Model Order Reduction for Strictly Passive and Causal
Distributed Systems

Luca Daniel
University of California, Berkeley

dluca@eecs.berkeley.edu

ABSTRACT

This paper presents a class of algorithms suitable for model re-
duction of distributed systems. Distributed systems are not suit-
able for treatment by standard model-reduction algorithms such as
PRIMA, PVL, and the Arnoldi schemes because they generate ma-
trices that are dependent on frequency (or other parameters) and
cannot be put in a lumped or state-space form. Our algorithms
build on well-known projection-based reduction techniques, and so
require only matrix-vector product operations and are thus suitable
for operation in conjunction with electromagnetic analysis codes
that use iterative solution methods and fast-multipole acceleration
techniques. Under the condition that the starting systems satisfy
system-theoretic properties required of physical systems, the re-
duced systems can be guaranteed to be passive. For distributed
systems, we argue that causality of the underlying representation is
as important a consideration as passivity has become.

Categories & Subject Descriptors: B.7.2 Simulation, B.8.2 Per-
formance Analysis & Design Aids, G.1.1 Interpolation G.1.2, Ap-
proximations, 1.6 Simulation & Modeling.

General Terms: Algorithms, Performance, Design,

Keywords: Passive reduced order modeling, Distributed systems.

1. INTRODUCTION

Design of modern high-performance electronic systems such as
RF circuits, optical transceiver ICs, and global digital signal in-
terconnect requires careful attention to physical modeling so that
the intrinsic physical limitations of implementation processes can
be accounted for, and undesirable effects such as substrate cou-
pling, signal integrity, and electromagnetic interference (EMI) can
be minimized. A high degree of physical fidelity is necessary and
can only be achieved by detailed analysis, such as with electro-
magnetic field solvers. At the same time, effective design of com-
plicated systems requires simple models. Hence, model reduction
is now a standard procedure for obtaining simple models of com-
plicated physical systems. Much research has been performed in
the model reduction field over the past decade [1, 2, 3], intended to
address three primary issues: (a) Model accuracy. (b) Numerically
stable and computationally practical generation of models of arbi-
trary order. (c) Generation of models that are “well-behaved” when
embedded into a simulation tool with models of other physical ele-
ments.
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A reasonable procedure to satisfy the last issue is to require that
the models themselves do not possess non-physical properties. For
example, components such as interconnect do not generate energy:
they are passive.

“Lumped” RLC circuits, can be typically represented by matri-
ces that are independent of frequency. For such lumped systems,
positive-realness preserving procedures such as those based on con-
gruence transforms [2, 3] are sufficient to guarantee that the re-
duced models of passive full systems are passive as well. However,
when accounting for high frequency effects, “distributed” systems
represented by frequency dependent matrices are typically encoun-
tered. For example, frequency dependent matrices are generated
by integral-equation based field solvers that employ full-wave ker-
nels, special Green functions for lossy dielectrics/substrates, or fre-
quency dependent basis functions [4].

There are several approaches to distributed model reduction that
essentially convert the model reduction problem to an interpola-
tion or data-fitting problem [5, 6] where it is irrelevant whether the
original systems is distributed or lumped. In our experience all of
the data-fitting like approaches are limited in some aspect, and to
the best of our knowledge, there is no approach that can simulta-
neously guarantee all the above three requirements. Krylov-based
model reduction schemes for lumped systems [1, 3], on the other
hand, routinely satisfy all these conditions, so we desire to extend
their capabilities to distributed systems.

As input, our algorithm takes a time-invariant state-space-like
frequency-domain model whose matrix descriptors may be a func-
tion of frequency. As output, it produces a time-invariant state-
space model with frequency independent matrix descriptors and
whose transfer function is a rational approximant of the original
(infinite-order, possibly irrational) transfer function. The algorithm
requires only matrix-implicit operations such as matrix-vector prod-
ucts, hence it is suitable for incorporation into modern fast integral
equation solvers.

2. PASSIVITY AND CAUSALITY

In this section we will be concerned with properties of an abstract
system H : X — X, transforming vector input signals u into vector
output signals y = A u within a space of signals X. For simplicity
of exposition we will assume that the system inputs, u : R — RP
represent port voltages, and that the outputs y : R* — RP repre-
sent port currents, or the converse (the inputs are currents and the
outputs voltages). The Laplace-domain representation of the sys-
tem % is then a matrix H(s), s.t. y(s) = H(s)u(s), where u(s)
and y(s) are the Laplace-domain representations of inputs u(t) and
outputs y(t). Hence, H(s) is an immittance function: either an ad-
mittance matrix Y(s), or an impedance matrix Z(s). Let us intro-
duce two inner products in X, the standard inner product (u,y) =
[ y(®)Tu(t)dt, and a product which acts on truncated signals
(U, Y)r = (Ur,y) = (u,yr) = [T, y(t) Tu(t)dt, where u(t) = {u(t)
ift<1,0ift>1}.



If uand y are port current/voltage pairs, (u,y), is the total energy
dissipated by the system up to time t. We will generally work in
the space of signals x € X = £, that have finite norm ||x|| for any
T, where | [x]|? = (X,X) .

Passive Systems. A passive system is a system that cannot pro-
duce energy. For the systems of interest here we may define:

DEFINITION 1 (PASSIVITY). Asystem H : X — X is passive
if (u,Hu), >0,VTeR", Yue X, u:[0,1] > RP.

In practice, almost all systems of interest for model reduction are
non-ideal and contain some loss. That is, they internally consume
energy. If a system consumes energy, it is said to be strictly passive.

DEFINITION 2 (STRICT PASSIVITY). A system # is strictly
passive if there isa 8 € RT s.t. (u, Hu); > 8||ur||?, VT €R, Vu:
[0,T] — RP.

Positive Real Systems. A related concept in network theory is
that of positive realness.

DEFINITION 3  (POSITIVE REALNESS). A matrix valued func-
tion H(s) is positive-real [7] if
H(s) = H(s), @)
H(s) is analytic in Re(s) > 0, 2
My (s) = H(s)+H(s)* > 0inRe(s) > 0. ©)
DEFINITION4 (STRICT POSITIVE REALNESS). Amatrix val-

ued function H(s) is strictly-positive-real [8] if there exists an € €
R* s.t. H(s—¢) is positive-real.

Positive realness is of interest because of its relation to passivity for
lumped networks:

THEOREM 1. A system # with rational system transfer func-
tion H(s) is passive and stable if and only if H(s) is positive-real [7].

In the context of model reduction, the implication for state-space
systems is that if a reduction algorithm for lumped RLC networks
produces models with positive-real transfer functions H(s), then
it generates guaranteed passive models. Often the positivity con-
dition (3) can be restricted to the imaginary axis, because of the
following result [7]:

THEOREM 2. A rational H(s) is positive-real if and only if (1)
and (2) hold, and

My (iw) >0, Vo e R )

except for simple poles iy of H(s), where the residue matrix must
be nonnegative definite [7]. H(s) is strictly positive real if the in-
equality is strict [7, 8].

THEOREM 3. If a rational matrix valued function H(s) is a rep-
resentation of a passive system, then H=1(s) is positive-real.

Causal Systems. A causal system is a system whose output de-
pends only on past inputs, not future inputs.

DEFINITION5 (CAUSALITY). Asystem # is causal if Hu=
Hu, VTERT, Vu:[0,T] = RP.

All physical systems are causal. Hence, causality is a necessary
property of all models intended to be used in any simulator that
has a concept of time. However, it is often neglected when mod-
eling distributed systems. When constructing model reduction al-
gorithms for distributed systems, we must keep in mind that the
condition in Equation (4) is not sufficient by itself to insure passiv-
ity. In particular, it is known that passive systems are required to be
causal [9, 10]. If a system is not causal, it cannot be passive.

ExampLE 1. Consider the one port (p = 1) network function
Zgyin (i) = Ro + Rac/[w] that is commonly used as a model for
the “resistance” of interconnect in the skin-effect regime. This
function satisfies the condition Mz(iw) > 0, V w € R. However,
it is not a representation of any passive system, because it is not a
causal function. In fact, it can be shown that any physical, passive
network function that is purely real must be constant with respect
to the frequency . In Section 6.3 we further illustrate the non-
causality of this model.

Algorithms that generate successively better rational approxima-
tions of non-causal systems (for example, Zy i, (iw)) must in some
limit fail to be passive, for example by generating unstable approx-
imants. Therefore we will require that all the systems we manipu-
late be causal. The algorithms we shall present shortly will produce
strictly positive-real (and thus strictly passive) approximations to
causal and strictly positive-real (and thus strictly passive) system
functions H(s).

3. TECHNICAL BACKGROUND

Distributed Systems in Descriptor Form. Let us assume
the original distributed system (e.g. an interconnect network) has
been described, for instance by the discretization step of an inte-
gral equation method, in terms of a frequency dependent matrix
Z(s). Z(s) describes the couplings between all the discretization
basis functions and may be very large in the applications of inter-
est. Many integral equation methods, when applied to distributed
systems, produce Z(s) as a linear combination of matrices. One
example is Z(s) = R(s) 4 sL(s), where R(s) and L(s) can still be
in general frequency dependent. Incidentally this particular form
for Z(s) may be advantageous for our approach, although in gen-
eral not necessary. We assume input and output information is of
interest at some “ports” of the network for which the model is to be
generated. The frequency-domain description of the system can be
written as

[R(8) +SL(s)]im(s) = BVp(s), ip(s) =BTim(s),  (5)

where vp(s) € CP and ip(s) € CP are Laplace-domain represen-
tations of voltages and currents at the p defined ports of inter-
est, im(s) € C" are the internal currents, and B € R™P is a ma-
trix relating ports to internal currents. In this case u = vy rep-
resents the system inputs (voltages), y = ip the system outputs
(currents), and x = iy the internal states (also in this case cur-
rents). The transfer function from inputs to outputs is H(s) =
BT[R(s) +5sL(s)] B, ip(s) =H(s)vp(s), and one view of model
reduction is that it seeks an approximation to the transfer function
H(s).

Projection Methods. The Krylov-subspace based model re-
duction algorithms [1, 3, 2] are projection methods. One of the key
insights in reducing distributed systems is that projection meth-
ods, and their approximation properties, apply to lumped sys-
tems aswell asto distributed ones.

Given a matrix Q € R4, an orthogonal projection method ob-
tains a rational approximant (of dimension q), or, equivalently, a
reduced model, via the congruence transformations

R(s)=Q"R(S)Q, L(s) =Q°L(S5)Q, B=Q"B. (6
The post-multiplication by matrix Q corresponds to projecting the
original state vector of variables im into the reduced space of basis
functions represented by the q columns of matrix Q: im = Qim.

The pre-multiplication by matrix Q* in (6) reduces the number of
equations to the new size of the state q.



After the congruence transformation step the linear system is
[R(5) +SL(S)]im = Bp(s), ip(s) = B*im(s) @

where R, L e C9%; i (s) € C9, B € RI%P. At this point, the projec-
tion operation is conceptual; the system of (7) contains a frequency-
parameter and is thus infinite-dimensional. We will discuss finite-
dimensional realizations later in the paper.

For lumped systems, the most popular approaches to model re-
duction generate the columns of the matrix Q by matching mo-
ments of the frequency domain response H(s), or, equivalently,
derivatives of the time domain response. An exhaustive discussion
on this step is not among the purposes of this work. However, we
mention here that one possible way to obtain a very simple projec-
tion matrix Q for the congruence transformation in (6) is to con-
struct each of the g columns of Q by solving the original full sys-
tem (5) at q different frequency points [2]. When the underlying
system matrices R(s) and L(s) are defined implicitly, as in large-
scale electromagnetic codes, this is not an inconvenience, and is in
fact preferred as derivative information can be awkward to obtain.

The importance of congruence transformations in generating well-
behaved reduced models stems from the following theorem.

THEOREM 4. If Z(s) is positive-real, then Z(s) = Q*Z(s)Q is
also positive-real.

PROOF. Conditions (1) and (2) in Definition 3 are easily veri-
fied. Condition (3) follows from observing that 5 (s) = Q*Mz(s)Q,
so range(M5) C range(Mz). O

The theorem implies that if the given infinite-dimensional system
to be reduced is passive and can be described by a positive-real
system matrix Z(s), then the model with smaller descriptor matri-
ces obtained from the projection operation will represent a passive
system as well, although still infinite-dimensional.

_LEMMA 1. Given a system of the form in (5), if Z(s) = R(s) +
sL(s) is [strictly] positive-real, H(s) is [strictly] positive-real [3].

The proof follows from Theorems 3 and 4. From this Lemma, one
can observe that one way to obtain a positive-real H(s) is to find a
positive-real Z(s). Note particularly that positive-realness of Z(s)
implies that all the poles and zeros of I:|(s) are in the left half-plane.

4. THE OPTIMAL GLOBAL INTERPOLA-
TION APPROACH

To illustrate some of the problems encountered in model reduc-
tion for distributed systems, consider the algorithm presented in
[11]. The central approach of the algorithm is a Taylor expansion
of the system matrix descriptor Z(s) ~ ZE:O Z,s¥, using polynomi-
als as interpolants. A standard Krylov method is then applied to a
system constructed from the Taylor expansion. This approach does
not generate well-behaved models because the Taylor approxima-
tion is not globally well-behaved. In fact, all polynomials diverge in
the s — oo limit. Hence, although good accuracy can be achieve in a
given frequency band of interest, global properties such as positive-
realness cannot be guaranteed. Empirically, the resulting reduced
models are often found to have unstable poles, the models are not
passive, and thus the algorithm is of little practical value.

In our approach, we will seek to combine approximation of the
Z(s) internal matrix descriptors with a Krylov method as in [11].
But our method differs in the following fundamental aspect.

4.1 The key idea

Almost all systems for which one would wish to extract reduced
models are non-ideal (non-ideality is why they must be modeled in
detail) and so contain a small amount of loss. These systems are
strictly passive and can typically be described by strictly positive
real system matrices.

The key idea of our algorithm is based on the observation that if a
system descriptor is strictly positive-real to begin with, a glob-
ally and uniformly convergent interpolant will eventually (for a
large enough order of the interpolant) be positive-real as well.
(This will be seen in the proof of Theorem 5.) Furthermore, a well-
chosen global interpolant will be positive-real for low enough or-
ders to be practical. Local approximations based on Taylor and
Padeé typically do not have these properties.

There is one more point, subtle yet of great importance, that we
wish to underline before proceeding with the main algorithm. In
our algorithm, as in others [3], we require that, not only the transfer
function H(s) of the given large system be strictly positive-real, but
also that its internal system matrix descriptor Z(s) be strictly posi-
tive real (i.e. that the state-space description be internally positive-
real). However, as discussed in Section 2 in a physical system, H(s)
must also be causal. Hence, as for the the positive realness prop-
erty, we shall require that not only the transfer function H(s) of
the given large system be strictly positive-real and causal but also
that its internal system matrix descriptor Z(s) be strictly positive
real and causal (i.e. that the state-space description be internally
positive-real and causal). In this case we can restrict our search
for approximations of Z(s) to the set of stable, positive-real inter-
polants. For non-causal Z(s), either accuracy or stability/passivity
would have to be eventually sacrificed.

4.2 Proposed Algorithm

We propose an eight step procedure, which we term Global Rational
Interpolation, Passive (GRIP):

1. Obtain/estimate/given a set of g points at which the transfer

function at the network ports H(s) € CP*P is to be matched,

2. Compute the basis Q € C"™*4 for the projection operation (see
Section 3).

3. Project the internal system matrices R(s),L(s) € C™" to ob-
tain smaller R(s),L(s) € C%9 as in (6). Note that this is a
conceptual operation; the reduced matrices are still frequency-
dependent, so the system is still of potentially infinite order.

4. Perform a global and uniform interpolation of the (projected)
internal system matrices R(s), L(s) (see Section 5).

5. Check the passivity (see [12]), and accuracy of the matrix
interpolants. If not passive, or if matrix interpolants are not
accurate, go to Step 4 and increase the order N of the global
interpolant.

6. Check the accuracy of the reduced model transfer function
H(s). If not accurate, go to Step 1 and add additional match-
ing points q.

7. Realize as state-space system.

8. Perform a second-stage guaranteed-passive optimal reduc-
tion step, if desired [13].

Steps 1,2,3, and 6 are standard in lumped-system model reduction.
Various approaches are possible, and many are described in the lit-
erature. As they are not the main focus here, they will not be dis-
cussed further. Step 5 can be performed solving the Lur’e equation
in the Positive-Real Lemma [12], for which computational proce-
dures are available in the literature [12]. Step 7 is dependent on
how Step 4 is performed, but is always possible if Steps 4-6 are
feasible.

It can be noticed that our algorithm is posed in such a way that
if it terminates, accuracy, stability, and passivity are guaranteed.
However, we have not yet shown that it is possible to construct
specific instantiations that will terminate. Such task is equivalent to
finding for the key Step 4 a suitable interpolant that is guaranteed
to converge globally and uniformly. To this purpose, in the next
Section, one possible choice will be described.



5. ALAGUERRE-BASIS IMPLEMENTATION

5.1 Choosing the global uniform interpolant

Several approaches are possible to the global interpolation prob-
lem. One possibility is to use algorithms developed for general-
purpose interpolation or data-fitting [6] that guarantee passivity by
construction. These algorithms are very computationally demand-
ing. For many applications of interest, a simpler alternative is
available. First, it is advantageous (although not necessary) to find
some decomposition of matrix Z(s) into for instance some matri-
ces R(s) and L(s) for which the individual matrix entries do not
have sharply discontinuous behavior in the frequency parameter s.
Many integral-equation-based electromagnetic field solvers for dis-
tributed systems already produce such a decomposition. In order
to use our method, particular attention will need to be dedicated
to making sure that such solvers generate strictly positive-real and
causal system matrices.

Second, the frequency dependency of projected matrices R( )
and L( ) in (6) can then be captured for instance using the set of

basis functions [14], Ex(s) = (§+S) , Where A is a positive real

number. In this way we can write:
= 5 RkEx(s), =3 LkE«(s). ®)
k=0 k=0
The basis created by the functions Ei(s), sometimes called the La-
guerre basis, is a member of a larger family [15] of bases, all of
which consist of sets of stable rational functions orthonormal over
the imaginary axis s = iw. An interesting contrast with the Tay-
lor series approach is that the Ei(s) are, in a sense, band-limited.
For |w| > A, the Ex(s) have monotonic magnitude, and for |w| <
A, they are nearly equi-ripple, much like Chebyshev polynomials.
This implies that with suitable choice of A, the approximations to
R(s), L(s) will be well behaved outside the approximation interval,
and convergence will be fast within it.

The Laguerre basis is particularly interesting because, under the
bilinear transformation, s = A(1—2)/(1+z), the series expansion
in terms of the basis functions Eg(s) is mapped to a Fourier se-
ries of complex exponentials, since Eg(s) = k where z=¢®,@¢
[0, 2n) The problem of rationally approxmatmg the matrix func-
tions R(s), L(s) is reduced to the problem of approximating a func-
tion on the circle via a Fourier series, or equivalently computing a
Discrete Fourier Transform (DFT), as the entries of R(s), L(s) may
be approximated term-wise.

5.2 Global Uniform Convergence

If the entries of R(s),(s) are smooth when mapped to the cir-
cle, then the partial sums R(N)(s), L(N)(s) converge uniformly to
R(s),L(s)

1 N-1
, LMN)(s) Nzl_ (9)

If R(s), (s) are not smooth, but are continuous, it is still possi-
ble to obtain uniformly convergent approximates by summing the
Fourier series in the sense of Cesaro [16]. Practically speaking, this

means replacing the summations (9) by
1Nt { k}
=5 Le1— | &
NKZO KPTN

v 2’ . [17 7] (10)

Equivalently, we may say that as successive approximates, we take
the arithmetic means of the partial sums R(N)(s), L(N)(s), rather
than the partial sums themselves. Summation in this manner has the
property of suppressing the Gibbs effect, and also insuring uniform
convergence on a broader class of functions.

L(NC) (s)=

LEMMA 2. Ifthe entries of R(N)(s), L(N)(s) are continuous when
mapped to the circle, RNC)(s), LNC)(s) converge uniformly to
RMN)(s), LN)(s) as N — oo [16].

Shortly we will need the following definitions:

DEFINITION 6 (STRONG-N CONDITION). Satisfied for Z(s) if
M5 (s)—nl >0foranyn > 0.

where M5 (s) was defined in (3).

DEFINITION 7 (WEAK-n CONDITION). Satisfied for 2(5) if
forany € >0, thereisann > 0,n < &s.t. M5 (s)+nl > 0.

From Lemma 2 we obtain a major result of the paper:
THEOREM 5. Given a system description Z(s) = R(s) + sL(s)

where matrices R(s) and L(s) are causal, strictly positive real,
and continuous on the imaginary axis, there exists an integer N

and coefficients ﬁﬁN’C),IN_(kN’C) for the partial sums in (10) such
that the matrix rational function Z(s) = RNC)(s) +-sL(NC)(s) is
a positive-real rational interpolant of Z(s) whose error can be
bounded from above by any chosen positive constant.

PROOF. Property (1) follows by construction as the E satisfy (1).
Property (2) also follows by construction, since by inspection the
Ex have poles only in the left half-plane. Due to Theorem 2, proof
of (4) is now sufficient to complete the proof. Case 1: MMz is
Strongly-n. From Lemma 2, if R(s) and L(s) are continuous when
mapped to the circle, R(NC)(s), L(NC)(s) converge uniformly and
so does Z(s) = R(NC)(s) +sLNC)(s). Thus¥n >0, AN s.t. [|Z(iw)—
Z(iw)||2 < n/4, YweR. Hence [IM3 (iw)—N5 (iw)]]2 < 2||Z(iw) —
Z(iw)|l2<n/2, VoeR. Nz (iw) > M; (iw)— |[N3 (iw) - N3 (iw)[|2 >
n—n/2, sot M5 >n/2 and N3 is Strongly-n, which implies (4)
(see [8]) and that Z is strictly positive-real. Case 2: M5 is [strictly]

positive-real but not Strongly-n. Choose any n>0and Map Z —
Z+nl. Z is now Strongly-n. Goto Case 1. 2 [J

Theorem 5 proves that an order of interpolation N large enough
does exist and therefore that the algorithm in Section (4.2 termi-
nates. A practical algorithm would require a small N. The order
of the interpolant is related to the smoothness of the function be-
ing approximated. Hence, although we could use this algorithm to
approximate H(s) or Z(s) directly, that would require evaluation of
an awful lot of matching points around resonances, and most likely
a very large order of the interpolant. A small N is instead needed
when the algorithm is used on some internal decomposed matrices
R(s) and L(s) which are almost always continuous within a given
band of interest. Out-of-band smoothness (for example, for delay
functions, which create essential singularities at o) can be insured
by filtering operations which must be designed to preserve passivity
and causality of the original matrices.

5.3 Computing the DFT Coefficients

The DFT coefficients in the sums (9) can be efficiently calcu-
lated for instance using a Fast Fourier Transform (FFT) algorithm.

Ln this we needed to use the result that perturbations of a Hermitian matrix
(M) result in perturbations of the eigenvalues bounded by the 2-norm of
the perturbation.

2The upshot of all this is that the Strongly-n condition is slightly stronger
than strict positive-realness and may not be satisfied for all strictly passive
systems. But by introducing an additional error of O(n) (i.e., roughly dou-
bling the interpolation error bound) through the n-shifting procedure we
may guarantee strict positive-realness of the final model. An alternative is
to not perform the n-shifting, in which case we may prove that Z is Weakly-
n, which allows Z to have an excess energy gain of O(n). Since we may
drive n — 0, neither deviation is of practical consequence in systems with
loss modeled over a finite bandwidth.



That is equivalent to evaluating the DFT coefficients via numerical
integration using the trapezoidal rule. For functions on a circle, the
trapezoidal rule is near-optimal, and achieves rapid (spectral) con-
vergence for smooth functions. Hence the steps for one possible
global approximation procedure are
1. For a desired interpolation order N, choose the size M of the
FFT as some power of two: M = 2" > N.
2. Calculate the frequency points s on the imaginary axis cor-
responding to the M equally spaced FFT points
zx = exp(j2rk/M), k = 1,...,M on the unit circle using the
bilinear transform: s, = A(1—zx)(1+z), where A = 21tfg is
a parameter to be chosen around the center of the frequency
band of interest for the system response. ~
3. Use (6) to evaluate each individual projected matrix R(sk)
and I:(sk) at the selected frequency points s, k=1,...,M.
4. Use an FFT algorithm to calculate the M coefficients Ry and
Ly in (9) from the sequences R(sk) and L(sk), k=1,...,M.
5. Apply to each of the M FFT coefficients the Cesaro’s trans-
formation in (10) and obtain the coefficients Ry and L.

Note that, since the R(s) and L(s) matrices usually satisfy con-
jugate symmetry relations, R(s),L(s) need to be evaluated at only
half the points on the circle. Also, once the M Cesaro’s FFT co-
efficients are available one can construct at no additional cost sev-
eral interpolants of increasing order N < M/2 simply truncating the
sums in (10) to the first N coefficients.

5.4 Realization

In this section we describe how to perform Step 7 in the gen-
eral algorithm 4.2, realization as a state-space model. Having per-
formed the global rational approximation on the projected matrix
functions R(s) and L(s), the system (5) is now:

1Nzl 1-z\ 1Nzt ). .
= Ryz —I—)x(—) — %Lkz im=Bvp (11)
M kZO 1+z)M 2

where Ry and L contain already the Cesaro’s correction (10). We
then collect the terms corresponding to the same powers of z, define
an augment state

x=[ N-LT Nl 2 7l it (12)
and produce a finite dimension discrete linear system, Substitut-
ing z= (A —s)/(A+s) we obtain the continuous and final system
realization

e lH] 5

L= Im(@) £ w,,Inductan

SEcXc = AcXc+Bevp (13)
iP = CcXc
where
| I 0 0
0 I 0 0
Ec =
0 0 I I
2FN 2(FN+Fn-1) 2FN+..+F2) Fn+..+F1—Fo
I =1 .. 0 0
0 I .. 0 0
Ac = A| o o ,
o o .. 1 —I
0 0 .. 0 —(Fnt..t+F1+Fo)
Be = —2\[0 0 0 0 o B,
Cc = B[00 00 .. 0 1],
wi [Ro+ALo] k=0,
Fi = { &[RctRici+ALc—ALcy] 1<k<N-1,
& [Rnc1 —ALn_4] k=N.

10 10° 10 10 10
frequency [Hz]

Figure 1: Real part and imaginary part divided by w of the
frequency response for the lossy substrate example.

6. EXAMPLES

6.1 Effectof Lossy Substrate on Line Impedance

The geometry in this example consists of two wires over a lossy
substrate. The two wire volumes are discretized into short and
thin filaments using a set of piece-wise constant basis functions.
A standard Galerkin technique is used to calculate the resistance
and partial inductance matrices R(s) and L(s). A frequency depen-
dent Green function is used in the kernel of the Galerkin integration
to account for the effects of the lossy substrate. Hence, the result-
ing matrices are frequency dependent. The system, before model
reduction, appears as in (5). The descriptor matrices have been
projected to a reduced space of size g = 4 obtained by solving the
original full system at frequencies f =0, 0.4GHz, 1GHz, 2.4GHz.
which correspond to the points on the unit circle: z=1, exp(—jm/4)
—J, exp(—]j3r/4). As center frequency for our band of interest we
have chosen A = 2110°. In this example we have chosen M = 64
points for the FFT size. Fig. 4.b shows the real part of the DFT
coefficients for the inductance matrices. Coefficients 32,...,63 are
very small indicating the original system matrix is causal. We have
then truncated the DFT series to N=8 coefficients, producing a final
model of order 36. Fig. 1 compares the frequency response of the
original full system with the frequency response of the final realized
linear state space model. All the poles of the realized model are in
the half-plane Re(s) < 0, hence stable. Using the Positive-Real
Lemma [12], we confirmed that the generated system is passive.

6.2 Full-Wave PEEC kernel

In this example we consider two parallel wires 4um wide, 1um
thick and 750 um long. The two wires are separated by 3cm. The
wire volumes are discretized into short and thin filaments using a
set of piece-wise constant basis functions. A Galerkin technique
is used to calculate the resistance and partial inductance matri-
ces R(s) and L(s). Since the separation between the two wires is
not small compared to the minimum wavelength of interest, a fre-
quency dependent full-wave Green Function needs to be employed
in the kernel of the Galerkin integration. Hence, the resistance
and inductance matrices are frequency dependent. The system, be-
fore model reduction, appears as in (5). The descriptor matrices
have been projected to a reduced space of size q = 4 obtained by
solving the full system at frequencies f =0, 1.3GHz, 3.3GHz,
8GHz. which correspond to the points on the unit circle: z =1,
exp(—jm/4), —j, exp(—j3m/4). As center frequency we have
chosen A = 2mtx 3.3GHz. In this example we have chosen M = 128
points for the FFT size. We have then truncated the DFT series to
N=23 coefficients, producing a final model of order 96. Fig. 2 com-
pares the frequency response of the original full system with the
frequency response of the final realized linear state space model.
Fig. 3 shows that all the poles of the realized model are in the half-
plane Re(s) < 0, hence the system is stable. Using the Positive-Real
Lemma [7], we confirmed that the generated system is passive.
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Figure 2: Real part and imaginary part divided by w of the
frequency response for the full-wave example.
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Figure 3: All poles of the reduced fullwave model are stable.

6.3 A non-causal example

Since R(s) and L(s) are frequency domain representations, when
we calculate their FFT interpolants we obtain something related to
their time domain impulse response (actually the impulse response
of a discrete-time system obtained by sampling the continuous-time
system at rate A). Since the FFT produces M coefficients that re-
peat periodically, the k =M/2,...,M — 1 coefficients are related to
negative-time part of the time domain impulse response of R(s)
and L(s). In Fig. 4.a we show the FFT coefficients of a com-
mon non-causal example mentioned in Section 2: Zgin(iw) =

Ro + Rac\/m used as a model for the “resistance” of intercon-
nect in the skin-effect regime. We can easily notice in such Figure
that the coefficients k = M/2,...,M —1 related to non-causal co-
efficients of the time domain response are non-zero. If a model
order reduction is attempted on such an originally non-causal sys-
tem, one will obtain non-stable models. Alternatively one could
deliberately ignore the non-causal coefficients and set them to zero
before beginning the reduction. However in this case stable but
highly inaccurate models will be produced.

In our approach we require therefore that the original system de-
scriptor matrices R(s) and L(s) be causal. This means checking
that the non-causal k = M/2,...,M — 1 coefficients of the FFT be
zero except for some aliasing phenomena. Fig. 4.b shows the real
part of the DFT coefficients for the L(s) in example 6.1. One can
easily verify that such original system matrix descriptor is actually
a causal one.

7. CONCLUSIONS

In this paper we have presented a class of algorithms for guar-
anteed passive model order reduction of strictly passive and causal
linear systems with frequency dependent matrices (distributed sys-
tems). Our approach is based on the key idea that if a system is
strictly positive-real to begin with, a globally and uniformly con-
vergent interpolant will eventually (for a large enough order of the
interpolant) be positive-real as well.Laguerre basis are a set of well-
behaved uniformly convergent interpolation functions whose coef-
ficients can be conveniently calculated using the FFT algorithm.
An implementation using a Laguerre basis as interpolant is given
and examples are presented. While the Laguerre basis reduces the

a) b)

Figure 4: a) FFT coefficients for the non-causal example
Zgkin(iw) = Ro + Racy/|w] used as a model for the skin-effect
“resistance”. b) FFT coefficients of the inductance matrix for
the lossy substrate example. Note that non-causal coefficients
32 —63 are in a) very large and in b) very small.

infinite order of the original distributed system to a finite order, a
standard Krylov subspace congruence transformation can still be
employed to reduce the size of the matrices. The algorithm is also
perfectly compatible with fast matrix-vector product algorithms.
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