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ABSTRACT
This paper describes the similarities and differences between two
widely publicized methods for analyzing oscillator phase behav-
ior. The methods were presented in [3] and [6]. It is pointed out
that both methods are almost alike. While the one in [3] can be
shown to be, mathematically, more exact, the approximate method
in [6] is somewhat simpler, facilitating its use for purposes of anal-
ysis and design. In this paper, we show that, for stationary input
noise sources, both methods produce equal results for the oscilla-
tor’s phase noise behavior. However, when considering injection
locking, it is shown that both methods yield different results, with
the approximation in [6] being unable to predict the locking behav-
ior. In general, when the input signal causing the oscillator phase
perturbations is non-stationary, the exact model produces the cor-
rect results while results obtained using approximate model break
down.

1. INTRODUCTION
Oscillators are key building blocks in almost all of today’s com-

munication systems. Their behavior, however, is often hard to an-
alyze, since their functioning inherently relies upon nonlinear be-
havior. One of the most important characteristics of an oscillator is
the way its phase responds to external signals. These external sig-
nals could be both unwanted, e.g. noise sources causing the phase
noise, or wanted, e.g. sine waves injected for locking purposes.

In recent years, much research has been devoted to the analysis
of oscillator phase behavior. Circuit simulation [10] offers the most
simple solution. This approach, however, is time-consuming, espe-
cially for the Monte Carlo methods needed to deal with noisy in-
puts, and the results are not straightforward to interpret, obscuring
analysis. More compact and insightful methods have been devel-
oped in both [3, 4, 8] and [6, 9]. Both, quite popular, approaches
model the oscillator phase behavior using a 1-dimensional differ-
ential or integral equation, which is much easier to solve than the
full set of circuit equations. Using the original notation, [3] models
the phase noise behavior as

dθ

dt
(t) = εv (t + θ(t)) n(t) (1)

while [6] starts from

θ(t) = ε

∫ t

0
0(τ)n(τ)dτ (2)

In both equations,n(t) is an external source, noise or otherwise,
θ(t) is the oscillator phase andv(t), 0(t) are functions depending
upon the oscillator’s topology. They are respectively called the per-
turbation projection vector (PPV) and the impulse sensitivity func-

tion (ISF). The oscillator’s output is then determined by

Vosc(t) = Vs (t + θ(t)) (3)

whereVosc(t) represents the actual oscillator output signal while
Vs(t) is a T -periodic solution of the input-free (noiseless) oscilla-
tor. Furthermore,ε � 1 is a perturbation variable used to indicate
the fact thatθ(t) varies slowly as compared to the oscillator period
T . Observing both equations (1) and (2), it is seen that, essentially,
they differ only slightly from each other. The question hence rises
whether one can expect any significant differences in results when
comparing the phase behaviors they predict.

In this paper, we show that, for some classes of applications, the
models (1) and (2) predict similar results, while for other classes,
results are widely different. More precisely, it is shown that for
n(t) a stationary (noise) source, equations (1) and (2) will, up to
0-th order inε, predict the same output phase noise. On the other
hand, whenn(t) is no longer stationary, results diverge. A notewor-
thy example is given by an oscillator’s injection locking behavior
[1, 7]. Here, the input sourcen(t) = N cos(2π f t) is a single sine
wave with f near the oscillator’s free-running frequencyf0. A har-
monic oscillator, for example, will lock both its frequency and its
phase to that ofn(t). It will be shown that the model (1) is capable
of predicting this behavior, while (2) is not. Related to injection
locking is the behavior of the phase differences1θ within sets of
coupled oscillators. Since the coupling effect can be considered as
a mutual injection phenomenon, (1) yields correct results while (2)
breaks down.

The main tool used for obtaining the results mentioned above is
the averaging transformation as introduced in [2, 5]. In this paper,
we extend this transformation to its most general setting, allowing
us to deal with both deterministic signals, white noise and colored
noise. Using the averaging transformation, it becomes possible to
separate the slow-varying components of the oscillator’s phase be-
havior from the fast-varying ones. These slow-varying components
typically contain those characteristics of the oscillator’s behavior
which are of greatest interest, like phase noise (wander) and lock-
ing.

The remainder of this paper is organized as follows. In section
2, we briefly discuss both the origin and properties of both models
(1) and (2) for describing oscillator phase behavior. Section 3 in-
troduces averaging and its use for analyzing an oscillator’s phase
behavior. In section 4, we apply this principle to analyze oscilla-
tor phase noise, showing that, under certain conditions, the results
obtained from both model equations (1) and (2) are equivalent. Sec-
tion 5 discusses the injection locking phenomenon and shows how
both models predict widely different results. Finally, in section 6,
we demonstrate these differences with some circuit-level simula-
tions. Conclusions are presented in section 7.
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2. TWO DIFFERENT MODELS FOR OS-
CILLATOR PHASE BEHAVIOR

Two widely publicized methods for describing the behavior of
the oscillator phaseθ(t) are presented in [3] and [6]. In this section,
we give a brief overview of both of them. We also discuss their
properties, similarities and differences.

For a single input sourcen(t), the method in [3] models the os-
cillator’s phase behavior using the differential equation (1). This
equation is derived using nonlinear perturbation techniques and is,
up to first order inε, exact. For this reason, in what follows, we will
call it the exact model. The quantityv(t) is called the oscillator’s
perturbation projection vector(PPV)1. It is a T -periodic function
modeling the way a particular input source affects the oscillator
phase.

The method in [6], on the other hand, models the oscillator’s
phase behavior using the integral equation (2). Rewritten as a dif-
ferential equation, this becomes

dθ

dt
(t) = ε0 (t) n(t) (4)

This model was conjectured based upon physical reasoning. For
this reason, in what follows, we will call itthe approximate model.
Here, the quantity0(t) is aT -periodic function, called theimpulse
sensitivity function(ISF). It serves a similar role as the PPV, i.e.
it models the way a particular input source affects the oscillator’s
phase.

Comparing equations (1) and (4), it is observed that both are
almost alike. By considering their proposed numerical computa-
tions2, it is easily verified that the PPVv(t) equals the ISF0(t).
Furthermore, both of the oscillator phase behavior models (explic-
itly or implicitly) assume the phaseθ(t) to be slow-varying com-
pared to the oscillator periodT , which is accomplished by setting
ε � 1. The only major difference is the fact that in equation (1),
the phaseθ also appears in the right-hand side, while this is not the
case in equation (4).

The observed similarity between both model equations raises the
question towards the difference in results they produce. Although
(1) is in principle more exact, the appearance ofθ in the right-hand
side makes it more difficult to handle, especially for use in hand cal-
culations or in providing insight into the oscillator’s behavior. On
the other hand, we need to know what errors are introduced when
using the easier-to-handle approximate equation (4). In sections 4
and 5, we will point out when the presence ofθ in the right-hand
side makes a difference and when not. In order to provide a rig-
orous foundation for these results, we first discuss the averaging
transformation as a tool to solve both equations (1) and (4).

3. SOLVING THE PHASE EQUATIONS US-
ING AVERAGING

Both the differential equations (1) and (4), modeling the oscilla-
tor’s phase behavior, belong to the more general class of ordinary
differential equations (ODEs) described by

dp
dt

= ε

K∑
k=1

hk(p, t) (5)

1More precisely,v(t) is the inner product of the PPV and an input
vector describing the way the perturbations due ton(t) enter the
circuit equations [3].
2For computation of the ISF, we refer to the direct measurement of
the ISF by applying impulse responses [6].

+

.M [ ]k

p

pp kh

−+

,tk
,t

,tkh

h (    )

(    )

(    )

~

Figure 1: Constructing the averaging transformation.

wherep(t) ∈ R → R
P . When dealing with the oscillator phase

equations (1) and (4),p(t) = [θ(t)]. The set of ODEs (5) can
efficiently be dealt with using averaging [2, 5]. Averaging relies on
the fact that solutions of (5) will only vary substantially on a time
scalet/ε. On the time scalet , p(t) can be treated as a constant
(or as a stationary process when noise is involved). This allows
to separate fast-varying, steady-state, and slow-varying, transient,
processes.

Technically, averaging involves the construction of a transforma-
tion of variablesp → p, determined by

p = p + ε

K∑
k=1

h̃k(p, t) + O
(
ε2

)
(6)

This averaging transformation is chosen such that (a) the trans-
formed ODEs are easier to solve than the untransformed ones, and
(b) h̃(p, t) remainsO(1), i.e. bounded, over the time interval of
interest. Both conditions are satisfied for

h̃k (p, t) =
∫ (

hk (p, t) − M k
[
hk

]
(p, t)

)
dt (7)

with p being treated as a constant. Here, the operatorM k [·] is
some suitable, linear, averaging operator. Selecting an averaging
operator is a degree of freedom which can be used to optimize the
properties of the transformed (averaged) set of ODEs. Some appro-
priate choices are

M k
[
hk

] = 1

T

∫ t+T/2

t−T/2
hk(p, τ )dτ (8)

M k
[
hk

] = 1

T

sin(π t/T )

π t/T
⊗ hk(p, t) (9)

with ⊗ denoting the convolution operator. Here, (8) is the classi-
cal averaging operator [2] and (9) is the ideal low-pass filter over

the frequency rangef =
[
− 1

2T , 1
2T

]
. The construction of the

averaging transformation (6) is illustrated in Fig. 1. Inserting the
transformation (6) into the ODEs (5) showsp(t) to satisfy

dp
dt

= ε

K∑
k=1

M k
[
hk

]
(p, t) + O

(
ε2

)
(10)

It is now easily seen that, with the averaging operatorMk [·] given
by either (8) or (9),p(t) contains almost all of the low-frequency
content ofp(t) while h̃k(p, t) only contains high-frequent compo-
nents. This yields the desired separation of fast-varying and slow-
varying behavior.

Results from the theory of stochastic processes [5] ensure that
(6) and (10) are valid forhk(p, t) being either a deterministic or
a stochastic process. For example, if,for constantp, hk(p, t) is
a Gaussian,T -periodic cyclostationary noise source, then results
from cyclostationary noise theory [11, 12] show that, forM k [·]
being the ideal low-pass filter defined in equation (9),h(p, t) =
M k

[
hk

]
(p, t), is a Gaussian, stationary noise process with its au-



tocorrelation determined by

8k(p, τ ) = sin(πτ/T )

πτ
⊗ 1

T

∫ T/2

−T/2
8k

(
p, t + τ

2
, t − τ

2

)
dt

(11)
Here,

8k (p, t1, t2) = E
{
hk(p, t1)h

∗
k (p, t2)

}
(12)

is the autocorrelation of the cyclostationary input noise source. This
reduction from cyclostationary to stationary noise processes typi-
cally greatly facilitates further analysis.

This concludes our treatment of the averaging transformation.
In the sections that follows, it will be applied in solving both the
equations (1) and (4) when dealing with oscillator phase noise and
injection locking. Studying the averaged equations will reveal the
similarities and differences in the results obtained using either the
exact and the approximate model.

4. PHASE NOISE ANALYSIS
In dealing with oscillator phase noise, i.e. the behavior of the

oscillator phase when subjected to a noisy inputn(t), we first study
the results obtained from the exact phase equation (1) presented in
[3]. This is accomplished using the apparatus developed in section
3. Using averaging, we will separate the slow-varying from the
fast-varying components. These slow-varying components, con-
taining the most essential part of the phase behavior, are then com-
pared to the ones obtained from the approximate phase equation
(4).

Let us now assumen(t) to be a (Gaussian)stationary noise source
with its autocorrelation equal to

8(τ) = E
{

n
(

t + τ

2

) (
t − τ

2

)}
(13)

We furthermore impose either that8(τ) → 0 on the scaleT/ε or
that the spectrum of8(τ) is mainly contained within the frequen-
cyband

[−1/2T, 1/2T
]

whereT is the oscillation period. Equa-
tions (10) and (11) in section 3 then learn that the solution of (1) is,
up to zero-th order inε, equivalent to that of the averaged equation

dθ

dt
= εn(t) (14)

Here,n(t) is a (Gaussian) stationary noise source with its autocor-
relation determined by

8(τ) ≈ 1

T

∫ T
2

− T
2

v(t + θ + τ

2
)v(t + θ − τ

2
)8(τ)dt (15)

≈ 1

T

∫ T
2

− T
2

v(t + τ

2
)v(t − τ

2
)8(τ)dt (16)

It is observed that, due to the periodicity ofv(t), the dependence
on θ of the right-hand side of equation (14) disappears.This is
however only valid ifn(t) is a stationary noise source,making
the autocorrelation8(τ) independent oft and hence making the
transition from equation (15) to (16) possible. It can be shown that
further results, for both white and colored noise sources, obtained
using equations (14) and (16) are identical to the ones in [4]3. We
hence won’t go into depth, but refer to [4] for further details.

3Note that in [4], these results were obtained through an alternative
approach using the construction of the (modified) Fokker-Planck
equation. Using the averaging transformation, this often compli-
cated equation is avoided providing simpler ways to deal with noise
in oscillators, both white and colored.

( )t πNsin(2     )ftn =

Figure 2: Harmonic oscillator being injected with a sine wave.

A similar analysis, but now starting from the approximate equa-
tion (4), also yields the averaged equation (14) with

8(τ) ≈ 1

T

∫ T
2

− T
2

0(t + τ

2
)0(t − τ

2
)8(τ)dt (17)

Whenv(t) = 0(t), this is identical to the result in equation (16).
Remember, however, that the latter was only valid forstationary
noise input sources.

As a conclusion, we can state that, as far as stationary noise in-
put sources are concerned, there is, up to zero-th order inε, no
difference in the results obtained from the exact model (1) and the
approximate model (4). It is hence safe to use either of the models
presented in [3] and [6] as a starting point for phase noise analysis.

5. INJECTION LOCKING
As was mentioned in the previous section, the condition for both

the exact and the approximate model to yield the same result, is
the stationarity ofn(t). If this condition no longer holds, results
predicted by both models start to diverge. This can clearly be
seen when investigating an oscillator’s injection locking behavior
[1, 7]. Consider for example the setup shown in Fig. 2. Here,
a harmonic oscillator is injected with a sine wave with frequency
f . A phenomenon known as injection locking, makes that the os-
cillator locks both in phase and frequency to this sine wave, this
for frequenciesf close to the oscillator’s free-running frequency
f0 = 1/T . It is the principle underlying a number of phase and
frequency modulators. It is also the principle behind systems of
coupled oscillators, involving mutual injection locking. In what
follows, we investigate what both the exact model (1) and the ap-
proximate model (4) tend to predict for this locking phenomenon.
We do so for the harmonic oscillator example shown in Fig. 2.

It can be shown that, roughly, the output voltage of a harmonic
oscillator is given by

Vosc(t) = A cos(2π f0 (t + θ(t))) (18)

with A the oscillation amplitude andθ(t) the instantaneous phase
(in seconds). When subjected to a sinusoidal input currentn(t) =
N sin(2π f t) = N cos(2π f (t − T/4)) the oscillator’s phase be-
havior can be modeled using either (1) or (4) with

v(t) = 0(t) = −V sin(2π f0t) (19)

Using the same procedure as in the previous section, we now con-
sider the results predicted by both the exact and the approximate
model by comparing the associated averaged equations as deter-
mined by (10). In order to keep the analysis simple, we assume
that f = f0. Results are however easily extended towards the case
where f = f0 + 1 f .
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Figure 3: Behavior of the phaseθ(t) of a harmonic oscillator in-
jected with a sinusoidal current. The results obtained from the
model (20), indicated by the blue solid line, predicts phase lock-
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Use of the exact model (1) yields

dθ

dt
= −εNV sin(2π f0 (t + θ)) sin(2π f0t) (20)

resulting in the zero-th order averaged equation

dθ

dt
= −ε

NV

2
cos

(
2π f0θ

)
(21)

This implies that, forθ(0) = 0, the phase will start to drop, ini-
tially at a rate−εNV/2, until it reachesθ = −T/4, a quarter of
the oscillator period. It is easily verified that this point is a stable
equilibrium of equation (21). In this equilibrium point, the oscilla-
tor output voltage becomes

Vosc(t) = A cos

(
2π f0

(
t − T

4

))
= A sin(2π f0t) (22)

The model hence predicts that the phase of the output voltage locks
onto that of the input current source, as it is expected and observed
to do. The solid line in Fig. 3 depicts this locking behavior forθ(t)
starting fromθ(0) = 0.

On the other hand, the approximate model (4), states that the
phase behavior is governed by

dθ

dt
= −εNV sin(2π f0t)sin(2π f0t) (23)

This results in the zero-th order averaged equation

dθ

dt
= −ε

NV

2
(24)

implying that the phaseθ(t) would drop at a rate−ε NV
2 , but now

indefinitely. Stated otherwise, the approximate model predicts a
change in frequency, or

Vosc(t) = A cos

(
2π

(
1 − ε

NV

2

)
f0t

)
(25)

which is not quite the locking behavior that we were expecting.
The dashed line in Fig. 3 shows the difference with the locking
behavior as predicted by (21). Note that at first, neart = 0, the
predicted phases are the same. However, whenθ becomes too large

to be neglected in the right-hand side of the averaged exact phase
equation (21), results start to diverge.

As a conclusion, we can state that when the input sources are no
longer stationary, results obtained from the exact and the approx-
imate model start to diverge, with the exact model predicting the
correct results. This implies that the approximate model is, for ex-
ample, not accurate enough to analyze injection locking nor related
issues like the behavior of phase differences within sets of coupled
oscillators.

6. EXPERIMENTAL RESULTS
The conclusions above were verified through numerical experi-

ments on the harmonic oscillator setup shown in Fig. 2. In a first
step, we studied the characteristics of the output phase due to a
white input noise sourcen(t). Results as predicted using the ex-
act and the approximate model were compared. In a second step,
we simulated a current-injected oscillator to verify whether locking
occurs.

In order to verify our conclusions concerning results for station-
ary input sources, we solved both (1) and (4) for a stationary, Gaus-
sian, white input noise sourcen(t) and for the PPVv(t) equal to the
ISF 0(t). This PPV/ISF was taken to be the one of the harmonic
oscillator in Fig. 2. The stochastic behavior of the output phase
θ(t) was characterized by means of its time-varying variance

σ2
θ (t) = E

{
θ(t)2

}
(26)

which was computed by solving both models for 500 different noise
samples. The resulting standard deviations are shown in Fig. 4.
As can be seen, both models clearly predict the same behavior
for σ2

θ (t) which increases linearly with time. This demonstrates
the fact that, for phase behavior due to stationary input sources, it
doesn’t really matter which model, either the exact one (1) or the
approximation (4), is solved.

On the other hand, whenn(t) is no longer stationary, we have
seen that the models (1) and (4) predict largely different results.
According to the exact model (1), the oscillator output voltage would
lock onto the sine wave while according to the approximate model
(4), the oscillator voltage would not lock but a frequency shift
would occur. Although injection locking is a widely known phe-
nomenon [1, 7], we still ran some simulations to verify that the
locking behavior, as predicted by the exact model, indeed occurs.
Fig. 5 shows the (normalized) behavior of a harmonic oscillator
(solid line) injected with a sine wave (dashed line). The oscillator
startup conditions were chosen such thatθ(0) = 0. As can be seen
from the upper figure, the sine wave makes the oscillator phase to
move towardsθ = −π/2. In order to show that this move is not due
to a constant frequency shift, the startup and final oscillator voltage
are shown in the lower figures of Fig. 5. These figures show that,
while for startupθ = 0, after sufficiently long time, the oscillator
phase locks firmly ontoθ = −π/2, i.e. the oscillator output volt-
age locks onto the injected sine wave. This clearly demonstrates
the correctness of the predictions made by the exact model equa-
tion (1), also for non-stationary input signals. Calculations made
using the approximate model equation (4), however, break down.
It should hence not be used for analyzing the phase behavior of
oscillators subjected to non-stationary input signals.

7. CONCLUSIONS
This paper has investigated the similarities and differences be-

tween two widely publicized models for describing oscillator phase
behavior, an exact one presented in [3] and an approximate one pre-
sented in [6]. It was demonstrated that, for stationary input sources,
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the settled behavior, where oscillator and injected current are
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both models predict, up to zero-th order, the same stochastic char-
acteristics for the output phase. On the other hand, when the input
source is no longer stationary, results diverge. This was demon-
strated for the injection locking behavior of a harmonic oscillator.
Here, the exact model is capable of predicting this behavior, while
the approximate model breaks down. From a theoretical point of
view, these results were established using averaging, which turns
out to be a powerful method to deal with the type of equations aris-
ing when analyzing oscillator phase behavior. Our results were
verified through numerical simulations.
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