segmentation design algorithms are quite efficient. The
run time for routing an instance with 400–700 routes ranged from 1.9 sec to 3.8 sec,
and those for designing a segmentation architecture ranged from 152 sec (Distribu-
tion: ���; � 
 ��) to 415 sec (Distribution: ���; � 
 ��).

6 Conclusion
In this paper, we have proposed unified matching-based algorithms for array-

based FPGA segmentation and routing design. Experimental results have shown
that the unified approaches are very efficient and lead to segmentation architec-
tures with significantly higher routability than industrial ones. More importantly,
our work provides an insight into the unified design of architecture and CAD for
FPGAs.
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