
Automated Timing Model Generation
Ajay J. Daga, Loa Mize, Subramanyam Sripada, Chris Wolff, Qiuyang Wu

Synopsys, Inc.
2025 NW Cornelius Pass Rd., Hillsboro, OR 97124

503-547-6900

{ajdaga, loa, ssubram, wolff, qwu}@synopsys.com

ABSTRACT
The automated generation of timing models from gate-level
netlists facilitates IP reuse and dramatically improves chip-level
STA runtime in a hierarchical design flow. In this paper we
discuss two different approaches to model generation, the design
flows they lend themselves to and results from the application of
these model generation solutions to large customer designs.

Categories and Subject Descriptors
J.6: ComputerApplication.CAD.

General Terms
Design, Performance, Algorithm, Verification

Keywords
Static Timing Analysis, Model Generation. EDA.

1. INTRODUCTION
System-on-a-chip (SoC) design is performed in an inherently
hierarchical manner. Intellectual property (IP) is integrated on-
chip with new blocks that are often designed by geographically
dispersed teams. Timing models are important in such a design
flow because they are a compact means of exchanging the
interface timing information for blocks. The automatic generation
of timing models from the gate-level netlist for a design is key to
sustaining a hierarchical SoC design flow for two reasons:

1) To improve capacity and runtime of static timing analysis
(STA) in a hierarchical design flow.

Timing models are compact and accurate representations of
the timing characteristics of a block. The use of timing
models in place of the full gate-level netlist for a block is key
to improving performance and capacity associated with chip-
level STA. This is particularly the case for complex SoC
designs whose gate counts exceed 5M gates.

2) To disseminate interface timing information for intellectual
property (IP) blocks while hiding implementation details.

From an IP reuse standpoint, timing models help protect IP
by limiting the visibility that end users have to the
implementation details of IP blocks, while still preserving
information required to verify IP integration on a SoC.

Automatic model generation is possible in PrimeTime [1] using
two approaches: extracted timing models (ETMs) and interface
logic models (ILMs). ETMs abstract the interface behavior of a
design and replace the original netlist with a library cell that
contains timing arcs between pins. These setup, hold and delay
arcs are a function of input transition time and output load - for
this reason the model is context independent. ILMs discard the
netlist, constraints and back-annotation associated with internal
register-to-register paths on a design. Rather than abstract, ILMs
preserve only, but in entirety, the portion of a design that impacts
and is impacted by the external world. Like ETMs, ILMs are also
context independent.

For design styles where the transitive fanout of input ports and the
transitive fanin to output ports are registered, ILMs offer
significant runtime and capacity improvements without sacrificing
accuracy. For this reason, ILMs are well suited for hierarchical
timing signoff. ETMs offer significant performance improvements
over the original netlist, but because circuit timing is abstracted
there is some loss of accuracy. For this reason, ETMs are well
suited during the early stages of a design flow, where fast
exploration of design alternatives is important. Also, because they
hide all implementation details, ETMs lend themselves to IP reuse
scenarios. Finally, because the generated model is a library cell
containing timing arcs in industry-wide standards such as lib [2]
and Stamp [3], ETMs are portable and easy to use across EDA
tools.

In the following sections we discuss the ILM and ETM model
generation approaches in further detail. We then discuss issues
related to the validation of a model against the original gate-level
netlist. Finally, we present results on the application of ILMs and
ETMs to ten large customer designs.

Prior work in the area of automated timing model generation has
focussed on the automatic derivation of block clocking
requirements [4] and on the characterization of interface delays
without traversing false paths using user-specified mode
information [5]. For mainstream IP reuse and hierarchical STA
flows, our experience indicates that customers already have a
good understanding of the clocking requirements for a block and
so the automatic derivation of this information is not crucial. The
main contribution of this paper is its comprehensive study, using
large customer designs (some exceeding 700K gates), of model
generation runtime, model accuracy and model performance for
two fundamentally different model generation approaches.

2. INTERFACE LOGIC MODELS
ILMs embody a structural approach to model generation, where
the original gate-level netlist is replaced by another gate-level
netlist that contains only the interface logic of the original netlist.
Interface logic contains all circuitry leading from I/O ports to

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC’02, June, 2002, New Orleans, LA
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

edge-triggered registers called interface registers. The clock tree
leading to interface registers is preserved in an ILM. Logic that is
only contained in register-to-register paths on a block is not in an
ILM.

2.1 ILM Generation
ILM generation requires identifying the interface logic on a design
and then writing out the netlist, constraints and back-annotations for
interface logic in an appropriate format.

The following is identified as belonging to interface logic:

1) All cells contained in timing paths leading from input ports
to either an edge-triggered register or output ports at which
these paths terminate. If a transparent latch is encountered
then it is treated as combinational logic and path tracing
continues through the latch until an edge-triggered register is
encountered.

2) All cells contained in timing paths leading to output ports
from either edge-triggered registers or input ports at which
these paths originate. Transparent latches are handled as
described previously.

3) The clock tree that drives interface registers is a part of
interface logic. This includes any registers in the clock tree.
Clock-gating circuitry that is driven by external ports is a
part of interface logic, while clock-gating circuitry that is
driven by registers on the block is not a part of interface
logic.

Figure 1 shows an example gate-level netlist for a block (ports
and pins on which clocks are defined are marked) and Figure
2 its resulting interface logic. Note how cells INV_*, FF_2, and
AND_2 are not a part of the ILM. These cells are only instantiated
in register-to-register-paths. Note how the cell AND_1 is a part of
the ILM though it does have an input pin, A, that belongs to a
register-to-register path. The input pin A on AND_1 is
unconnected in the ILM. Similarly, the output pin Q on FF_1 and
the input pin D on FF_3 are also unconnected in the ILM. FF_1
and FF_3 are interface registers. Notice how the clock tree for
these interface registers is a part of the ILM. Registers FF_5 and
FF_6 that belong to this clock tree are also a part of the ILM, but
notice that the feedback paths on these registers are not a part of
the ILM. Also notice how cells FF_4 and BUF_2 that belong to
the clock tree leading to an internal register are not a part of the
ILM.
When identifying interface logic it is necessary to ignore the
fanout of input ports connected to global chip-level signals that

feed internal registers on a block. Examples of such ports are
clocks, reset and scan_enable. In Figure 1, the fanout of ports
CLK_1, CLK_2 and RESET are ignored because otherwise all
registers on a design will be instantiated in the ILM. The clock
tree leading to interface registers is identified as belonging to
interface logic by processing the fanin of interface register clock
pins.

For transparent latch based designs, it is necessary to specify the
maximum number of levels of latch borrowing in I/O paths. By
default transparent latches are viewed much like combinational
logic cells and fanout or fanin traversal continues through a latch
until an edge-triggered flip-flop is encountered. When the number
of levels of latch borrowing is specified, fanout or fanin traversal
stops at a latch whose level is greater than the specified borrowing
level. Specifying one level of latch borrowing, for example,
results in the first two latches encountered in an I/O path being a
part of the ILM. The first latch can borrow, while the second
functions as an edge-triggered register that does not borrow.
When delay calculation is performed using the ILM it is necessary
to maintain all pins connected to interface logic nets. This ensures
that the pin and wire capacitance for interface logic nets is
accurate. The inclusion of all pins on interface logic nets for the
ILM in Figure 2 results in the addition of pins FF_4/CP and
INV_4/A.

In SDF flows where cell and net delays are annotated to an ILM it
is not necessary to maintain accurate pin capacitance information
for a net. Also, if clock tree synthesis has not been performed then
non-interface-logic pins are not maintained in the ILM for ideal
clock nets.

3. EXTRACTED TIMING MODELS
Extracted timing models differ from ILMs in that the interface
logic for a block is replaced by context-independent timing
relationships between pins on a library cell. In this section, we
discuss the different types of ETMs and issues related to their
automatic generation.

3.1 Extracted Timing Model Types
There are two types of extracted models, library cell and wrapper
with core cell, illustrated in Figure 3. The library cell ETM
replaces an entire design with a single library cell. The extracted
library cell contains timing arcs between external pins. Internal
pins are introduced only when there are clocks defined on internal
pins of the design. The library cell is generated in industry
standard formats such as lib and Stamp. In addition to the
extracted library cell a constraint file is generated that defines
exceptions (false paths and multi-cycle paths) that need to be

INV_3

BUF_2

BUF_4

INV_4

CLK_1

CLK_2

IN
OUT

CLK2_OUT

AND_1

BUF_1

BUF_3

INV_1

INV_2
FF_1 FF_2

FF_3

FF_5
FF_6

AND_2

BUF_
5

FF_4

RESET

A
Q D

Figure1: Example gate-level netlist.

F
f
f
_

BUF_4

CLK_1

CLK_2

IN

OUT

CLK2_OUT

AND_1

BUF_1

BUF_3

FF_1
FF_3

FF_5
RESET

FF_6

BUF_4

Figure2: ILM for example gate-level netlist.

applied to the library cell when it is instantiated at a higher level
of abstraction.

With wrapper and core cell, the extracted model preserves
boundary nets and parasitics on boundary nets. This model is
more accurate than the library cell because it allows boundary
parasitics on blocks to be stitched together with chip-level
parasitics when the model is instantiated at a higher level of
abstraction. This, in turn, allows inter-block net delays to be
calculated with high accuracy by taking into account the complete
parasitics for a chip-level net. The wrapper and core cell
correspond to a view of the original design in terms of a wrapper
design that instantiates a core block, as shown in Figure 3. The
extracted core cell is a pin-to-pin replacement of the core block
and is instantiated in the extracted wrapper design. Parasitics
information is written out in industry standard SPEF [6] format. A
constraint file that maintains exceptions that need to be applied to
the extracted model is written out just as for a library cell model.

A library cell model is preferred in IP reuse scenarios and for
import into third-party simulation and place & route tools. This is
primarily because the library cell model is a port-to-port
replacement for the original design and is written out in industry
standard formats. The wrapper and core cell model is useful for
import into tools that can handle the additional level of hierarchy
introduced by the wrapper design. The benefit of being able to
handle such a model is the additional accuracy it provides.

3.2 Extracted Timing Arcs
The objective of model extraction is to establish context-
independent timing relationships between input and output ports
on a design. These timing relationships are represented by timing
arcs between pins on a library cell. Extracted timing arcs can be
classified into three distinct types: combinational delay arcs,
sequential delay arcs, constraint arcs.

3.2.1 Combinational Delay Arcs
Combinational paths from an input port to an output port result in
the extraction of either two or four combinational delay arcs.
These arcs capture the minimum and maximum timing delays for

inverting and non-inverting paths from an input port to an output
port. Each extracted combinational delay arc has associated with it
timing sense information that indicates whether the arc is
inverting or non-inverting and whether it is representative of
minimum or maximum delay. Minimum and maximum delay arcs
represent lower and upper bounds on circuit delay for a single
operating condition, and so are indicative of delay variations
resulting from circuit topology rather than from process
variations. For the design in Figure 3, a pair of non-inverting
combinational delay arcs are extracted between IN and OUT1
(there are no inverting paths between IN and OUT1).

3.2.2 Sequential Delay Arcs
Paths to an output port that start at interface registers that are
similarly clocked, i.e. by the same clock and by the same clock
edge, result in the extraction of a pair of minimum and maximum
sequential delay arcs. A set of similarly clocked interface registers
is referred to as a clock group. Extracted sequential arcs are
relative to a clock and a specific edge of a clock. The clock edge
that a sequential delay arc is relative to is a function of whether
interface registers in a clock group are rising or falling edge
triggered and whether there is inversion in the path leading from
the clock definition point to register clock pins. For the design in
Figure 3, given that U8 is rising-edge triggered and there is no
inversion in the clock tree from CLK to U8/CLK, a pair of
sequential delay arcs are extracted from the rising edge of CLK to
OUT2. Extracting sequential delay arcs requires summing clock
and data path delays for each interface register in a clock group.
While minimum and maximum delay arcs are computed for paths
from each interface register in a clock group to an output port,
only a single worst-case minimum and maximum delay arc is
extracted for a output port, clock group pair.

3.2.3 Constraint Arcs
Paths from an input port to the data pins of a clock group result in
the extraction of a setup and a hold constraint arc. Similar to
sequential delay arcs, these arcs are relative to a specific edge of a
clock port. For the design in Figure 3, given that U7 is rising-edge
triggered and that there is no inversion in the clock tree leading
from CLK to U7/CLK, setup and hold arcs are extracted for IN
relative to the rising edge of CLK. Setup and hold arcs are
extracted in compliance with the following equations:

1) Setup = Max data path - Min clock path + Register setup

2) Hold = Max clock path - Min data path + Register hold

As with sequential delay arcs, though setup and hold times are
computed for paths from an input port to each interface register in
a clock group, only a single worst-case setup and hold arc is
extracted for a input port, clock group pair.

3.3 Extracted Timing Tables
Associated with each timing arc are tables that define timing
values as a function of input transition time and output load. By
extracting timing tables, rather than scalar timing values, the
generated model is context independent and applicable for
varying transition times and output loads. There could be different
critical paths for different transition times and the tables are
merged appropriately to handle this.

3.3.1 Delay Tables
Associated with each extracted delay arc (combinational and
sequential) are a pair of two-dimensional delay tables and a pair
of two-dimensional transition tables. Rise and fall delay tables

IN

CLK OUT2

OUT1

IN

CLK

OUT1

OUT2

U1

U2

U3

U4

U5

U6
U7 U8

 Library cell ETM

IN

CLK OUT2

OUT1U1/A

U2/A

U5/Z

U6/Z

Wrapper and core cell ETM

Figure3: Two types of ETMs.

define timing delays for rising and falling transitions at an output
port as a function of input transition time and output load. Rise
and fall transition tables define rising and falling transition times
at an output port as a function of input transition time and output
load. Both the numbers of points in extracted delay and transition
tables and the input transition and output load range over which
delay is characterized is controlled by a user.

Consider extraction of the rise delay table for the non-inverting
arc from IN to OUT1 in Figure 4 (assume that boundary net delays
are zero). A two-dimensional cell delay table (c) for U5 defines
the rise delay at output pin Z relative to pin A. Model extraction
establishes the rise-to-rise (rr) transition table (b) from IN to U5/A.
This table captures transition times at U5/A as a function of
transition times on IN. The transition table at U5/A is used to index
into the cell rise delay table for U5 to yield an intermediate table
(d) that describes the delay contributions through U5 as a function
of the load on OUT1 and the transition time on IN. This
intermediate table is summed with the delay table (a) from IN to
U5/A that captures the delay at U5/A as a function of transition
times on IN. This yields the two-dimensional rise delay table (e)
for the arc from IN to OUT1.

3.3.2 Constraint Tables
Associated with each extracted constraint arc is a pair of
constraint tables. Rise and fall constraint tables define setup or
hold times, depending on the type of arc, for rising and falling
transitions at an input port. These tables are a function of input
transition time and clock transition time.

Consider the computation of the fall constraint table for the setup
arc between IN and the rising edge of CLK shown in Figure 5. This
computation first requires extracting the transition tables
associated with the maximum fall-to-fall (ff) path from IN to U7/D
(b) and the minimum rr clock-path from CLK to U7/CLK (d).

These two tables are used to index into the two-dimensional fall
constraint table (e) for the setup arc from D to CLK in the library
cell for U7. The resulting intermediate table (f) defines setup times
on register U7 as a function of transition times on IN and CLK.
Next, this intermediate table is combined with the delay tables for
the maximum ff path from IN to U7/D (a) and the minimum rr path
from CLK to U7/CLK (c). This is done in accordance with
equations in section 3.2.3 to yield the desired fall constraint table
for the setup arc from IN to the rising edge of CLK.

3.4 Exception Handling
Exceptions such as false paths and multi-cycle paths (MCPs) are
handled during model extraction. Exceptions that only refer to the
clocks on a design are simply written out to the generated
constraint file and must be reapplied to the extracted model when
it is instantiated in a design. False paths that refer to pins or ports
on a design are accounted for during model extraction.

Multi-cycle exceptions that are found to apply to all paths leading
to or from a port are written out to the constraint file and must be
reapplied to the extracted model. The MCP written to the
constraint file only refers to pins and clocks on the extracted
model and not to internal design pins. For example if an MCP
were defined through U1/Z in Figure 6, because it applies to all
paths from IN, it would be written out to the constraint file and
apply to all paths through port IN that are clocked by CLK.

When an MCP only applies to some, but not all, paths to or from
a port then the impact of this exception is taken into account when
extracting a timing arc. For example, in Figure 6, assume a MCP
defined two-cycle clocking through U3/Z. Assume a clock period
of 10ns, a data-path delay from IN to U7/D of 17ns and a data-path
delay from IN to U8/D of 6ns. Also, assume that the clock-path
delay from CLK to the register clock pins is zero and the setup
times for both registers is also zero. In this case, a setup arc of 6ns
is extracted from IN to CLK as a result of the path from IN to U8/D.
A setup arc of 7 ns is extracted from IN to CLK as a result of the
path from IN to U7/D after reducing the data-path delay to U7/D
(17ns) by the clock cycle shift (10ns). As 7ns is more worst-case
than 6ns, a single-cycle setup arc of 7ns is extracted between IN
and CLK. So, when a MCP does not apply to all paths to or from a
port, then clock periods are taken into account to generate a
worst-case arc appropriate for single-cycle clocking of the port.

3.5 Transparent Latch Handling
When the interface logic for a design contains transparent latches,
these need to be handled appropriately. Transparent latches allow
propagation from the D pin to the Q pin (referred to as a
borrowing latch) if the arrival time on the D pin is later than the
open edge of its clock. Transparent latches do not permit
propagation from the D pin to the Q pin (referred to as a non-
borrowing latch) if the arrival time on the D pin occurs before the
open edge of its clock. The open edge of a positive level sensitive
latch is the rising edge of CLK.

T T
0 0.2
0.5 0.4
1 0.5

Data-Path
Transition Table

(b)

T D
0 0.3
0.5 0.7
1 1.1

Data-Path
Delay Table

(a)

IN

CLK

U1

U2

U7

T T
0 0.1
0.5 0.3
1 0.5

Clock-Path
Transition Table

(d)

T D
0 0.2
0.5 0.4
1 0.7

Clock-Path
Delay Table

(c)

0 0.5 1
0 0.4 0.6 0.7
0.5 0.5 0.7 0.8
1 0.6 0.7 0.9

DT
CT

(f)

IN→CLK
Setup Table

0 0.5 1
0 0.5 0.5 0.2
0.5 1.0 1.0 0.8
1 1.5 1.4 1.3

 DT
CT

(g)

0 0.5
0 0.3 0.6
0.5 0.5 0.9
1 0.7 1.3

DT
CT

(e)

U7 D→CLK
Cell Setup

Constraint Table

Figure 5. Extracting constraint tables

IN→OUT1
Delay Table

IN

OUT1
U1

U3
U5

T T
0 0.2
0.5 0.4
1 0.6

0 5
0 0.3 0.9
0.5 0.7 1.4
1 1.3 2.1

T
L

0 5
0 0.5 1.1
0.5 0.6 1.3
1 0.8 1.5

T
L

Data-Path
Transition Table

U5 A→Z
Cell Delay Table

T D
0 1
0.5 1.7
1 2.4

Data-Path
Delay Table

0 5
0 1.5 2.1
0.5 2.3 3.0
1 3.2 3.8

T
L

+

A Z

=

(b)

(a) (d)

(c)

(e)

Figure 4: Extracting delay tables.

IN

CLK

U1

U2

U3

U4

U7

U8

×
×

Figure 6: MCP handling during model extraction.

Transparent latches are handled during model extraction by
establishing, based on arrival times defined on input ports and
specified clock periods, whether a path from an input port to a
latch causes borrowing or not. If the path causes borrowing then
path traversal continues through the latch until either a non-
borrowing latch or edge-triggered flip-flop is encountered. If the
path does not case cause borrowing then path tracing stops and a
setup arc is extracted relative to the open-edge of the latch. The
borrowing behavior of latches does not impact the extracted hold
arc. Hold arcs are always extracted relative to the close edge of
the first interface register (latch or flip-flop) encountered while
tracing paths from input ports.

Latch borrowing can result in paths being traced through latches
from an input port to an output port. In this case, a delay arc is
extracted from the input port to output port. When tracing paths
from interface registers to output ports, transparent latches are
handled by tracing through borrowing latches and generating a
sequential delay arc from a clock port to an output port. If a non-
borrowing latch is encountered then no arc is extracted because
this represents an internal register-to-register path.

Any clock cycle shift resulting from borrowing through several
levels of latches is not accounted for in the extracted timing arcs
and must be accounted for by applying MCPs to the model. Also,
the model will match netlist timing as long as the borrowing
behavior at the time of model generation continues to hold when
the model is used. If input arrival times or clock periods change
sufficiently from what was specified at the time of model
generation then it is possible for latch borrowing behavior to also
change. The model would then no longer be an accurate reflection
of original design behavior. In this situation, a new model must be
generated for the new input arrival times and clock periods.

For an illustration of how transparent latches are handled during
model extraction consider the design in Figure 7. If the positive-
level sensitive latch U7 does not borrow, then a setup time relative
to the rising edge of CLK is extracted. The setup time for this arc
is influenced by the data-path delay from IN to U7/D and the
clock-path delay from CLK to U7/G. If U7 does borrow, then path
tracing continues through U7 to U8 (a rising-edge triggered flip-
flop), and a setup arc is extracted relative to the falling edge of
CLK. This setup arc is impacted by the data-path delay from IN,
through U7/D, to U8/D, by the clock-path delay from CLK to
U8/CLK and by the setup time between U8/D and U8/CLK.

4. MODEL VALIDATION
Once a model has been generated it is necessary to compare it to
the original design and establish that discrepancies between the
model and design are within acceptable bounds. This is referred to
as model validation and is performed for a given user-specified
context (input arrival times and transition times, output loads and
clock periods). Model validation takes place by loading the design
and model standalone, capturing relevant interface timing
parameters for both, and then comparing these parameters. For
completeness it is often desirable to validate a model and design
at two different contexts; a "min" environment (small loads, fast

transition times) and a "max" environment (large loads, slow
transition times).

Model validation ensures that timing arc values are within user
specified tolerances. This is done by comparing the absolute
discrepancy between worst-case timing slacks for all unique
input-to-clock, clock-to-output and input-to-output paths on the
model and design. This can also be accomplished through an
absolute or percentage comparison of the discrepancy between
interface timing arc values. Percentage comparison of interface
timing slacks is inappropriate because timing slack values are
influenced by the specified context (input arrival times, clock
periods, etc.). On the other hand, absolute discrepancies between
interface timing slacks for the same context applied to model and
design can be completely attributed to a discrepancy between
model and design. An attractive aspect of comparing interface
timing arc values is that such comparisons are independent of
some aspects of the user-specified context such as input arrival
times and clock periods.

Model validation also ensures that the capacitance values seen at
input ports and the transition times at output ports match. This is
necessary to ensure that in addition to correctly capturing
interface delays and constraints the model presents its external
environment with the same input load and output drive
characteristics as the original design.

Finally, model validation ensures that design rules such as max
transition time on input ports and max load for output ports are
the same for both model and design. This ensures that the same
design rule violations are reported for model and design.

Once the timing parameters for a model have been established as
falling within user-specified tolerances of the original design the
model is ready for use in place of the original design.

5. EXPERIMENTAL RESULTS
In this section, we present results from the application of ILMs
and ETMs to ten customer designs. The objective was to study
model generation runtimes, the performance improvement
provided by models in comparison to the original design and the
accuracy of the models in comparison to the original design. For
all designs a wrapper and core cell ETM was generated. The
calculation of delays and critical paths is referred to as “update
timing”.

Information on the ten designs is shown in Table 1. Six of the
designs had RC back-annotation, one had SDF and the remaining
three designs had no back-annotation. Some of the designs had
transparent latches in the interface logic while others did not. The
number of cells on the designs varied from 20K to 260K - this
corresponds to a gate count ranging from about 60K gates to
800K gates. The minimum clock periods on these designs ranged

IN

CLK

U1

U2

U4
U7 U8

U3G CLK

Figure 7: Latch handling during model extraction.

1 2 3 4 5 6 7 8 9 10

Cells 29277 26540 35254 30449 137557 43850 94925 263490 23441 55499

Latches 240 0 12 3 3807 2225 0 4565 557 0

Back-
annotation

RC RC RC RC RC RC - SDF - -

Clock

Period (ns)

8.3 8 16 36 26 6 5 6.9 6.66 6

Timing Relns.

Verified
356 204 3489 3206 2006 3544 3084 1646 6114 5392

Table 1: Design information.

from 5ns to 36ns, or about 25MHz to 200MHz. The number of
interface timing relationships that were compared between model
and design, as part of model validation, ranged from 200 to 6000.

Chart 1 shows model generation runtimes (in seconds) for the ten
designs. As a baseline, the time taken to update the timing of the
original design is shown. As may be observed, ILM generation
times are insignificant because of the simplicity of the task -
simply discard register-to-register logic, constraints and back-
annotation and write out what remains. ETM generation times are
significant when a design has RC back-annotation because of the
effort involved in characterizing circuit delay for multiple input
transition times. In some cases ETM generation times were about
7x update timing times, while in others ETM generation was even
faster than update timing. On average ETM generation takes about
3x longer than update timing.

Chart 2 compares update timing runtimes on the original design,
ILM and ETM. Across the board, update timing on ETMs only
took a few seconds, resulting in performance improvements that
ranged from 20x to 1200x when compared to update timing on the
original design. ILM performance improvements ranged from
about 1.5x to 14x. On average, ETM performance improvements
were about 250x relative to the original design, while ILM
performance improvements were about 5x. This is not surprising
given that ILMs preserve all interface logic while ETMs abstract
interface logic into timing arcs. The large model generation times
spent characterizing design timing has its payoff when the ETM is
used in place of the original design.
Charts 3 and 4 measure ETM and ILM accuracy, respectively.
These charts show the percentage of verified interface timing
relationships that had discrepancies between netlist and model of
less than 10ps and between 10 and 100ps. Across all designs
ILMs tend to match the original design within 10ps; 98.4% of all
interface timing relationships on an ILM matched the netlist
within 10ps. This is not surprising given that ILMs preserve
interface logic without modification.

On designs with SDF back-annotation, or no back-annotation,
ETMs also had greater than 90% of interface timing relationships

with a discrepancy of less than 10ps. For designs with RC back-
annotation, however, ETMs tend to be within 100ps of the

original design. Overall, across all ten designs, 99.6% of interface
timing slacks for ETMs were within 100ps of the original design.
For clock speeds of 200MHz, 100ps error is 2% of the clock cycle
and is insignificant. It is equally likely for model interface
relationships to be optimistic or pessimistic when compared to the
original design.

6. SUMMARY
In this paper we have presented two approaches to automated
timing model generation from gate-level netlists: interface logic
models and extracted timing models. Interface logic models
discard register-to-register paths on a design but preserve all
interface logic without modification. Extracted timing models
abstract interface logic into context-independent timing arcs.

Experimental results show that interface logic models provide 5x
runtime improvement while preserving original design timing
with no accuracy loss. This makes interface logic models well
suited for hierarchical timing signoff. Extracted timing models
provide greater than 100x runtime improvements with high
accuracy. This makes extracted models well suited for IP reuse
scenarios where it is important to hide circuit implementation
details and early in the design flow where fast design exploration
is important. Our experience indicates that different model
generation solutions will continue to be appropriate for different
design scenarios.

REFERENCES
[1] Synopsys, "PrimeTime: Synopsys Static Timing Solution",
Technical White Paper, July 1999.

[2] Synopsys, "Library Compiler Reference Manual", Version
2001.08, August 2001.

[3] Synopsys, "PrimeTime Modeling User Guide", Version
2001.08, August 2001.

[4] S.V. Venkatesh et al., "Timing Abstraction of Intellectual
Property Blocks", CICC’97, May 1997.

[5] H. Yalcin et al., "An Advanced Timing Characterization
Method Using Mode Dependency", DAC’01, June 2001.

[6] IEEE Std 1481-1999, "IEEE Standard for Integrated Circuit
Delay and Power Calculation System", June 1999.

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

ILM Update ETM Update Netlist Update

Chart 2. Performance improvements with
ETMs and ILMs

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9 10

0-10ps 10-100ps

Chart 3: ILM accuracy.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

0-10ps 10-100ps

Chart 4: ETM accuracy.
0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

ILM
G ti

ETM
G ti

Update
Ti i

Chart 1: Model generation runtimes.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

