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ABSTRACT
In current industrial practice, critical path selection is an indis-
pensable step for AC delay test and timing validation. Tradition-
ally, this step relies on the construction of a set of worse-case paths
based upon discrete timing models. The assumption of discrete
timing models can be invalidated by delay effects in the deep sub-
micron domain, where timing defects and process variation are sta-
tistical in nature. In this paper, we study the problem of optimizing
critical path selection, under both fixed delay and statistical de-
lay assumptions. With a novel problem formulation and new the-
oretical results, we prove that the problem in both cases are com-
putationally intractable. We then discuss practical heuristics and
their theoretical performance bounds, and demonstrate that among
all heuristics under consideration, only one is theoretically feasi-
ble. Finally, we provide consistent experimental results based upon
defect-injected simulation using an efficient statistical timing anal-
ysis framework.

1. INTRODUCTION
Process variations, manufacturing defects, and noise are major

factors to affect timing characteristics of deep sub-micron (DSM)
designs [1, 2]. The delay effect from these factors can often be
continuous in nature [3] [4], to which the traditional assumptions
of discrete timing and delay models become less applicable. These
continuous factors should better be captured and simulated using
statistical models and methods.

In today’s industry, one commonly-adopted method is to select
the k longest paths for testing, wherek depends on the affordable
number of test patterns. When selecting critical paths, the notion
of being critical depends on the timing length of a path, which is
often calculated using discrete delay models based upon nominal
or worst-case timing scenarios.

If critical paths are selected for explicit testing, the definition
of a path being critical will obviously affect the quality of the tests.
Without a rigorous (and practical) definition, the optimization prob-
lem of selecting thek ”best” paths is not well defined. Conse-
quently, there is no way to analyze the feasibility of a path selection
method. Often, the quality of a path selection method and its result-
ing path set can only be ”guessed” via experiments.

In this paper, we formulate the critical path selection as an op-
timization problem based upon statistical delays and defect oc-
currences. Through theoretical analysis, we demonstrate that op-
timization for critical path selection consists of solving two in-
tractable sub-problems. Then, we search for the best method in
practice for solving the problem by analyzing various heuristics
with respect to their theoretical performance. We conclude that
only one heuristic (called ”H-Opt”) is theoretically feasible.

To demonstrate that our theoretical results are valid in reality, we
developed a statistical timing analysis framework that is capable
of performing defect-injected simulation. Consistent experimental
results are then obtained to confirm our theoretical findings.

This paper is organized into three parts. In section 2, we give
a brief introduction about prior work and background in statisti-
cal timing model. The second part consists of sections 3 to 7 which
include all the theoretical analysis. In section 3, the problem of crit-
ical path selection is formally defined. Then, in section 4 we show
that optimizing the path selection is to simultaneously optimize two
different objectives (call them℘ ob j1 and℘ ob j2). In section 5, the
problem of optimizing the first objective℘ ob j1 is analyzed in detail.
Then, in section 6, the analysis for optimizing the second objective
℘ ob j2 follows. In section 7, we combine these results to theoret-
ically estimate the performance of different heuristics for critical
path selection.

Experimental results are explained in section 8. These results
validate the practical application of our theoretical work. The last
section concludes the paper.

2. BACKGROUND
Historically, the definition of critical path is based upon the nom-

inal or worst-case timing analysis [5, 6, 7, 8] (i.e., the delay of
each cell/interconnect is of discrete timing values based upon ei-
ther nominal or worst-case delays). In the industry, timing analysis
often relies on cell characterization where the earliest, latest, and
average signal arrival times are estimated for each pin-to-pin pairs
of the cell [9]. With these discrete timing values, the delay of a
path can be defined as the accumulated delay on the path. The set
of critical paths can then be constructed by selecting either a fixed
number of the longest paths, or all paths that fall into a pre-defined
time range. If circuit segment coverage is considered, then the set
of critical paths can include, for each signal segment, the timing
longest path. Such a set of critical paths may also ensure a com-
plete topological coverage of the circuit [5].

In deep sub-micron testing, delay variations resulted from man-
ufacturing process, small defects, and/or signal noise can alter the
discrete timing assumptions in the delay models. Consequently, the
sets of critical paths in different chip instances can be significantly
different. It is then questionable that testing a set of critical paths
defined based upon the traditional discrete timing models would
still be effective in the DSM domain.

From the above perspective, the definition of critical path can
no longer be deterministic. Instead, the most critical path should
be defined as the one which has the highest probability of being
”critical” when a large number of the chip instances are produced
[10]. This probabilistic perspective suggests that more sophisti-
cated analysis and simulation methods are needed in order to iden-
tify the set of critical paths, and to accurately estimate the return of
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testing these paths [11].
The new definition of critical path above does not directly im-

ply an optimal path selection strategy. If we simply select thek
most critical paths based upon theircritical probabilities, the re-
sulting path set may not be the optimal set for delay testing. For
example, consider two paths which topologically have a substan-
tial overlap. The return of testing the second path after testing the
first path should be reduced, and is not the same as that by testing
of the second path alone. This type of path correlations should be
included in the statistical analysis for path selection.

It is also important to note that for a defect that falls beyond
the topological coverage of a selected path set, this defect has no
chance of being detected. Due to this reason, it seems that the selec-
tion of critical path also needs to consider path coverage. Then, it is
unclear what will be the best way to simultaneously incorporate the
path selection objectives from both path correlation and path cov-
erage and at the same time, not to sacrifice the original objective of
selecting the statistically timing critical paths.

Without a formal definition of the problem, it is hard to formally
capture the concepts of timing critical path, path correlation, and
path coverage and hence, hard to effectively incorporate all these
objectives into path selection. Therefore, in the following we start
with a formal definition of the path selection problem.

3. PROBLEM FORMULATION
In this section, we define the path selection problem. A circuitC

is a graph with 5-tupe(V;E; I;O; f ), whereV is a set of vertices,E
is a set of arcs,I;O are two subsets ofV with I\O = φ, and f is
a function onE where8ei 2 E, f (ei) is a random variable defined
over [0;+∞].

A path p onC is defined as a path starting from a vertex inI and
ending with a vertex inO. Let p = fe1; : : : ;eig. The timing length
of p, denoted asTL(p) is a random variable characterized by the
joint distributionSum = f (e1)+ � � �+ f (ei). For each vertexoi 2O,
the arrival time denoted asAr(oi) is a random variable charac-
terized by the joint distributionMax = maxfTL(p1); : : : ;TL(p j)g
where eachpl , 1� l � j, ends atoi. Thecircuit delay of C is de-
fined as a random variable characterized by the distribution∆(C) =
maxfAr(o1); : : : ;Ar(ok)g, wherek =jO j.

Given path setP, the induced circuit ofP on C, denoted as
induced(P), is a sub-circuitC0 where any edge segment not on a
path inP is removed fromC.

Let D be adefect distribution function defined onC. The path
selection problem is defined as the following.

DEFINITION 1. (Problem Definition) Given a circuit C, a de-
fect distribution D, a clock period clk, and an integer k, find a set
of k paths s.t. the following conditional probability is minimized:

Defect Miss = ℘ miss =
Prob(∆(D(C))> clk j ∆(D(Induced(P))� clk)

where D(circuit) produces a new circuit delay distribution in the
way as described below.

3.1 Defect Distribution
The above optimization problem is not well-defined unless a spe-

cific D is given. SinceD essentially alters the circuit delay ofC, by
the definition of circuit delay, there are two ways to defineD: seg-
ment oriented (D(ei)) andpath oriented (D(pi)). In this paper, we
consider only the segment-oriented defect definition.

DEFINITION 2. (Segment Oriented) D is a function defined on
E, where D(ei) = (δi;γi), γi is a random variable characterizing
the probability of a defect occurrence on ei, and δi is a random
variable characterizing the delay defect size.

Usually, we can assume thatδi andγi are independent. For sim-
plicity, we can further assume thatδi andδj are independent for
i 6= j. Similarly, we assumeγi andγj are independent.

EXAMPLE 1. With single-site uniform delay defect assumption,
Prob(γ1 = 1) = � � �= Prob(γm = 1) = 1

m where m =j E j.

4. OPTIMIZATION OBJECTIVES
Given the defect distribution in Definition 2, to minimize℘ miss,

we will re-formulate the problem slightly. In essence, to mini-
mize℘ miss, it is the same as to maximize℘ capture where℘ capture
is defined as the following (LetA denote the event ”defects fall
on P,” andB denote the event ”� 1 defect are captured by testing
Induced(P)):”

℘ capture = ℘ ob j2�℘ ob j1 (1)

℘ ob j1 = Prob(A) (2)

℘ ob j2 = Prob(BjA) (3)

Then, we can have the following theorem.
THEOREM 1. ℘ capture = 1�℘ miss�℘ no where ℘ no is the prob-

ability of all defects having no faulty effect on circuit timing.

Proof Sketch. It suffices to show that the event spaces defined in the
three probabilities℘ capture;℘ miss;℘ no are disjoint. Since the event
spaces defined in the three probabilities are disjoint (and they form
the total space), the theorem holds. 2

Note that℘ no depends only on the circuitC and the defect func-
tion D, and is independent ofP. Therefore, to minimize℘ miss, by
Theorem 1, is equivalent to maximize℘ capture.

Given a defect distribution functionD, by assuming that8i; j,
δi is independent ofγj, we can remove the conditional event in
equation (3) and obtain a simpler equation for℘ ob j2.

℘ ob j2 = Prob(B) (4)

This is because defect occurrences and locations are independent
of defect sizes. Hence, we can remove the conditional event A=
”defects fall onP.”

4.1 Maximizing ℘ ob j1�℘ ob j2

Given a circuitC, a defect functionD, and a path setP, ℘ ob j1 and
℘ ob j2 can be calculated independently if8i; j, δi is independent of
γj. However, it is important to note that to maximize℘ capture, it is
not sufficient to maximize℘ ob j1 and℘ ob j2 independently. This is
because these two objectives can be opposite to each other during
the selection ofP. In other words, the optimalP to maximize℘ ob j1
may not be the optimalP to maximize℘ ob j2. However, we also
note that if this can be done with the same set ofP, then obviously
that particularP also maximizes℘ capture as well.

Without knowing that if a single optimalP set exists for both
℘ ob j1 and℘ ob j2 and hence, for℘ capture, we consider the following
three questions.

1. Independently, how to optimize℘ ob j1?

2. Independently, how to optimize℘ ob j2?

3. Together, how can we combine the optimal algorithm for
question 1 and the optimal algorithm for question 2 without
losing much in each algorithm for what it tries to optimize
individually?

5. OPTIMIZING ℘ OBJ1

Given a path setP and a segment oriented defect functionD, let
fe1; : : : ;ekg be the set of segments covered byP. Then, we have

℘ ob j1 = Prob(defects fall on P) = Prob(γ1; � � � ;γk) (5)



whereProb(γ1; � � � ;γk) is the joint probability distribution of all
random variablesγ1; : : : ;γk. If γ1; : : : ;γk are mutually independent,
then we have

℘ ob j1 ∝
∑8ei2P Prob(γi)

∑8ei2C Prob(γi)
=

∑8ei2P Prob(γi)

some constant
(6)

To maximize℘ ob j1 in equation (6), we will focus the discussion
on the following optimization problem that is essentially the same.

DEFINITION 3. (Maximum Path Cover (MPC)) Given a circuit
graph G = (V;E; I;O), a weight assignment function W defined on
E such that W (ei) = wi, and an integer k, the problem is to find a
path set of size k in order to maximize:

(∑ei2P wi), where j P j= k

In the following, we will show that the MPC problem is practi-
cally intractable. Then, we will show several heuristics to solve the
problem and discuss their performance.

5.1 Intractability of The MPC Problem
One problem related to MPC is the Minimum Vertex Cover (Min-

VC) problem discussed in [12]. Given an undirected graphG =
(V;E), the Min-VC is to find the minimum set of vertices that cover
all edges. It is shown in the paper that Min-VC is a problem in the
MAX-SNP class, where finding an(1+ε) polynomial time approx-
imation algorithm is NP-hard [12]. That is, if the optimal size of
the vertex cover to the problem isOPT , it is NP-hard to guarantee
a vertex cover with a size� (1+ ε)OPT for some 0< ε� 1.

There is a slightly different version of the Min-VC problem called
the Maximum Vector Cover (Max-VC). The problem is that, given
an integerk, find a set ofk vertices that cover the maximum num-
ber of edges. Petrank [13] shows that it is also NP-hard to find a
(1� ε)-approximation algorithm for the Max-VC problem.

The generalized version of the Max-VC problem is called the
Maximum Coverage (Max-C) Problem. Given a setI = f1; : : : ;ng.
Let J denote the indices of all non-empty subsets ofI, andSj denote
the jth subset with indexj 2 J. Given a setF = fSiji 2 Jg, a non-
negative weightwi for eachSi, and a positive integerp, the problem
is to find a subsetX � I with j X j= p such that the total weight of
all Sk which have nonempty overlap withX is maximized.

Let d = maxfj Sj j: j 2 Jg. The Max-C problem is a generalized
version of the Max-VC problem because we can reduce the Max-C
problem to the Max-VC problem by settingd = 2 and allwi = 1. If
we allow any weight assignments, but keep the constraintd = 2, the
Max-C problem is reduced to the weighted version of the Max-VC
problem (WMVC). Ford > 2, it is the same as solving the WMVC
problem on a hypergraph.

LEMMA 1. MPC problem is intractable.
Proof. To demonstrate that MPC is intractable, it suffices to develop
a polynomial time reduction scheme from the WMVC problem to
the MPC problem. Here we re-state the WMVC problem. Given
an undirected graphG = (V;E), a weight assignmentW (ei) = wi
for all ei 2 E, and a positive integerp, find a vertex coverX �

V , j X j= p, of which the total covered weight is the maximum.
Given a problem instance in WMVC, we will reduce it into an MPC
problem instance using the following polynomial time algorithm.

1. Create two nodess andt.

2. Order all edges ase1; : : : ;em wherej E j= m.

3. Pick a vertexv j 2 V , create a pathp j wherep j starts from
s and ends att, and contains all ordered edgesfej1; : : : ;e jkg

ending atv j. The following ”pseudo edges” with weight as-
signments equal to some fixed small number close to zero are
added to connectfej1 ; : : : ;e jkg in order to form a path.

� Add a pseudo edge froms to ej1.

� Add a pseudo edge fromejk to t.

� For any adjacent edgesejl ;e jl+1, if jl+1� jl > 1, add a
pseudo edge fromejl to e jl+1.

4. V =V �fv jg, if V is empty, stop; Otherwise, goto step 3.

It is obvious that the above reduction is anO(mjV j) algorithm.
By keeping the weight assignment for each original edge, the MPC
problem is to findp paths that cover the maximum total weight. If
we ensure that the total weight given by all pseudo edges is far less
than the minimum edge weight assigned in the original problem
instance, then those pseudo edges will have no impact on the total
weight calculation for the optimal solution.

Let T (P) denote the total weight covered by a solutionP in
MPC andT (X) denote the total weight covered by a solutionX in
WMVC. Then, for any two solutionsP1;P2 in MPC, wherejP1j =
jP2j= p, there exists two corresponding solutionsX1;X2 in WMVC
(just map a path back to its corresponding vertex) such thatT (P1)<
T (P2), T (X1)< T (X2). The same ordering in the solution spaces
of the WMVC and WPC instances implies that if the optimal solu-
tion is unique, it is the same in both instance. Moreover, given anε,
0< ε � 1, if there exists a polynomial time(1� ε)-approximation
algorithm for MPC, then it implies that there exists a polynomial
time(1�ε)-approximation algorithm for WMVC. Hence, the MPC
problem is intractable. 2

5.2 Heuristics to Approximate MPC
In this section, we will discuss heuristics to solve the MPC prob-

lem. Most of these heuristics have been analyzed for the Max-C
problem. Therefore, to facilitate the discussion, we will first show
a polynomial time reduction from MPC to Max-C.

LEMMA 2. Given that the total path population under consid-
eration is of polynomial size in terms of jEj, MPC is polynomial-
time reducible to Max-C such that if there exists a polynomial time
(1�ε)-approximation algorithm for Max-C, the algorithm is a (1�
ε)-approximation for MPC.
Proof. The mapping from MPC to Max-C is natural. LetP =
fp1; : : : ; png be the path set. We simply letI = f1; : : : ;ng in the
Max-C. EachSi in the Max-C problem corresponds to an edgeei.
Hence, the weight of eachei (wi) is also the weight forSi. We also
havej2 Si if p j contains the edgeei. Essentially, the MPC problem
is the same as the WMVC problem on a hypergraph. 2

The above reduction further implies that if there exists a heuristic
that guarantees a lower bound approximation ratio for the solution
to MAX-C, then the heuristic can also guarantee the same lower
bound approximation ratio for the MPC problem.

5.2.1 Linear Program Relaxation Heuristic
Authors in [15] utilizes Linear Program Relaxation (LPR) to

solve the Max-C problem. They demonstrate that LPR heuristic is a
[1� (1� 1

d )
d ]-approximation algorithm, whered = maxfj Sj j: j 2

Jg as stated before. For WMVC,d = 2 and hence, LPR heuristic
is a 3

4-approximation algorithm. With Lemma 2, the LPR heuris-
tic is also a[1� (1� 1

l )
l ]-approximation algorithm for the MPC

problem, wherel is the maximum number of paths which share the
same edge segment in the circuit.

The LPR heuristic requires solving LP problem for maximizing
℘ ob j1 alone. If we adopt this heuristic, it is hard to see how to
combine with any other heuristic(s) used to maximize℘ ob j2 later.
Since our final goal is to maximize℘ capture, not merely℘ ob j1, the
LPR heuristic does not seem to be a suitable heuristic for us even
though it is the best known approximation algorithm for the Max-C
problem. For the reason just mentioned, in the following we will
turn our attention to the simpler ”greedy” heuristics.



5.2.2 First Greedy Heuristic
Our first greedy heuristic is a typical and widely-used one in

many optimization applications.
HEURISTIC 1. In each step, select the path that results in max-

imum additional weight coverage.
THEOREM 2. The greedy heuristic in Heuristic 1 is a [1�(1�

1
k )

k]-approximation algorithm for MPC problem, where k is the
number of paths allowed in the problem.
Proof. It is well known as shown in [14] that the same greedy
heuristic is a[1�(1� 1

p )
p]-approximation algorithm for the Max-C

problem, wherep is the number of vertices allowed in the problem.
Hence, by Lemma 2, the theorem holds. 2

As k becomes large, the greedy heuristic approaches to(1� 1
e )-

approximation, wheree is the natural number.

5.2.3 Second Greedy Heuristic
HEURISTIC 2. Sort all paths according to their total weights

covered. Select the largest k paths.
Let L be the number of total paths in MPC (vertices in WMVC).

Authors in [16] shows that the above heuristic for WMVC problem
is a k

L -approximation algorithm. However, the same argument used
in [16] does not hold for WMVC on hypergraph. This is because
an edge on a hypergraph can connect more than two vertices.

Actually, one can construct an MPC instance to make the perfor-
mance of Heuristic 2 as bad as possible. In fact, letp1; : : : ; pn as
the sorted paths with total covered weightst1 � �� � � tn. It is easy
to construct an instance to ”fool” the heuristic by making the firstk
pathsp1; : : : ; pk exactly the same except for the last edge segment.
And for each last edge, we associate a very samll weightε. On
the other hand, for allpk+1; : : : ; pn, we make them all independent
with each total covered weight all equal to ”the weight ofp1 �ε.”
It is easy to see that the only bound we can have by heuristic 2 is
then, 1

k . That is, the heuristic guarantees the selection of the first
maximum-weight path, but nothing more.

THEOREM 3. The Heuristic 2 is a 1
k -approximation algorithm

for MPC problem (In the practical sense, it is unbounded).

The best know heuristic is the[1� (1� 1
p )

p]-approximation by
LPR, and the simple heuristic above is in essence an unbounded al-
gorithm. That is, ask becomes sufficiently large, this simple heuris-
tic can perform poorly.

5.2.4 Third Greedy Heuristic
HEURISTIC 3. Sort all edges according to their weights. In

each step, select a path that covers an uncovered edge whose weight
is the maximum.

Let m =j E j. The following theorem is straightforward.
THEOREM 4. The Heuristic 3 is a k

m -approximation algorithm
for MPC problem.
Proof. Let the sorted edge weights bew1 � �� � � wm. Let Sol be
the solution weight given by the heuristic. It is clear thatOPT �

∑1�i�m wi. Also, Sol � k
m (∑1�i�m wi) because Sol contains the

largest-weightedk edges. Hence, the theorem holds. 2

Since usually, we expect thatm � L, this heuristic provides a
much better bound than the second heuristic.

6. OPTIMIZING ℘ OBJ2

In this section, we discuss the optimization of℘ ob j2 given in
equation (4) before.

Given a circuitG = (V;E; I;O; f ), we first consider a simplified
case wheref = f f ixed(ei) = ci for some fixed constantci. This in-
tends to model the fixed-delay assumption commonly used in delay
test and timing analysis.

LEMMA 3. In the fixed-delay circuit model, the optimal solu-
tion path set P for maximizing ℘ ob j2 is to select the k longest paths.
Proof. It can be observed that ifP consists of thek longest paths,
then for any edge in the induced circuitInduced(P), the longest
path that covers the edge inG is always included inInduced(P).
Hence,℘ ob j2 is maximized for all the edges inInduced(P). 2

Next, we consider the case forf = frandom(ei) = ai whereai is a
random variable characterizing the delay on edgeei. Given a path
p j = fe1; : : : ;eig. Let A j = a1 + � � �+ ai. We further define the
critical probability of pj asCRT (p j) = crt j = Prob(A j > clk) for
a given constantclk. Sincecrt j is a real number between 0 and 1,
we can use these numbers to rank all paths.

Given two pathspi; p j with initial critical probabilitiescrti;crt j,
respectively, theProb(Ai > clkjA j � clk) may not be the same as
Prob(Ai > clk). In fact, Prob(Ai > clkjA j � clk) � crti = crti �
Cor(Ai;A j), whereCor(Ai;A j) characterizes thecorrelation factor
(or correlation probability) between pathspi; p j. If pi and pj are
topologically overlapping, then the correlation factor is nonzero.
We observe that the correlation factor is symmetric. In other words,
Cor(Ai;A j)=Cor(A j;Ai)

Suppose that we rank all pathsp1; : : : ; pL according to their crit-
ical probabilitiescrt1 � �� � � crtL. If we selectPk = fp1; : : : ; pkg,
will it give us the optimal results for maximizing℘ ob j2 as that in
the case of the fixed-delay model? The following lemma provides
an answer.

LEMMA 4. Pk can be unbounded for optimizing ℘ ob j2.
To see why this is true, we first define a much more complicated

version of the WMVC problem.
DEFINITION 4. Given an undirected graph G=(V;E), the Dy-

namic Weighted Maximum Vertex Cover (D-WMVC) problem is an
instance of a 5-tuple (V;E;W;Cor;CRT ). CRT is a weight function
associated with each vertex vi and CRT(vi) = crti for 0� crti � 1.
Cor is an update function on the weights. For any pair of ver-
tices vi;v j, Cor is a function of (V 0

;G;CRT) where V 0 is the set
of vertices currently selected into the cover set. We have initially
Cor(vi;v j) =�ci j.

The rule is that every time a vertex vi is selected, we will count
its weight as ”covered,” and at the same time all the weights asso-
ciated with its adjacent vertices will be updated by the update func-
tion. After the update, the update function Cor itself will change ac-
cordingly (and suppose this change is polynomial time computable).
Hence, the weight configuration is changed dynamically. Then, the
D-WMVC problem is to select k vertices such that the total result-
ing weight is maximized.

It is easy to see that there is a natural mapping between the
D-WMVC problem to the optimization problem for℘ ob j2. The
weight functionCRT in a D-WMVC instance corresponds to the
critical probability function. The update functionCov corresponds
to the correlation factor function. Since the update ofCov is de-
fined dynamically based upon the current path selection, the D-
WMVC problem is obviously a much harder problem than the orig-
inal WMVC problem.

Given a D-WMVC problem instance, what is thePk (the set of
paths with thek largest critical probabilities) trying to accomplish?
The answer is thatPk provides a greedy heuristic similar to Heuris-
tic 2 described before for the MPC and Max-C problems. There-
fore, it is not a good heuristic.

HEURISTIC 4. (Greedy by Considering Path Correlation) Each
time, select the path with the largest critical probability. After the
selection, apply the correlation function Cov to update the critical
probabilities for all unselected and correlated paths.

It can be easily seen that Heuristic 4 is a version of Heuristic 1 in



the context of the D-WMVC problem. Unfortunately, the(1� 1
e )

approximation bound cannot be guaranteed with Heuristic 4 for D-
WMVC unlessCov becomes a static function. If this is the case,
then we can reduce the D-WMVC problem into the WMVC prob-
lem.

What does a staticCov function mean? It means that in the cir-
cuit instance, no path is correlated to more than one other path. In
this case, we only need to consider all pair-wise correlation fac-
tors and hence, the D-WMVC problem is the same as the WMVC
problem.

THEOREM 5. Given a circuit instance where no path is cor-
related with more than one other path, Heuristic 4 is a (1� 1

e )-
approximation algorithm for the the ℘ ob j2 optimization problem.
Proof. To maximize℘ ob j2, it is the same as to maximize the total
resulting weight (or total resulting critical probabilities) in the D-
WMVC problem. Hence, the theorem holds. 2

Let Cov2(Ai;A j) characterizes the critical probabilities shared
by both Ai and A j. Following a similar concept, we can define
Covl(Ai1, : : :, Ail ) as the critical probabilities shared byl random
variablesAi1; : : : ;Ail . Then, it is not hard to see that in the static
definition of D-WMVC above, we are trying to useCov2 to capture
all Covq for 2< q � k where eachCovq is defined on all possibleq
correlated paths, andk is the given path size in the problem.

DEFINITION 5. (Residue Correlation Factor, RCF)
Define RCF = ∑3�q�k;8crti

Covq[].

RCF is the summation of all critical probabilities simultaneously
shared by more than two paths.

DEFINITION 6. (Static Instance of D-WMVC) Given a D-WMVC
problem instance, define the static version of the instance as the one
by replacing the dynamic update function Cov with the static func-
tion Cov2.

THEOREM 6. Let Sol be the total critical probability output
by using Heuristic 4 on the static version of the D-WMVC prob-
lem. Let OPT be the true optimal value. We have (1� 1

e )(OPT �
RCF)� Sol.
Proof. Let OPT 0 be the optimal value for the static version of the
D-WMVC problem instance. We have(1� 1

e )OPT 0 � Sol by The-
orem 5. Observe thatOPT � OPT 0 + RCF becauseRCF is the
upper bound of how much we may miss during the calculation of
the critical probabilities. Hence,OPT � ( e

e�1)Sol +RCF and the
theorem holds. 2

7. HEURISTICS TO OPTIMIZE ℘ CAPTURE

Recall that℘ capture = ℘ ob j1 � ℘ ob j2. In the previous sections,
we discuss heuristics to maximize℘ ob j1 and℘ ob j2 individually.
Based upon those results, in this section we discuss three heuristics
to maximize℘ capture.

H-Timing Traditionally, the most natural way is to select thek
longest paths. Under a fixed-delay model, this heuristic op-
timize ℘ ob j2 (Lemma 4) but has little guarantee for℘ ob j1.
With a probabilistic delay model, this heuristic (select the
largestk critical probabilities) is similar to Heuristic 2. Hence,
it offers little guarantee for optimizing either℘ ob j1 or ℘ ob j2.
From this perspective, H-Timing is not a good heuristic.

H-Segment In this heuristic, optimizing℘ ob j1 has a higher prior-
ity than ℘ ob j2. Given a circuit instanceG = (V;E; I;O; f )
and a defect functionD(ei) = (δi;γi), at each step we se-
lect a path to maximize the total uncovered probability from
Prob(γi = 1). If there are multiple such paths, we then select
the one with the longest timing length (or the largest critical
probability).

H-Segment follows the Heuristic 1 above and hence, is an
(1� 1

e )-approximation algorithm for maximizing℘ ob j1. How-
ever, it has no guarantee for optimizing℘ ob j2. Therefore, the
performance can be unsatisfactory.

H-Opt Let w1 � �� � � wm correspond to the defect probabilities
Prob(γ1 = 1); : : : ;Prob(γm = 1), respectively, At each step,
we select a minimalj such thatwj is not yet covered. Then,
use Heuristic 4 to select the largest critical probability of an
unselected pathpi such thate j 2 pi.

The H-Opt uses Heuristic 3 for maximizing℘ ob j1 and hence,
is a k

m -approximation algorithm for optimizing℘ ob j1. Un-
fortunately, ensuring the coverage of the largest uncovered
w j may prevent H-Opt to behave exactly the same as Heuris-
tic 4 above. However, if we consider that all edge segments
have an almost equal probability of receiving a defect. Then,
H-Opt will behave like Heuristic 4 with only one potential
exception: Heuristic 4 may select a path whose edges are
already covered by at least one path selected before. We dis-
cuss this issue below assuming that defect occurrence proba-
bilities are uniform.

LEMMA 5. Let P = fp1; : : : ; pig as the ordered paths selected
by Heuristic 4. Let C0 = Induced(P). For any p0 2C0 and p0 62 P,
the Prob(T L(p0)> clkj8p 2 P;TL(p)� clk) = 0.
Proof. This is because if we make sure that all the long paths are
shorter than theclk, it is impossible to have a short path whose tim-
ing is greater thanclk. If TL(p0) > clk after testing all paths inP,
then there exists aj;1< j < i such that after testingfp1; : : : ; p jg

(testing is in that order), the conditionalProb(TL(p0) > clk) is
greater than the conditionalProb(T L(pj+1) > clk). However, this
implies thatp0 should be selected intoP by the Heuristic 4 (instead
of p j+1) and hence, is not possible. 2

COROLLARY 1. Let P = fp1; : : : ; pig as the ordered paths se-
lected by Heuristic 4 after step i. Then, There exists a segment edge
e such that e 2 pi and e 62 Induced(P�fpig).

The above corollary is implied by the Lemma 5. This corol-
lary says that by using Heuristic 4 for optimizing℘ ob j2, it can also
ensure a result for℘ ob j1, which is no worse than that given by ap-
plying Heuristic 3 to maximize℘ ob j1. Hence, Heuristic H-Opt is
the only one that can simultaneously try to optimize both℘ ob j1 and
℘ ob j2. With this corollary, we state the main theorem in our paper.

THEOREM 7. (Main Theorem) Suppose that the optimal value
of ℘ capture = OPT1�OPT 2. H-Opt computes a solution value Sol
for maximizing ℘ capture. Then, we have ( k

m )OPT1(1� 1
e )(OPT2�

RCF)� Sol, given that defect occurrence distribution is uniform.
To validate the theoretical results discussed in the previous three

sections, in the following we describe a framework for conducting
practical experiments under the statistical delay and defect occur-
rence assumption.

7.1 Compute Correlation Factor
The statistical method described in [11] provides a practical ap-

proach to calculate the critical probability for a given path. In order
to implement Heuristic H-Opt, we also need a method to compute
the correlation probabilities.

The overall scheme in Heuristic H-Opt consists of two steps: 1)
Select the statistically longest path based upon the current delay
distributions and ensure that it covers one additional edge segment,
and 2) Re-construct delay distributions to reflect path correlation
resulted from the selection.

For the re-construction of delay distribution afteri paths are se-
lected,8i;1� i� k, a cut-off periodT is assumed. We use a Monte



Carlo sampling approach as described below. Suppose pathA is se-
lected, and consists of a sequence of signal segments whose delays
are characterized by random variabless1 : : :sn. The path delay ofA
can be characterized as the joint pdfJ(s1 : : :sn). After the selection
of path A, we re-construct all pdf’s ofs1 : : :sn based upon sampled
circuit instances whose delays on pathA are all� T . Now suppose
another pathB overlaps withA by consisting ofsi : : :s j. Since the
distributions ofsi : : :s j have changed, the joint pdf distribution ofB
will be re-calculated accordingly.

7.2 Universal Path Candidate Set
One key assumption during the discussion is that the number of

paths being considered during the path selection isO(m), where
m = jEj in the circuit graph. Without pre-processing, this is an
unrealistic assumption because a circuit can easily have an expo-
nential number of paths. In this section, we discuss a simple path
selection scheme as a pre-processing step in the path selection op-
timization process. During this pre-processing step, the goal is to
quickly cut down the size of total path population.

In our methodology, we will construct theuniversal path candi-
date set (U). The size ofU is much smaller than the number of all
paths and hence, coverage ofU can be calculated much faster. We
further ensure that by coveringU , the actual circuit performance
can be guaranteed with a very high probability. Then, theU set
will serve as the base point for later path selection optimization.

If in our statistical framework a path has a very low probabil-
ity of being a ”long path” then in reality it is unlikely that a small
delay defect or variation on the path will cause a timing problem.
With this idea in mind, construction ofU are based on two given
parameters: a test clockC and a cutoff periodT whereT �C. The
U consists of every path whose probability of being a path longer
thanT is non-zero. In other words, if all paths inU are covered,
then with a very high probability, any faulty behavior resulted from
delay defect and variation of a delay size smaller than∆ = C�T
will be captured [11]. After an initialU set is established, we can
further prune the size ofU by removing those functionally unsen-
sitizable paths using the new methodology developed in [11].

8. EXPERIMENTAL RESULTS
8.1 Experimental setup

Our experimental flow consists of three major phases, timing
analysis, path selection, and evaluation as described below.

I. Timing Analysis Phase
An efficient cell-based false-path-aware statistical timing analy-

sis framework was developed in [11]. It requires pre-characterization
of cells, i.e., building libraries of pin-pin cell delays and output
transition times (as random variables). In our experiments, we uti-
lizes a Monte-Carlo-based SPICE (ELDO) [18] to extract the sta-
tistical delays of cells for a 0.25µm, 2.5V CMOS technology.

II. Path Selection Phase
The first step in path selection is to produce the universal path

candidate setU ( [11]). Then, we apply each of the three heuris-
tics (H-Timing, H-Segment, and H-Opt described in section 7) to
derive an optimal path setS wherejSj= k.

III. Evaluation Phase
In our study, we estimate the quality of selected paths in terms

of the miss probabilities defined in Definition 1 at the beginning of
section 3. This estimation is calculated based upon paths alone, in-
stead of the quality of tests generated based upon those paths [17].
Hence, our metric involves only static analysis and is pattern inde-
pendent. Most importantly, our metric is based upon the statistical
delay evaluation framework which utilizes a Monte-Carlo-based

approach to actually simulate a large sample of a given design. In
our experiments, 10,000 circuit instances were analyzed.

We illustrate the complete procedure of the evaluation scheme
as the following. In each Monte Carlo sampling run, first a circuit
instance is generated according to the cell/interconnect delay dis-
tributions characterized through Monte Carlo SPICE. Also random
defects can be injected for each circuit instance (on any locations).
This instance will then be evaluated by two analysis steps: ”sta-
tistical analysis of S” and ”statistical analysis of U-S”. The ”sta-
tistical analysis of S” is to check if there is any path inS (on the
given instance) longer than the testing clockC. If there is, then
this instance is said to be faulty and covered byS (Covered). The
”statistical analysis of U-S” performs a similar analysis on the set
of U �S and reports the number of faulty instances not covered by
S (Noncovered). At the end, our scheme will calculate the prob-
ability of a faulty path captured byS based upon all the instances
statistically produced. Thisconditional missing probability is de-
fined as

℘ miss =
Noncovered

Covered+Noncovered

In other words, the conditional missing probability℘ miss is the
probability that a delay defect is not covered byS given that the
delay defect will affect the circuit performance.

Defect Distribution In the experiments, the evaluations are based
on the assumption of a defect size distribution:λe�λx wherex is
the defect size andλ is a constant We useλ=0.1 and 0.04 in the
experiments. This exponential distribution for defect size (given
that defects occur) has been studied in many publications [19, 20]
and is a practical assumption to be used. Note that it is also possible
to adopt other distributions. However, using other distributions in
general does not invalidate the trends observed in our work.

8.2 Results
we will focus on the results from circuit s5378 for detailed dis-

cussion. Other results are available but due to space limitation, they
are not included. We note that all results we have so far are consis-
tent with the theoretical findings.

The benchmark s5378 has an important characteristic: the path
delay profile for s5378 indicates that the performance of the circuit
is not dominated by a few paths (more equally distributed). Fig-
ure 1 demonstrates the path profile of the path universeU , where
jU j= 1328.

233 234 235 236 237 238 239 240

Path delays

0

10

20

30

40

N
um

be
r 

of
 p

at
hs

Figure 1: The profile of path delays for s5378.

The following plots show the evaluation results for different heuris-
tics. These plots demonstrate the trends of missing probabilities
versus the number paths. Results in Figure 2 are based on the de-
fect distribution of e�0:1x. For comparison, we also derive results
for the defect distribution of e�0:04x in Figure 3. Random delay
samples from e�0:1x range roughly from 0 to 40, while those from
e�0:04x will extend to 100. By applying these two different defect
models, we can show how larger defects affect the results of differ-



ent heuristics.
As we observe in these results, H-Opt consistently outperforms

all other heuristics as predicted by the theoretical analysis (with
smaller missing probabilities). More interesting observations can
be made when the model of e�0:04x is used. Since the range of
defect size spreads out, more edges have to be covered to maintain
a low missing probability for a fixed number of k paths. As shown
in the figures, the H-Opt still converges quickly as the number of
paths increases. As stated before, H-Timing provides no guarantee
at all and hence, clearly performs even worse in Figure 3. For large-
size defects, H-Segment, which is optimized for covering more
segments, can have a similar level of coverage as H-Opt (while the
number of selected paths is small).
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Figure 2: Comparing heuristics in statistical domain using a
defect model of e�0:1x.
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Figure 3: Comparing heuristics in statistical domain using a
defect model of e�0:04x.

9. CONCLUSION
In this paper, we formalize the problem of critical path selection

as a new optimization problem that consists of two theoretically in-
tractable sub-problems. We provide theoretical analysis for various
heuristics used to solve each sub-problem individually. Then, we
prove that the H-Opt heuristic is theoretical feasible and practical.
We show that a seemingly intuitive heuristic H-timing can actually
be the worst. To validate our findings, we develop an experimen-
tal scheme based upon statistical timing analysis framework and
defect-injected simulation. Our experimental results confirm that
H-Opt is indeed the best heuristic among all we studied. Our for-
mulation of the path selection can lead to many interesting theoreti-
cal developments in the area of delay testing. The statistical timing
evaluation framework can provide a general approach to validate
and compare future DSM delay fault testing methods.
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