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ABSTRACT

In current industrial practice, critical path selection is an indis-

To demonstrate that our theoretical results are valid in reality, we
developed a statistical timing analysis framework that is capable

pensable step for AC delay test and timing validation. Tradition-
ally, this step relies on the construction of a set of worse-case paths
based upon discrete timing models. The assumption of discrete
timing models can be invalidated by delay effects in the deep sub-
micron domain, where timing defects and process variation are sta-
tistical in nature. In this paper, we study the problem of optimizing
critical path selection, under both fixed delay and statistical de-
lay assumptions. With a novel problem formulation and new the-
oretical results, we prove that the problem in both cases are com-
putationally intractable. We then discuss practical heuristics and
their theoretical performance bounds, and demonstrate that among
all heuristics under consideration, only one is theoretically feasi-
ble. Finally, we provide consistent experimental results based upon
defect-injected simulation using an efficient statistical timing anal-
ysis framework.

of performing defect-injected simulation. Consistent experimental
results are then obtained to confirm our theoretical findings.

This paper is organized into three parts. In section 2, we give
a brief introduction about prior work and background in statisti-
cal timing model. The second part consists of sections 3 to 7 which
include all the theoretical analysis. In section 3, the problem of crit-
ical path selection is formally defined. Then, in section 4 we show
that optimizing the path selection is to simultaneously optimize two
different objectives (call therid opj3 andgpj2). In section 5, the
problem of optimizing the first objectiveq;; is analyzed in detail.
Then, in section 6, the analysis for optimizing the second objective
Ogpj2 follows. In section 7, we combine these results to theoret-
ically estimate the performance of different heuristics for critical
path selection.

Experimental results are explained in section 8. These results
validate the practical application of our theoretical work. The last

1. INTRODUCTION section concludes the paper.

Process variations, manufacturing defects, and noise are major,
factors to affect timing characteristics of deep sub-micron (DSM) 2. BACKGROUND
designs [1, 2]. The delay effect from these factors can often be Historically, the definition of critical path is based upon the nom-
continuous in nature [3] [4], to which the traditional assumptions inal or worst-case timing analysis [5, 6, 7, 8] (i.e., the delay of
of discrete timing and delay models become less applicable. Theseeach cell/interconnect is of discrete timing values based upon ei-
continuous factors should better be captured and simulated usingher nominal or worst-case delays). In the industry, timing analysis
statistical models and methods. often relies on cell characterization where the earliest, latest, and
In today’s industry, one commonly-adopted method is to select average signal arrival times are estimated for each pin-to-pin pairs
the k longest paths for testing, whekedepends on the affordable  of the cell [9]. With these discrete timing values, the delay of a
number of test patterns. When selecting critical paths, the notion path can be defined as the accumulated delay on the path. The set
of being critical depends on the timing length of a path, which is Of critical paths can then be constructed by selecting either a fixed
often calculated using discrete delay models based upon nominanumber of the longest paths, or all paths that fall into a pre-defined
or worst-case timing scenarios. time range. If circuit segment coverage is considered, then the set
If critical paths are selected for explicit testing, the definition of critical paths can include, for each signal segment, the timing
of a path being critical will obviously affect the quality of the tests. longest path. Such a set of critical paths may also ensure a com-
Without a rigorous (and practical) definition, the optimization prob- plete topological coverage of the circuit [5].
lem of selecting thek "best” paths is not well defined. Conse- In deep sub-micron testing, delay variations resulted from man-
quently, there is no way to analyze the feasibility of a path selection ufacturing process, small defects, and/or signal noise can alter the
method. Often, the quality of a path selection method and its result- discrete timing assumptions in the delay models. Consequently, the
ing path set can only be "guessed” via experiments. sets of critical paths in different chip instances can be significantly
In this paper, we formulate the critical path selection as an op- different. It is then questionable that testing a set of critical paths
timization problem based upon statistical delays and defect oc- defined based upon the traditional discrete timing models would
currences. Through theoretical analysis, we demonstrate that op-till be effective in the DSM domain.
timization for critical path selection consists of solving two in- ~ From the above perspective, the definition of critical path can
tractable sub-problems. Then, we search for the best method inn0 longer be deterministic. Instead, the most critical path should
practice for solving the problem by analyzing various heuristics be defined as the one which has the highest probability of being
with respect to their theoretical performance. We conclude that “critical” when a large number of the chip instances are produced

only one heuristic (called "H-Opt”) is theoretically feasible. [10]. This probabilistic perspective suggests that more sophisti-
cated analysis and simulation methods are needed in order to iden-
tify the set of critical paths, and to accurately estimate the return of
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testing these paths [11]. Usually, we can assume thatandy; are independent. For sim-
The new definition of critical path above does not directly im- plicity, we can further assume th&t and d; are independent for

ply an optimal path selection strategy. If we simply selectkhe i # j. Similarly, we assumg andy; are independent.

most critical paths based upon theritical probabilities, the re- ExAamMPLE 1. With single-site uniform delay defect assumption,

sulting path set may not be the optimal set for delay testing. For Prob(y; = 1) = --- = Prob(ym = 1) = £ wherem=|E |.

example, consider two paths which topologically have a substan-4 OPTIMIZATION OBJ ECTlVES
tial overlap. The return of testing the second path after testing the "~ o . .
first path should be reduced, and is not the same as that by testing Given the defect distribution in Definition 2, to minimizgyiss,

of the second path alone. This type of path correlations should beWe Will re-formulate the problem slightly. In essence, to mini-
included in the statistical analysis for path selection. mizel piss, it is the same as to maximiZ&capture Wherel capture

It is also important to note that for a defect that falls beyond IS defined as the following (LeA denote the event "defects fall
the topological coverage of a selected path set, this defect has nd®" P andB-’(’jenote the event> 1 defect are captured by testing
chance of being detected. Due to this reason, it seems that the seledduced(P)):

tion of critical path also needs to consider path coverage. Then, itis U capture = Uobj2 *U abj1 (1)
unclear what will be the best way to simultaneously incorporate the O opit = Prob(A) @
path selection objectives from both path correlation and path cov- obj1

erage and at the same time, not to sacrifice the original objective of Oobj2 = Prob(B|A) ?3)

selecting the statistically timing critical paths.

e oo THEOREN 1. DL O Whiel theprct
P P Y paih, p ’ ability of all defects having no faulty effect on circuit timing.

path coverage and hence, hard to effectively incorporate all these

objectives into path selection. Therefore, in the following we start Proof Sketch. It suffices to show that the event spaces defined in the

Then, we can have the following theorem.

with a formal definition of the path selection problem. three probabilities] capture, [ miss, J no are disjoint. Since the event
spaces defined in the three probabilities are disjoint (and they form
3. PROBLEM FORMULATION the total space), the theorem holds. ]

In this section, we define the path selection problem. A citCuit
is a graph with 5-tupéV, E, 1,0, f), whereV is a set of vertices
is a set of arcsl, O are two subsets &f with 1N O =@, andf is
a function onE whereve € E, f(g) is a random variable defined
over [0, +oo].

A path ponCis defined as a path starting from a vertex end
ending with a vertex iD. Let p={ey,...,&}. Thetiming length

Note that, depends only on the circu@ and the defect func-
tion D, and is independent &. Therefore, to minimizél s, by
Theorem 1, is equivalent to maximizRapture.

Given a defect distribution functioD®, by assuming thati, j,
g is independent ofj, we can remove the conditional event in
equation (3) and obtain a simpler equation(figp;».

of p, denoted ag L(p) is a random variable characterized by the O obj2 = Prob(B) 4)

joint distributionSum= f(ey) +--- 1 f(e;). For each verter; € O, This is because defect occurrences and locations are independent
the arrival time denoted asAr(0) is a random variable charac-  of defect sizes. Hence, we can remove the conditional event A
terized by the joint distributioMax = max{TL(py),..., TL(pj)} "defects fall onP.”

where eactp, 1 <1 < j, ends ab;. Thecircuit delay of C is de- S

fined as a random variable characterized by the distribd{@) = 41 Maximizi NG O obj1 *Dobj2

max{Ar(0y),...,Ar (o)}, wherek =| O . Given a circuiC, a defect functiom, and a path sé?, 0 opj1 and

_ Given path seP, the induced circuit oP on C, denoted as [ ,;, can be calculated independentlyit j, & is independent of
induced(P), is a sub-circuiC’ where any edge segment not on a y; However, it is important to note that to maximiZeapture, it i

path inP is removed fronC. not sufficient to maximizé gpj1 and obj2 independently. This is
Let D be adefect distribution function defined onC. The path  pecause these two objectives can be opposite to each other during
selection problem is defined as the following. the selection oP. In other words, the optima& to maximize opj1
fect distribution D, a clock period clk, and an integer k, find a set note that if this can be done with the same se®ahen obviously
of k paths s.t. the following conditional probability is minimized: that particulaiP also maximizes] capture s well.
Defect Miss = [ rjes — Without knowing that if a single optimdP sgt exists for bpth
Prob(A(D(C)) > clk | A(D(Induced(P)) < clk) Oopjz andd gpj2 and hence, fafl caprure, We consider the following

three questions.
where D(circuit) produces a new circuit delay distribution in the
way as described below.

3.1 Defect Distribution

The above optimization problem is not well-defined unless a spe-
cific D is given. SinceD essentially alters the circuit delay Gf by
the definition of circuit delay, there are two ways to defihieseg-
ment oriented (D(g)) andpath oriented (D(pi)). In this paper, we
consider only the segment-oriented defect definition. 5. OPTIMIZING 0Ogy
DEFINITION 2. (Segment Oriented) D isa function defined on
E, where D(g) = (&i,Vi), Vi is a random variable characterizing
the probability of a defect occurrence on q, and &; is a random
variable characterizing the delay defect size. Oobj1 = Prob(defects fall on P= Prob(ys,- -, k) 5)

1. Independently, how to optimiZégyj;?
2. Independently, how to optimizégyjo?

3. Together, how can we combine the optimal algorithm for
question 1 and the optimal algorithm for question 2 without
losing much in each algorithm for what it tries to optimize
individually?

Given a path seP and a segment oriented defect funct@nlet
{e1,...,&} be the set of segments coveredmyThen, we have



whereProb(y,---,Yk) is the joint probability distribution of all
random variabless, ..., Yk- If y1,...,Yk are mutually independent,
then we have

Sveep Prob(vi) _ 2VecP Prob(y;) ©)
Sveec Prob(y;)  some constant

To maximizell g1 in equation (6), we will focus the discussion
on the following optimization problem that is essentially the same.
DEFINITION 3. (Maximum Path Cover (MPC)) Given a circuit
graph G = (V,E,1,0), a weight assignment function W defined on
E such that W(g) = w;, and an integer k, the problemisto find a
path set of sizek in order to maximize:
(YecpWi), Where | P =k

|:lobjl

In the following, we will show that the MPC problem is practi-
cally intractable. Then, we will show several heuristics to solve the
problem and discuss their performance.

5.1 Intractability of The MPC Problem

One problem related to MPC is the Minimum Vertex Cover (Min-
VC) problem discussed in [12]. Given an undirected gré&pk
(V,E), the Min-VC is to find the minimum set of vertices that cover
all edges. Itis shown in the paper that Min-VC is a problem in the
MAX-SNP class, where finding a1+ ¢€) polynomial time approx-
imation algorithm is NP-hard [12]. That is, if the optimal size of
the vertex cover to the problem@PT, it is NP-hard to guarantee
a vertex cover with a siz€ (1+ €)OPT for some 0< € < 1.

There is a slightly different version of the Min-VC problem called
the Maximum Vector Cover (Max-VC). The problem is that, given
an integelk, find a set ok vertices that cover the maximum num-
ber of edges. Petrank [13] shows that it is also NP-hard to find a
(1—¢€)-approximation algorithm for the Max-VC problem.

The generalized version of the Max-VC problem is called the
Maximum Coverage (Max-C) Problem. Given aket {1,...,n}.
LetJ denote the indices of all non-empty subsetk ahdS denote
the jth subset with indej € J. Given a sek = {S|i € J}, a non-
negative weighty; for eachS, and a positive integeqg, the problem
is to find a subseX C | with | X |= p such that the total weight of
all S¢ which have nonempty overlap withis maximized.

Letd =max{| §j |: j € J}. The Max-C problem is a generalized
version of the Max-VC problem because we can reduce the Max-C
problem to the Max-VC problem by setting= 2 and aliw = 1. If
we allow any weight assignments, but keep the constdain®, the
Max-C problem is reduced to the weighted version of the Max-VC
problem (WMVC). Ford > 2, it is the same as solving the WMVC
problem on a hypergraph.

LEmMMA 1. MPC problemisintractable.

Proof. To demonstrate that MPC is intractable, it suffices to develop
a polynomial time reduction scheme from the WMVC problem to
the MPC problem. Here we re-state the WMVC problem. Given
an undirected graps = (V,E), a weight assignme(q) = w;

for all g € E, and a positive integep, find a vertex coveX C

V, | X |= p, of which the total covered weight is the maximum.
Given a problem instance in WMVC, we will reduce itinto an MPC
problem instance using the following polynomial time algorithm.

1. Create two nodesandt.
2. Order all edges &, ...,em where| E |=m.

3. Pick a vertewj € V, create a patlp; wherep; starts from
sand ends at, and contains all ordered edggs, ,...,ej, }
ending atvj. The following "pseudo edges” with weight as-
signments equal to some fixed small number close to zero are
added to connedfe;, , . .., €j, } in order to form a path.

e Add a pseudo edge frosto g, .

e Add a pseudo edge from, tot.

e For any adjacent edgeg, e;,_,, if jiy1—jj > 1,add a
pseudo edge frorg; to e, ;.

4.V =V —{v;},if Vis empty, stop; Otherwise, goto step 3.

It is obvious that the above reduction is @m|V|) algorithm.
By keeping the weight assignment for each original edge, the MPC
problem is to findp paths that cover the maximum total weight. If
we ensure that the total weight given by all pseudo edges is far less
than the minimum edge weight assigned in the original problem
instance, then those pseudo edges will have no impact on the total
weight calculation for the optimal solution.

Let T(P) denote the total weight covered by a solutiBrin
MPC andT (X) denote the total weight covered by a solutiin
WMVC. Then, for any two solution®;, P, in MPC, where|P;| =
|P2| = p. there exists two corresponding solutiofisXz in WMVC
(just map a path back to its corresponding vertex) suchittRt) <
T(P) & T(X1) < T(X2). The same ordering in the solution spaces
of the WMVC and WPC instances implies that if the optimal solu-
tion is unique, itis the same in both instance. Moreover, givesy an
0 < e <1, if there exists a polynomial timgl — €)-approximation
algorithm for MPC, then it implies that there exists a polynomial
time (1—¢)-approximation algorithm for WMVC. Hence, the MPC
problem is intractable. a

5.2 Heuristicsto Approximate MPC

In this section, we will discuss heuristics to solve the MPC prob-
lem. Most of these heuristics have been analyzed for the Max-C
problem. Therefore, to facilitate the discussion, we will first show
a polynomial time reduction from MPC to Max-C.

LEMMA 2. Given that the total path population under consid-
eration is of polynomial size in terms of |E|, MPC is polynomial-
time reducible to Max-C such that if there exists a polynomial time
(1— ¢€)-approximation algorithmfor Max-C, thealgorithmisa (1—
€)-approximation for MPC.

Proof. The mapping from MPC to Max-C is natural. LBt=
{p1,...,Pn} be the path set. We simply lét= {1,...,n} in the
Max-C. EachS in the Max-C problem corresponds to an edge
Hence, the weight of eadh (w;) is also the weight fof. We also
havej € § if p; contains the edgg. Essentially, the MPC problem
is the same as the WMVC problem on a hypergraph. O

The above reduction further implies that if there exists a heuristic
that guarantees a lower bound approximation ratio for the solution
to MAX-C, then the heuristic can also guarantee the same lower
bound approximation ratio for the MPC problem.

5.2.1 Linear Program Relaxation Heuristic

Authors in [15] utilizes Linear Program Relaxation (LPR) to
solve the Max-C problem. They demonstrate that LPR heuristicis a
[1- (1 })Y]-approximation algorithm, wherg= max{| S |: j €
J} as stated before. For WMV@,= 2 and hence, LPR heuristic
is a %-approximation algorithm. With Lemma 2, the LPR heuris-

tic is also a[1— (1— )']-approximation algorithm for the MPC
problem, wheré is the maximum number of paths which share the
same edge segment in the circuit.

The LPR heuristic requires solving LP problem for maximizing
Ogpjz alone. If we adopt this heuristic, it is hard to see how to
combine with any other heuristic(s) used to maxiniizg;» later.
Since our final goal is to maximiZ&capture, NOt Merely ohj1, the
LPR heuristic does not seem to be a suitable heuristic for us even
though it is the best known approximation algorithm for the Max-C
problem. For the reason just mentioned, in the following we will
turn our attention to the simpler "greedy” heuristics.



5.2.2 First Greedy Heuristic

Our first greedy heuristic is a typical and widely-used one in
many optimization applications.

HEURISTIC 1. Ineach step, select the path that resultsin max-
imum additional weight coverage.

THEOREM 2. Thegreedy heuristicinHeuristiclisa[l—(1—
#)X]-approximation algorithm for MPC problem, where k is the
number of paths allowed in the problem.

Proof. It is well known as shown in [14] that the same greedy
heuristicis §1—(1— %)p}-approximation algorithm for the Max-C
problem, whereg is the number of vertices allowed in the problem.
Hence, by Lemma 2, the theorem holds. O

As k becomes large, the greedy heuristic approachezs{o}e)-
approximation, where is the natural number.

5.2.3 Second Greedy Heuristic

HEURISTIC 2. Sort all paths according to their total weights
covered. Select the largest k paths.

LetL be the number of total paths in MPC (vertices in WMVC).
Authors in [16] shows that the above heuristic for WMVC problem

LEMMA 3. In the fixed-delay circuit model, the optimal solu-
tion path set P for maximizing U o2 iSto select the k longest paths.
Proof. It can be observed that B consists of theé longest paths,
then for any edge in the induced circliiduced(P), the longest
path that covers the edge @ is always included innduced(P).
Hence/[1qpj2 is maximized for all the edges imduced(P). O

Next, we consider the case o= fiangom(€) = & whereg; is a
random variable characterizing the delay on edg&iven a path
pj = {e1,...,a}. LetAj =a;+---+a. We further define the
critical probability of p; asCRT (pj) = crtj = Prob(A; > clk) for
a given constantlk. Sincecrt;j is a real number between 0 and 1,
we can use these numbers to rank all paths.

Given two pathgp;, p; with initial critical probabilitiescrt;, crt;,
respectively, thérob(A; > clk|Aj < clk) may not be the same as
Prob(A; > clk). In fact, Prob(Aj > clk|Aj < clk) <crtj = crtj —
Cor(Aj,Aj), whereCor (Aj, Aj) characterizes theorrelation factor
(or correlation probability) between patips p;. If pj andp; are
topologically overlapping, then the correlation factor is nonzero.
We observe that the correlation factor is symmetric. In other words,
Cor (A, Aj)=Cor (A}, A)

is a K-approximation algorithm. However, the same argument used __ SuPPose that we rank all paths,..., p according to their crit-

in [16] does not hold for WMVC on hypergraph. This is because
an edge on a hypergraph can connect more than two vertices.

Actually, one can construct an MPC instance to make the perfor-

mance of Heuristic 2 as bad as possible. In factpiet.., pn as
the sorted paths with total covered weights --- > t. It is easy
to construct an instance to "fool” the heuristic by making the krst

ical probabilitiescrt; > --- > crt. If we selectPy = {pa,..., Pk},
will it give us the optimal results for maximizingpj as that in
the case of the fixed-delay model? The following lemma provides
an answer.
LEMMA 4. B can be unbounded for optimizing Oopjo.
To see why this is true, we first define a much more complicated

pathspy, .., pc exactly the same except for the last edge segment, Version of the WMVC problem.

And for each last edge, we associate a very samll weighbn
the other hand, for alby1,. .., pn, we make them all independent
with each total covered weight all equal to "the weightppf—¢.”

DEFINITION 4. Givenanundirected graph G = (V, E), the Dy-
namic Weighted Maximum Vertex Cover (D-WMVC) problemisan
instance of a 5-tuple (V, E,W,Cor,CRT ). CRT isa weight function

It is easy to see that the only bound we can have by heuristic 2 is@SSociated with each vertexvi and CRT (vi) = crtj for 0 < crtj < 1.

then, % That is, the heuristic guarantees the selection of the firs

maximum-weight path, but nothing more.
THEOREM 3. TheHeuristic2isa %-approximation algorithm
for MPC problem (In the practical sense, it is unbounded).

The best know heuristic is tHé — (1 — %)p]-approximation by

t Cor is an update function on the weights. For any pair of ver-

tices vi,vj, Cor is a function of (V',G,CRT) where V' is the set
of vertices currently selected into the cover set. \We have initially
Cor(vi,Vj) = —Gij.

Theruleisthat every time a vertex v; is selected, we will count
itsweight as” covered,” and at the same time all the weights asso-

LPR, and the simple heuristic above is in essence an unbounded algj5ied with its adjacent verticeswill be updated by the update func-

gorithm. Thatis, ak becomes sufficiently large, this simple heuris-
tic can perform poorly.

5.2.4 Third Greedy Heuristic

HEURISTIC 3. Sort all edges according to their weights. In
each step, select a path that covers an uncovered edge whose wei ght
is the maximum.

Letm=| E |. The following theorem is straightforward.

THEOREM 4. TheHeuristic3isa n%-approximation algorithm
for MPC problem.
Proof. Let the sorted edge weights bg > --- > wmy. Let Sol be
the solution weight given by the heuristic. It is clear tRRT <
Yi<i<mWi. Also, Sol > nkq(Zlgingi) because Sol contains the
largest-weightedt edges. Hence, the theorem holds. a

Since usually, we expect that < L, this heuristic provides a
much better bound than the second heuristic.

6. OPTIMIZING Ocgj2

In this section, we discuss the optimization[®dyj» given in
equation (4) before.

Given a circuitG = (V,E, 1,0, f), we first consider a simplified
case wherd = fyixeq(6) = ¢ for some fixed constarg. This in-

tends to model the fixed-delay assumption commonly used in delay

test and timing analysis.

tion. After the update, the update function Cor itself will change ac-
cordingly (and suppose this change is polynomial time computable).
Hence, the weight configuration is changed dynamically. Then, the
D-WMVC problem is to select k vertices such that the total result-
ing weight is maximized.

It is easy to see that there is a natural mapping between the
D-WMVC problem to the optimization problem féfo,j>. The
weight functionCRT in a D-WMVC instance corresponds to the
critical probability function. The update functi@ov corresponds
to the correlation factor function. Since the updateCot is de-
fined dynamically based upon the current path selection, the D-
WMVC problem is obviously a much harder problem than the orig-
inal WMVC problem.

Given a D-WMVC problem instance, what is thg (the set of
paths with thek largest critical probabilities) trying to accomplish?
The answer is thd provides a greedy heuristic similar to Heuris-
tic 2 described before for the MPC and Max-C problems. There-
fore, it is not a good heuristic.

HEURISTIC 4. (Greedy by Considering Path Correlation) Each
time, select the path with the largest critical probability. After the
selection, apply the correlation function Cov to update the critical
probabilities for all unselected and correlated paths.

It can be easily seen that Heuristic 4 is a version of Heuristic 1 in



the context of the D-WMVC problem. Unfortunately, thke— %)
approximation bound cannot be guaranteed with Heuristic 4 for D-
WMVC unlessCov becomes a static function. If this is the case,
then we can reduce the D-WMVC problem into the WMVC prob-
lem.

What does a statiCov function mean? It means that in the cir-
Cuit instance, no path is correlated to more than one other path. In
this case, we only need to consider all pair-wise correlation fac-
tors and hence, the D-WMVC problem is the same as the WMVC
problem.

THEOREM 5. Given a circuit instance where no path is cor-
related with more than one other path, Heuristic 4 isa (1 — %)-
approximation algorithm for the the [ o2 optimization problem.

Proof. To maximizel o2, it is the same as to maximize the total
resulting weight (or total resulting critical probabilities) in the D-
WMVC problem. Hence, the theorem holds. O

Let Covo(Aj,Aj) characterizes the critical probabilities shared
by both A; and Aj. Following a similar concept, we can define
Covi (Aj,, ..., Aj,) as the critical probabilities shared byandom
variablesA; ,...,A. Then, it is not hard to see that in the static
definition of D-WMVC above, we are trying to u§®v, to capture
all Covq for 2 < g < kwhere eacliCovy is defined on all possible
correlated paths, arldis the given path size in the problem.

DEFINITION 5. (Residue Correlation Factor, RCF)

Define RCF = ¥ 3<q<k vert; COVg -

RCF is the summation of all critical probabilities simultaneously
shared by more than two paths.

DEFINITION 6. (SaticInstance of D-WMVC) Given a D-WMVC
probleminstance, define the static version of theinstance asthe one
by replacing the dynamic update function Cov with the static func-
tion Cov,.

THEOREM 6. Let Sol be the total critical probability output
by using Heuristic 4 on the static version of the D-WMVC prob-
lem. Let OPT be the true optimal value. We have (1— %)(OPT —
RCF) < Sol.
Proof. Let OPT’ be the optimal value for the static version of the
D-WMVC problem instance. We hayé — %,)OPT’ < Sol by The-
orem 5. Observe thadPT < OPT' + RCF becauseRCF is the
upper bound of how much we may miss during the calculation of
the critical probabilities. Henc@®PT < (z%;)Sol + RCF and the
theorem holds. m|

7. HEURISTICSTO OPTIMIZE Ocaprure

Recall that capture = Dobj1 *Oopj2. In the previous sections,
we discuss heuristics to maximiZey,j; andgpj2 individually.

H-Segment follows the Heuristic 1 above and hence, is an
(1- %_)-approximation algorithm_fo_r r_naximizingobjl. How-
ever, it has no guarantee for optimizingy;». Therefore, the
performance can be unsatisfactory.

H-Opt Letw; > --- > wpy correspond to the defect probabilities
Prob(y1 = 1),...,Prob(ym = 1), respectively, At each step,
we select a minimaj such thawv; is not yet covered. Then,
use Heuristic 4 to select the largest critical probability of an
unselected patjy such thagj € p;.
The H-Opt uses Heuristic 3 for maximizifighyj1 and hence,
is a %-approximation algorithm for optimizinglgpj;. Un-
fortunately, ensuring the coverage of the largest uncovered
wj may prevent H-Opt to behave exactly the same as Heuris-
tic 4 above. However, if we consider that all edge segments
have an almost equal probability of receiving a defect. Then,
H-Opt will behave like Heuristic 4 with only one potential
exception: Heuristic 4 may select a path whose edges are
already covered by at least one path selected before. We dis-
cuss this issue below assuming that defect occurrence proba-
bilities are uniform.

LEMMA 5. Let P={py,..., pi} asthe ordered paths selected
by Heuristic 4. Let C' = Induced(P). For any p € C" and p’ ¢ P,
the Prob(TL(p') > clklVpe P, TL(p) < clk) = 0.
Proof. This is because if we make sure that all the long paths are
shorter than thelk, itis impossible to have a short path whose tim-
ing is greater thaalk. If TL(p') > clk after testing all paths iR,
then there exists § 1 < j < i such that after testingpy, ..., pj}
(testing is in that order), the condition&ob(TL(p) > clk) is
greater than the conditionBrob(TL(pj4+1) > clk). However, this
implies thatp’ should be selected inf®by the Heuristic 4 (instead
of pj+1) and hence, is not possible. a

COROLLARY 1. LetP={ps,...,pi} asthe ordered paths se-
lected by Heuristic 4 after step i. Then, There exists a segment edge
esuchthatee p and e ¢ Induced(P— {pi }).

The above corollary is implied by the Lemma 5. This corol-
lary says that by using Heuristic 4 for optimizifigy;o, it can also
ensure a result fdf o1, which is no worse than that given by ap-
plying Heuristic 3 to maximiz&l ;. Hence, Heuristic H-Opt is
the only one that can simultaneously try to optimize koghj; and

Oopj2. With this corollary, we state the main theorem in our paper.

THEOREM 7. (Main Theorem) Suppose that the optimal value
of O capture = OPT 1+ OPT 2. H-Opt computes a solution value Sol

for maximizing O capture. Then, we have (%)OPT 1(1- %) (OPT2—

RCF) < Sol, given that defect occurrence distribution is uniform.

Based upon those results, in this section we discuss three heuristics To validate the theoretical results discussed in the previous three

to maXImIZd:l capture-

H-Timing Traditionally, the most natural way is to select tke
longest paths. Under a fixed-delay model, this heuristic op-
timize O opj2 (Lemma 4) but has little guarantee fdgpy;1.
With a probabilistic delay model, this heuristic (select the
largesik critical probabilities) is similar to Heuristic 2. Hence,
it offers little guarantee for optimizing eith&lgpj1 OrJ gpj2.
From this perspective, H-Timing is not a good heuristic.

H-Segment In this heuristic, optimizingl o1 has a higher prior-
ity thanOgpj2. Given a circuit instanc& = (V,E, 1,0, f)
and a defect functioD(q) = (&;,Yi), at each step we se-
lect a path to maximize the total uncovered probability from
Prob(y, = 1). If there are multiple such paths, we then select
the one with the longest timing length (or the largest critical
probability).

sections, in the following we describe a framework for conducting
practical experiments under the statistical delay and defect occur-
rence assumption.

7.1 Compute Correlation Factor

The statistical method described in [11] provides a practical ap-
proach to calculate the critical probability for a given path. In order
to implement Heuristic H-Opt, we also need a method to compute
the correlation probabilities.

The overall scheme in Heuristic H-Opt consists of two steps: 1)
Select the statistically longest path based upon the current delay
distributions and ensure that it covers one additional edge segment,
and 2) Re-construct delay distributions to reflect path correlation
resulted from the selection.

For the re-construction of delay distribution aftgraths are se-
lected,Vi, 1 <i <Kk, a cut-off periodrl is assumed. We use a Monte



Carlo sampling approach as described below. Supposeyisite- approach to actually simulate a large sample of a given design. In
lected, and consists of a sequence of signal segments whose delaysur experiments, 10,000 circuit instances were analyzed.
are characterized by random variabdges. . s,. The path delay oA We illustrate the complete procedure of the evaluation scheme
can be characterized as the joint g ... sn). After the selection as the following. In each Monte Carlo sampling run, first a circuit
of path A, we re-construct all pdf's &f ...s, based upon sampled instance is generated according to the cell/interconnect delay dis-
circuit instances whose delays on pathre all< T. Now suppose tributions characterized through Monte Carlo SPICE. Also random
another pattB overlaps withA by consisting of ...s;. Since the defects can be injected for each circuit instance (on any locations).
distributions ofs ... sj have changed, the joint pdf distributionBf This instance will then be evaluated by two analysis steps: "sta-
will be re-calculated accordingly. tistical analysis of S” and "statistical analysis of U-S”. The "sta-
. . tistical analysis of S” is to check if there is any pathSrfon the

7.2 Universal Path Candidate Set given instance) longer than the testing cldck If there is, then

One key assumption during the discussion is that the number ofthis instance is said to be faulty and covered3Covered). The
paths being considered during the path selectioB(is), where "statistical analysis of U-S” performs a similar analysis on the set
m = |E| in the circuit graph. Without pre-processing, this is an of U — Sand reports the number of faulty instances not covered by
unrealistic assumption because a circuit can easily have an expoS (Noncovered). At the end, our scheme will calculate the prob-
nential number of paths. In this section, we discuss a simple pathability of a faulty path captured bg based upon all the instances
selection scheme as a pre-processing step in the path selection opstatistically produced. Thisonditional missing probability is de-
timization process. During this pre-processing step, the goal is to fined as
quickly cut down the size of Fotal path populatlon. _ Omiss = mﬂ%

In our methodology, we will construct theiversal path candii- In other words, the conditional missing probabilify;ss is the
date set (U). The size ol is much smaller than the number of all - hapility that a delay defect is not covered Sgiven that the
paths and hence, coverageu_)ban be calculatt_ad much faster. We delay defect will affect the circuit performance.
further ensure that by coverirg, the actual circuit performance
can be guaranteed with a very high probability. Then, Wheet Defect Distribution In the experiments, the evaluations are based
will serve as the base point for later path selection optimization. ~ on the assumption of a defect size distributiore™* wherex is

If in our statistical framework a path has a very low probabil- the defect size andl is a constant We usk=0.1 and 0.04 in the
ity of being a "long path” then in reality it is unlikely that a small experiments. This exponential distribution for defect size (given
delay defect or variation on the path will cause a timing problem. that defects occur) has been studied in many publications [19, 20]
With this idea in mind, construction &f are based on two given ~ and is a practical assumption to be used. Note that it is also possible
parameters: a test clo€kand a cutoff period whereT < C. The to adopt other distributions. However, using other distributions in
U consists of every path whose probability of being a path longer general does not invalidate the trends observed in our work.
thanT is non-zero. In other words, if all paths th are covered,
then with a very high probability, any faulty behavior resulted from 82 Results
delay defect and variation of a delay size smaller thanC—T we will focus on the results from circuit s5378 for detailed dis-
will be captured [11]. After an initidl set is established, we can  cussion. Other results are available but due to space limitation, they
further prune the size & by removing those functionally unsen-  are not included. We note that all results we have so far are consis-

sitizable paths using the new methodology developed in [11]. tent with the theoretical findings.
8. EXPERIMENTAL RESULTS The benchmark s5378 has an important characteristic: the path
. delay profile for s5378 indicates that the performance of the circuit
81 EXpe“mental setup is not dominated by a few paths (more equally distributed). Fig-
Our experimental flow consists of three major phases, timing ure 1 demonstrates the path profile of the path universehere
analysis, path selection, and evaluation as described below. |U|=1328.
I. Timing Analysis Phase ©

An efficient cell-based false-path-aware statistical timing analy- | —
sis framework was developed in [11]. It requires pre-characterization
of cells, i.e., building libraries of pin-pin cell delays and output
transition times (as random variables). In our experiments, we uti-
lizes a Monte-Carlo-based SPICE (ELDO) [18] to extract the sta-
tistical delays of cells for a 0.28n, 2.5V CMOS technology.

30— —

201~ —

Number of paths

I1. Path Selection Phase o L 7
The first step in path selection is to produce the universal path r 1
candidate set) ( [11]). Then, we apply each of the three heuris- N
tics (H-Timing, H-Segment, and H-Opt described in section 7) to Pan deays
derive an optimal path s&where|S = k. Figure 1. The profile of path delays for s5378.
I11. Evaluation Phase Thefollowing plots show the eval uation resultsfor different heuris-

In our study, we estimate the quality of selected paths in terms tics. These plots demonstrate the trends of missing probabilities
of the miss probabilities defined in Definition 1 at the beginning of versus the number paths. Resultsin Figure 2 are based on the de-
section 3. This estimation is calculated based upon paths alone, infect distribution of e=%1X, For comparison, we also derive results
stead of the quality of tests generated based upon those paths [17for the defect distribution of e %%4% in Figure 3. Random delay
Hence, our metric involves only static analysis and is pattern inde- samples from e~%2* range roughly from 0 to 40, while those from
pendent. Most importantly, our metric is based upon the statistical e~%% will extend to 100. By applying these two different defect
delay evaluation framework which utilizes a Monte-Carlo-based models, we can show how larger defects affect the results of differ-



ent heuristics.

Aswe observe in these results, H-Opt consistently outperforms
all other heuristics as predicted by the theoretical analysis (with
smaller missing probabilities). More interesting observations can
be made when the model of e 904 is used. Since the range of
defect size spreads out, more edges have to be covered to maintain
alow missing probability for afixed number of k paths. As shown
in the figures, the H-Opt still converges quickly as the number of
pathsincreases. As stated before, H-Timing provides no guarantee
at al and hence, clearly performseven worsein Figure 3. For large-
size defects, H-Segment, which is optimized for covering more
segments, can have asimilar level of coverage as H-Opt (whilethe
number of selected pathsis small).
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Figure 2: Comparing heuristics in statistical domain using a
defect model of e~0%X.
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Figure 3: Comparing heuristics in statistical domain using a
defect model of e 004,

9. CONCLUSION

In this paper, we formalize the problem of critical path selection
as anew optimization problem that consists of two theoretically in-
tractable sub-problems. We provide theoretical analysisfor various
heuristics used to solve each sub-problem individualy. Then, we
prove that the H-Opt heuristic is theoretical feasible and practical.
We show that a seemingly intuitive heuristic H-timing can actually
be the worst. To validate our findings, we develop an experimen-
tal scheme based upon statistical timing analysis framework and
defect-injected simulation. Our experimental results confirm that
H-Opt is indeed the best heuristic among all we studied. Our for-
mulation of the path selection can lead to many interesting theoreti-
cal developments in the area of delay testing. The statistical timing
evaluation framework can provide a general approach to validate
and compare future DSM delay fault testing methods.
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