
An Object-Oriented Design Process
for System-on-Chip using UML

Qiang Zhu, Akio Matsuda,

Shinya Kuwamura, Tsuneo Nakata
Fujitsu Laboratories Limited

1-1, Kamikodanaka 4-chome, Nakahara-ku,
Kawasaki 211-8588, Japan

0081-44-754-2263
{shiyu, amatsuda, kuwa,
nakata}@flab.fujitsu.co.jp

Minoru Shoji
Fujitsu Limited

1-1, Kamikodanaka 4-chome, Nakahara-ku,
Kawasaki 211-8588, Japan
0081-044-754-2391

shoji.minoru@jp.fujitsu.com

ABSTRACT
The object-oriented design process has been a hot topic in
software development since it will improve product quality and
productivity significantly, which is also a major issue in system-
on-chip design. In this paper, a design process is proposed for
hardware-software heterogeneous systems by reinforcing
parallelism, structure, and timing. The management of design
abstraction is also introduced for refinement of hardware. UML
is used as a modeling language, and the reinforcement above is
gracefully integrated into UML by its extensibility mechanism.
An example of architecture exploration and performance
analysis is illustrated through the application of the process to
an image decoding design.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]

General Terms: Performance, Design, Experimentation

Keywords: System Level Design, Design Process, UML,
Object-Oriented Analysis and Design, System Level
Performance Evaluation

1. INTRODUCTION
With increasing complexity of hardware-software heterogeneous
systems such as SoC (System-On-Chip), SoC design becomes
very difficult and costly. There are two risks in SoC design. The
risk of functionality is caused by misunderstanding requirements
from customers. If designers implement the system according to
wrong specification, perhaps they have to make a huge effort to
modify the design when they notice their misunderstandings.

The risk of performance is caused by insufficient performance
evaluation on the early stage of design. If designers finished the
design but it cannot satisfy performance requirements. They
have to take a long time to redesign it.

The latter can be resolved by using system level performance
evaluation and architecture exploration technology such as Y-
chart approach [1] and environments such as Polis [1], VCC [2]
and Spade [3].

For avoiding the risk of functionality, we need a specification
analysis and modeling techniques. In software community, the
Object-Oriented Analysis and Design (OOAD) techniques [4]
are used for analyzing the requirements from customer and the
functionality of a target application efficiently. The UML
(Unified Modeling Language) [5] is employed as a modeling
language to characterize the artifact of the analysis and design
obviously, clearly and comprehensively. We can make a set of
graphical views for system with UML in order to confirm the
correctness of analysis and design before implementation.

In this paper, we propose SLOOP (System Level design with
Object-Oriented Process) design process that integrates
modeling techniques with the system level performance
evaluation and architecture exploration methodology. We show
two contributions in this paper. Firstly, we establish a system
level performance evaluation methodology for verifying the
performance and functionality at system level. Secondly we
extend UML using its extensibility mechanisms to model
parallelism, structure and timing that are essential notions in
SoC design.

In Section 2, we introduce the overview of SLOOP design
process. The extension of UML notations is described in Section
3. We demonstrate an image decoding system application and
experimental results in Section 4. Finally, we make a conclusion
for SLOOP design process.

2. THE SLOOP DESIGN PROCESS
SLOOP employs four models to develop the SoC system
incrementally before software and hardware implementation.
Each model details three aspects of the target system –
functionality, structure and timing [6]. Figure 1 indicates the
design flow of SLOOP.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

249

Conceptual
Model

Functional Model Architectural
Model

Performance Model

Software
Implementation

Hardware
Implementation

Mapping

Abstraction Level

High

Low

requirments

Object-Oriented
Analysis

function performance

Figure 1. Design flow of SLOOP

Conceptual model describes the result of analysis of
requirements from customer. In SLOOP, we analyze
requirements from customer with OOAD techniques. The
approach of analysis is same as that of application software.
Conceptual model helps designers to grasp requirements from
customers include functional requirements and non-functional
constraints such as performance, area, shape and power
consumption etc. The misunderstanding of requirements can be
avoided using artifacts of conceptual model.

Functional Model focuses on the structure of function but not
considers the physical architectures and timing. In functional
model, we expose task level parallelism and make
communication explicitly. Functional model consists of
processes and communications between processes. In functional
model, there are two indications for measuring the workload of
the model.

• Computation workload is statistics of the number of
invocation of each process.

• Communication workload is used for calculating the
number of communicated tokens.

Architectural model represents the physical resources of
architecture. Resources consist of processing resources and
communication resources.

• Processing resources such as processors, DSPs, ASICs
are used for implementing processes in function model.

• Communication resources such as buses, memories are
employed to realize the communication channels among
processes in function model.

Each resource in architectural model is parameterized with their
attributes. For example, processor is parameterized with the
multi-task scheduler. Bus is parameterized with bus width,
transfer latency, arbitration algorithm. The architectural model
in SLOOP is provided as a template class library, so that
designers can manipulate it through making a class instance
simply.

Performance model maps processes in functional model onto
processing resources of architectural model explicitly, as well as
assembling a communication channel with communication
resources. Using performance model, system level trade-offs can
be performed by evaluation of performance for a selected
architecture. Using the statistics of computation workload and
communication workload, designers can find the bottleneck of
the selected architecture easily, so that it can help designers to

improve the system to satisfy the performance requirement of
design. In performance model, designers give the run-time of
each process, which is mapped onto processors or ASICs. The
run-time can be obtained either from a lower level model of the
processing resource (ISS model, High Level Synthesis Tools),
or can be estimated by an experienced designer. In performance
model, both of functionality, structure and timing must be
considered. Consequently performance model can be used for
both function and performance verification. After performance
model, the partition of hardware and software will be known,
and can be implemented respectively after performance model
shown in Figure 1.

SLOOP uses C++ and SystemC [8] as a description language to
implement each model. Designers can confirm function and
performance through simulation-based verification. In SLOOP,
we employ UML as a specification language before
implementation of each model. We expect two effectives via
using UML:

• Clarification of specification – Because UML can
model design specification using graphical diagrams,
designers can confirm the correctness of design before
coding using UML.

• Language independent design – Because UML does
not depend implementation language, we can
implement UML model using any implementation
language such as C, SystemC, HDL.

For reasons above, SLOOP introduces two phases to realize
each model. Modeling phase specifies results of analysis and
design using UML. Implementation phase implements the UML
model into C++/SystemC as an executable model shown in
Figure2.

Conceptual Model

Funcational Model

UML C++

Modeling Phase Implementation Phase

UML

UML

SystemC

SystemCPerformace Model

Figure 2. SLOOP design process

SLOOP adopts C++ as an implement language for conceptual
model. For realizing the parallelism, timing and software-
hardware modeling, we adopt SystemC, that is a C++ library and
run-time environment for modeling systems both at the RT level
and at more abstract levels in SLOOP for implementing
functional model, architectural model and performance model.

3. THE EXTENSION OF UML
UML is a collection of graphical notations for capturing a
specification of a software system. The UML is widely used in
software community as a modeling language to specify the
requirement, document the structure, and analyze the target
system successfully. The notations of UML have formal syntax
defined by the OMG [5]. They are primarily graphical, with

250

textual annotation. Consequently, designers can certainly grasp
the specification, which is described in UML and employ UML
as a standard to communicate each other.

For reasons above, we also employ UML as a modeling
language in SLOOP. However, the standard UML insufficiently
models the software-hardware heterogeneous systems because of
lacking in describing parallelism, architectures and timing,
which are indispensable notions for describing heterogeneous
systems. The Modeling for software-hardware heterogeneous
systems is similar to model real-time software systems. The
ObjecTime ROOM methodology [10] is developed specifically
for dealing with distributing real-time systems by using the
extensibility mechanisms of UML. Rose RealTime [9] is a
commercial tool from Rational for modeling real-time software
systems based on ROOM technology. The Embedded UML [11]
is proposed to deal with the embedded system.

3.1 Notations
In SLOOP, we propose an extension of UML derived from
ROOM and Rose RT. The key notions in functional
decomposition as defined in SLOOP are:

• Module – A structural entity, which can contain a
process, ports channels or other modules. The module is
an active object used for realizing the concurrency and
parallelism. The concept of module is similar to the
concept of ‘Capsule’ in ROOM and Rose RT. In UML, a
module is represented by the <<module>> stereotype of
class.

• Interface – Provides a set of method declarations, but
provides no method implementations and no data fields.
The interface also defined in standard UML concepts.
The mechanism of interface can improve the reusability
of models. In UML, an interface is modeled by the
<<interface>> stereotype of class.

• Channel – Implements one or more interfaces, and
serves as a container for communication functionality.
Channels represent the communication channels
between processes. This is similar to the nation of
‘Connector’ as defined in ROOM and Rose RT. A
Channel is described by the <<channel>> stereotype
class in UML.

• Port – An object through which a module can access a
channel’s interface. Ports are objects whose purpose is
to act as boundary objects to a module instance. The
concept of port also defined in ROOM and Rose RT. In
UML, a port is represented by the <<port>> stereotype
of class.

Note that these notions are also proposed in SystemC2.0 [13].

Figure 3 indicates an example of a single port named p
belonging to module class ModuleA. This port depends on the
interface of channel defined by channel class ChannelA.

In SLOOP, we employ the role model [10] to describe the
structure of function model and performance model. We call
it structure diagram. Figure 4 shows an example of structure
diagram that describes the structure of modules.

<<module>>
ModuleA

<<port>>
PortA <<interface>>

InterfaceA

<<channel>>
ChannelA

1

-p 1

Figure 3. Modules, interfaces, ports and channels

<<module>>
:ModuleDecoder

<<module>>
:ModuleIQ

iq_in:pixel_read_if

iq_out:pixel_write_if

<<channel>>
iq2decoder_ch:pixel_fifo

<<channel>
decoder2iq_ch:pixel_fifo iq_in:pixel_read_if

iq_out:pixel_write_if

Figure 4. Structure Diagram

In structure diagram, objects are represented by the
appropriate classifier roles - sub-module by module roles, ports
by port roles and channels by channel roles. To reduce visual
clutter, the port roles are generally shown in iconified form,
represented by black-filled squares shown in Figure 4.

Using these notations, each model in SLOOP can be modeled by
extension of UML. In next Section, we introduce application of
SLOOP via an image decoding system.

3.2 Reusability of Models
For improving the reusability of each model, we introduce
interface-based design methodology [14], namely, separating
behavior from communication. In functional model, we define
behaviors as processes (modules), communications as channels.
The process and channel can be refined into performance model
respectively. In performance model, we must evaluate various
architectures within a short period, the reusability of models
becomes very important to shorten the design cost. Interface-
based design methodology can help designers to evaluate
different communication channels without modifying behaviors.

The notions of interfaces and channels can help us to separate
behavior from communication. The details can be found in [13]
and [15].

Using interface-based design methodology, we can realize
performance model easily by modifying functional model with
less effort.

4. A CASE STUDY
We have applied SLOOP design process to an image decoding
system. In conceptual model, we analyzed the decoding
algorithm with Object-Oriented analysis techniques. We created
functional model using Kahn Process Network (KPN) [12]. We
selected bus architecture as an architectural model. After
mapping functional model onto architectural model, we

251

evaluated throughput of image decoding system to explore an
adequate architecture using simulation.

4.1 Conceptual Model
The conceptual model of image decoding system is started with
the use case analysis to find the boundary of target system and
associate the external stimulus ‘actors’ and ‘use-cases’ of system
via the use of relationships. Figure 6 indicates a use case
diagram of image decoding system. In this case, there is only
one use case “Decode Image” and three actors. In conceptual
model, class diagrams are employed to describe the data
structure, and sequence diagrams are used to represent scenarios
of use case. Because the approach of analysis is same as that of
application software, we skip the explanation of the details.

Image Decoding System

Decode Image

StreamCaputurer

Display

BitmapWriter

Figure 6. A Use Case diagram of image decoding system

4.2 Functional Model
In the functional model of image decoding system, we employ
KPN model of computation. In the KPN model, parallel
processes communicate via unbounded FIFO channels. The
function in conceptual model is partitioned into processes that
communicated each other via unbounded FIFO channels. Each
process performs sequential computation on its private state
space. Figure 7 illustrates an example of the KPN. Process P1
and Process P2 communicates with an unbounded FIFO channel,
which has a single write port and single read port. The KPN fits
nicely with signal processing applications as it conveniently
models stream processing and as it guarantees that no data is lost
in communication [16].

P1

P2

Unbounded FIFO Single write

Single read

Figure7. Kahn Process Network

For modeling the functional model of the image decoding
system, we used the structure diagram of UML to describe the

KPN, and implement it as an executable model with SystemC.
Figure 8 depicts the structure diagram of the image decoding
system. The image decoding system has seven modules drawn
with solid-outline rectangles. Modules are connected by
unbounded FIFO channels drawn with solid line. Each module
has ports notated with black-filled squares.

iq2decoder_ch

decoder2iq_ch

<<module>>
iq

<<module>>
decoder

<<module>>
huffmandecoder

<<module>>
streamcapturer

<<module>>
idct

<<module>>
compositor

<<module>>
bitmapwriter

decoder2huffman_ch

stream2decoder_ch

huffman2decoderrest_ch

decoder2idct_ch

idct2compositor_chcompositor2bitmapwriter_ch

huffman2decoderdata_chhuffman2decodermode_ch

Figure 8. The Structure Diagram of image decoding system

The functional model is also implemented with SystemC as an
executable model. The computation workload and
communication workload can be obtained by execution of the
functional model. Table 1 shows the computation workload, and
Table 2 shows the communication workload of the functional
model of the image decoding system. The computation workload
and communication workload help designer to decide the initial
parameters of the architectural model.

Table 1. Computation Workload
Module Operation Number of invocation

streamcapturer Processing
stream data 8,100

Processing
stream data 8,100

Processing
VLD data 119,596 decoder

Processing
IQ data 119,596

… … ...

Table 2. Communication Workload
Channel Token Number of

tokens
stream2decoder_ch EncodedBlock 8,100

decoder2huffmandecoder_ch BitVector 13,585
... … …

4.3 Architectural Model
In this case, we select an architecture that consists of a processor,
five hardware modules and a RAM to implement the functional
model of the image decoding system. The processor has a

252

priority-based scheduler as a multi-task scheduler when more
than two tasks are mapped. We select a 32 bits bus to connect
these components. For the shared memory we selected an
SRAM-type memory of size 32KB with read and write latency
of 10 ns respectively. The architectural model is modeled using
deployment diagram of UML shown in Figure 9. The node
notation of UML describes components of the architectural
model. The parameters of each component are defined with
attributes of each node shown in Figure 9.

ram : : RAM

-bitwidth:Integer = 32
-readLatency: Integer = 10
-writeLatency: Integer = 10

Deploys

HW2 : : Hardware

Deploys

bus : Bus

-width:Integer = 32
-transLatency: Integer = 10

Deploys

HW3 : : Hardware

Deploys

HW4 : : Hardware

Deploys

HW5 : : Hardware

Deploys

HW1 : : Hardware

Deploys

mpu: :Processor

-scheduling : KindOfSch
= PriorityBased

Deploys

Figure 9. Deployment Diagram of Architectural Model

4.4 Performance Model
We map the functional model shown in Figure 8 onto the
architectural model shown in Figure 9 in order to obtain the
performance model of image decoding system. Figure 10 shows
the result of mapping with deployment diagram of UML. Each
module of the functional model is mapped onto the node of the
architectural model. The run-time is added into the behavior of
each module. In this case, the run-time is given from designers
and implemented by the “wait (run-time)” statement using
SystemC. The unbounded FIFO channel of the functional model
must be transformed into the bounded FIFO by fixing its size. In
this case the channels are realized with bus and RAM.

ram : : RAM

-bitwidth:Integer = 32
-readLatency: Integer = 10
-writeLatency: Integer = 10

Deploys

HW2 : : Hardware

Deploys

bus : Bus

-width:Integer = 32
-transLatency: Integer = 10

Deploys

HW3 : : Hardware

Deploys

HW4 : : Hardware

Deploys

HW5 : : Hardware

Deploys

HW1 : : Hardware

Deploys

mpu: :Processor

-scheduling : KindOfSch =
PriorityBased

Deploys

huffmandecoder

iq

decoder
streamcapture

idct

compositor

bitmapwriterdecoder2iq_ch
idct2deshuffle_ch
stream2decoder_ch
...

Figure 10. Mapping Functional Model onto Architectural

Model

After implementation of the performance model with SystemC,
we can obtain the performance evaluation results to analyze that

the selected architecture is satisfied the performance requirement
or not. If not, the bottleneck analysis can help us to improve the
selected architecture.

4.5 Performance Evaluation Results
In this section we present the experimentation and explain how
SLOOP help us to evaluate the performance of alternative
architectures effectively.

In the experiment, the ‘throughput’ is a performance metric for
evaluating the image decoding system. We measured this
throughput with frames per second. The requirement of
performance is 30 frames per second.

Experiment 1: We mapped the module ‘decoder’ and the
module ‘compositor’ to processor, and other modules onto
hardware components shown in Figure 10. The communication
channel between modules was realized with RAM and bus. The
parameters of each component were set shown in Figure 9.

The simulation results show the average throughput is 12 frames
per second that was well below the required throughput of 30
frames per second. Figure 11 shows the ratio between the
execution time and the I/O wait time of each module in
performance model. Figure 12 indicates the utilization of each
communication channel between processes. The bus utilization
is 57%. The focus of this experiment is thus on improving the
performance. Figure 11 shows the execution time of the module
‘decoder’ and ‘compositor’ is very longer than other modules
and Figure 12 indicates that channels connected with the module
‘decoder’ and the module ‘compositor’ take very long time for
reading data form the FIFO channel. These mean that the run-
time both of ‘decoder’ and ‘compositor’ bottleneck the
throughput of system.

0% 20% 40% 60% 80% 100%

streamcapturer

decoder

huffmandecoder

iq

idct

deshuffling

bitmapwriter

 Execution Time
 I/O wait Time

Figure 11. Utilizations of modules in Experiment 1

Experiment 2: For improving the throughput of experiment 1,
we decided to remove the module ‘decoder’ from processor and
map it onto a new hardware component to shorten the run-time
of ‘decoder’. We evaluated this modified architecture in order to
see how the performance had changed. The throughput was
improved to 24 frames per second but did not satisfy the
requirement yet. The bus utilization was 73%. By analyzing the
experimental results, we found that the bus was the bottleneck.

253

0% 20% 40% 60% 80% 100%

stream2decoder_ch

decoder2huffman_ch

huffman2decdoerdata_ch

huffman2decdoermode_ch

huffman2decdoerrest_ch

decoder2iq_ch

iq2decoder_ch

decoder2idct_ch

idct2deshuffle_ch

deshuffle2bitmapwriter_ch

 FIFO Read

 FIFO Write

 Bus Arbitration

 Bus Access

Figure12. Utilization of channels in Experiment 1

Experiment 3: We connected ‘decoder’, ‘huffmandecoder’, and
‘iq’ directly without utilizing bus. Furthermore we expend the
bus width to 64 bits. As the experiment result, the throughput
rose to 30 frames per second and the bus utilization was down to
50%.
According to the results of the exploration we decided to select
the architecture shown in experiment 3 to implement.

5. CONCLUSIONS
In this paper, we have presented SLOOP design process for SoC
development. We demonstrated a case study of an image
decoding system application to show the effectiveness of
SLOOP design process.

 There are two key technologies in SLOOP shown in this paper.
One is system level performance evaluation methodology. This
can help us to explore the architecture at system level in order to
avoid the performance risk. Another key technology is modeling
with UML. For modeling results of analysis and design in
SLOOP, we extended the standard UML using stereotype
mechanism of UML.

We also demonstrated how to establish conceptual model,
functional model, architectural model and performance model
via an image decoding system. The experimental results showed
the adequate architecture could be found easily through
performance evaluation of performance model.

In future work, we will establish the verification process and
develop the tools that are necessary in SLOOP.

6. REFERENCE
[1] F. Balarin, A. Sangiovannni-Vincentelli al. Hardware-

Software Co-design of Embedded Systems – The Polis
approach, Kluwer Academic Publisher, 1997.

[2] Cadence Virtaul Component Co-desing (VCC),
http://www.cadence.com/datasheets/vcc.html

[3] P. Lieverse, T. Stefanov, P. van der Wolf, Ed Deprettere,
“System Level Design with Spade: an M-JPEG Case
Study,” IEEE/ACM International Conference on Computer
Aided Design ICCAD2001, pp26-32, November 2001.

[4] J. Rumaugh, M. Blaha, W. Lorensen, F. Eddy. Object-
Oriented Modeling and Design, Prentice Hall, 1991.

[5] OMG home page, http://www.omg.org/
[6] D. Verkest, J. Cockx, F. Potargent, G. D. Jong. “On the use

of C++ for system-on-chip design”, IEEE Computer
Society Workshop on VLSI’99, Orlando, Florida, April 8-9,
1999.

[7] Baudoin, Claude & Hollowell, Glenn. Realizing the
Object-Oriented Lifecycle. Upper Saddle River, NJ:
Prentice Hall, 1996.

[8] Stan Liao, Steve Tijiang, Rajesh Gupta, “An Efficient
Implementation of Reactivity for Modeling Hardware in the
SCENIC Design Environment,”, proceedings of the Deisgn
Automation Conference DAC’97, pp.70-75, June 97.

[9] Rational Rose RealTime Homepage,
http://www.rational.com/products/rose/real_time/rtrose.jsp

[10] B. Selic and J. Rumbaugh, “Using UML for Modeling
Complex Real-Time Systems”, white paper, Rational,
March 11, 1998.

[11] G. Martin, L. Lavagno, J. Louis-Guerin. “Embedded UML:
a merger of real-time UML and co-design”.
http://www.gigascale.org/pubs/101.html, March 2001.

[12] G. Kahn, “The semantics of a simple language for parallel
programming,” Proc. of the IFIP Congress 74. 1974.

[13] FUNCTIONAL SPECCIFICATION FOR SYSTEMC2.0,
http://www.systemc.org

[14] J. A. Rowson, Alberto Sangiovanni-Vincentelli, “Interface-
Based Design”, proceedings of the Deisgn Automation
Conference DAC’97, pp178-183. June 97.

[15] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao,
SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, 2000.

[16] P. Lieverse, P. Wolf, E. Deprettere, “A Trace
Tansformation Technique for Communication Refinement”,
Proc. 9th Int. Symposium on Hardware/Software Design,
Copenhagen, Denmark, April 2001.

254

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

