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Abstract

In this paper we presenta new methodof performing
Division in Hardware and explore different waysof imple-
mentingit. This methodinvolvescomputinga preliminary
estimateof the quotientby splitting the Dividend, perform-
ing division of each of the parts in parallel and meging
them. The estimateis refinediteratively to get the final
guotient. This methodis significantlyfast sinceit carries
out parallel opemationsto computethe preliminary quotient
and malesuseof a fastmultiplier to refinetheresult. It is
possibleto pipeline the executionof the unit yielding fur-
therincreasein throughput.Speedestimateshowthat this
methodyields a mud higher throughputthan other fast
methodswhile areaand latencyare compaable

1. Intr oduction

The absenceof inherentparallelismunlike other arith-
metic operationsis the reasonfor the high lateng of di-
vision operation. Thereare basicallytwo methodsof per
forming division— Multiplicative and Subtractive [4].
While multiplicative algorithmsbegin by usingan approx-
imate value and refine it iteratively, the subtractve algo-
rithmsreturnfew bits of quotientin eachiteration.

The Subtractve methodsin their basic form are very
compactandeasyto realise[11, 2]. Several modifications
rangingfrom usageof higher radix to overlappedimple-
mentationhave beenproposedo increasehe speedat the
costof area[l11, 8]. However, thereis a limit on the maxi-
mumachiezablethroughput.

Multiplicative methodggenerallyusea LookUp Tableto
storethe approximateinverseof the divisor, andrefine it
using a multiplier in fewer iterationsthanthe Subtractve
methodg[4]. Although this resultsin a higherthroughput
, the size of memoryrequiredis very large. Parallelismin

termsof refiningandreturningmorenumberof bitsin each
iterationhasbeenachiezed in someof thesemethodg13,
14]. However, thesemethodshave verylesspipelineability
In this paperwe proposea new divide and conquerap-
proachwhich consistsof mappingthe given division into
shorterdivisionsto geta preliminaryestimatefollowed by
multiplicative refinemento yield the quotient.

e The speedis considerablyhigh asthe shortdivisions
can be performedin parallel and refinementcan be
doneby aparallelmultiplier .

e It is pipelineableandtherebyhigherthroughputthan
ary othercontemporarynethodcanbeachieved.

Therestof the paperis organisedasfollows. In section
2, we presenthasicalgorithm. In section3, we presenthe
simplificationandmodificationof this. Section4 proposes
thearchitecturdor implementatiorandin section5, acom-
parisonof our methodwith othermethodss presented.

2 The BasicAlgorithm

We considetthedivisionof X by Y toyield therounded
Quotient ). Let R be the residual(R = X — QY).
Without loss of generality we assumethat X,Y, ) and
R are all n bit unsignedintegers. Let £ and j be inte-
gerssuchthatj = [n/k]. Let X berepresentedh base-
27 systemas {Xo, X1...Xx—1} with eachX; containing
i th block of j bits of X starting from the MSB 1. If
J=2,X = Y=k X, gk 10 LetQ), Q)..Q)_, and
Ry, RY, ..., R),_, beobtainedoy dividing Xo, X;..X;_1 by
Y. Thatis, Q; = X; div Y andR; = X; mod Y. There-
fore X; = QY + R} If Q' = Yi=b " QlJ*1-9 and
R = Y E1 Rl gk-1-9 X — Q'Y + R'. ThusQ can
becomputedrom @' and R’ usingthefollowing equation

Q=|Q"+R'/Y +0.5] 1)

1if jk # n, thenwe assumehatthelast(jk — n) bits arezeros




R canalsobeexpressedlirectly in termsof Q' andR’, but
it is simplerto computeR as(X — QY') onceq is known.
Theaboveformulationleadsto atwo phaselivisionprocess

e Compute Q; and R;
(Approximate-Phase).

in parallel for all i

e Compute@ and R from @} and R} values(Re fine-
Phase).

Divisionsrequiredin the first phaseinvolve only j bit
guotientsand thereforeare simpler than the original divi-
sion. This approachis interestingonly whenY is small.
WhenY > J, all Q}s becomezeroasX; < J for all
i. However if we replaceinteger division X; div Y and
X; mod Y by finite precisionfractionaldivision, aninter-
estingpossibilityemepes.

Let div? and modP respectrely denote the quotient
and remainder of division with p fraction bits de-
fined as follows:A div? B=(2*A div B)27? and
A mod? B=(2P A mod B)27?.

This canbe consideredasinteger division with prescaling
of the dividend by 2P and postscalingof the quotientand
theremaindeby 2 P. As p increasesd div? B becomes
closertorealdivision A/ B and AmodP B approache8. We
canalternatvely defineA mod? B as[A — (A div? B)B]I.
This allows usto extendthe definitionsof div? andmodP
to the dividendswhich are not integers. We can derive
the following recurrencerelationsin termsof theseoper
atorswhich give aniterative algorithmto compute. Let
Q} = X; div? Y andR] = X; mod? Y. Notethat X;
canstill beexpressedsQ}Y + R;. Thereforeequation(1)
is still valid.

R — (R yJ+R)mod?Y :0<i<k
i R} 1i=0
| (RILLJ+R)divPY 0<i<k
A= { 0 =0
i=k—1
Q=1 (@+2aQ)s* 1 +o05  (2)
i=0
Thealgorithmis asfollows: ?
Basic Algorithm
Compute R}. Q) and AQy;
Q = Qq;

fori=1to(k—1){
Compute R} and AQ);
Q=QJ+Q;+AQj;

}
Q=1Q + R/_,/Y +0.5];
R=X—-QY;
2For integer division, it is necessaryo computeQ. For floating point

division, X andY” will benormalisedandit is necessaro computeQ ; =
2™ @ correctlyrounded

Eachiterationinvolvesadivision, makingthis algorithmin-
efficient. In thenext sectionwe show thatby properchoice
of p, avaluesufficiently closeto ) canbe computedwith-
outdivision.

3 Modified Algorithm
3.1 Eliminating the Division

Let J, = J div? Y andJ, = J mod? Y'.lt is evident
from (2) thateliminationof divisionis possiblef .J,. aswell
as R} arevery small comparedo Y. The computationof
guotientswith fractionalbits makesthis possible Division-
freeapproximatiorof AQ} andR] canbeexpressedsfol-
lows.

AQy= 0;Ry = Rp;
AQ,= R, ,J, 10<i<k; ®3)
R/ = R, ,J.+R, :0<i<Fk;

k—1
Q=)@ +aQys @

=0

@ is anapproximatiorof Q andcanbecomputedteratively
. Theorem-lhelpsin computingthe differencebetween()
and@

Theorem1

: ! /! : ko1
ZyAaleflfl +Rz kalfz + Z R;kalfl — RI
1=0 I=i+1
for 0<i<k

This canprovedby Mathematicalnduction[7]. Setting
i = (k—1) in Theorem-1,

I=k—1
R=Y Y AQJ*1D4+R, (5)
=0
From (1), (5) and (6), the error in quotientis dueto the
presencef &,_,.

k-1
Ry =Y Rt (6)
=0

It canbe seenthat R; is boundedby (Y — 1)27?. Upper
boundon J, is differentfrom thatof R; sinceJ, is obtained
from divisionof (j + 1) bit J by Y unlike R;s, which need
j bit by n bit division. RZ_I is requiredto be lessthanY
to minimise (Q — Q). Moreover, whenl < Y < 2, all the
R!s,AQ!sandR; sarezeros.Thus,R,_, is non-zerconly



forY > 2. Denoting(Y — 1),,42277 by g andJ, a4z by
~, upperboundon szl canbe obtainedasfollows:

B - p—1—1 _ 4(1 -7

Rk*l,mar = QZ’Y T = 1 (7)
=0 -7

=

Rk—l,muw <3 (8)

By properchoiceof p, the above condition can be satis-
fied,andthusthedivisionin the Re fine- Phase canbe ex-
pressedsa seriesof multiplicationsfollowedby rounding-
off of the Quotientattheend.

3.2 Simplification of Multiplication

Dueto theiterative natureof Re fine-Phase, ary sim-

plification of computatiorof E;' resultsin a significantim-
provementin theoverall performanceOnepossibilityis to
performmultiplication using few bits of E;'_l sayp. Let
E;I,a = (Egl,ldivﬁ 1) andR;l’b = (Rg,lmodﬁ 1)3
NS
R, =R,,J, +R;,J+R (9)
with By = R} andAQ) =0

(3

Thusit canbeobsgrl\’edthatthetheoremitlilll holdsandthe
erroris still dueto R,,_; butthevalueof R, _, is different.

From(7), the Upperboundon RZ_I

—I! k Ji—B k—1
g(1—")+277P(A—""")
Rk—l,mam < 1—v

(10)

Whenj < 3, valueof RZ—1 is almostthesameasthatgiven
by (8). With g > j, it is possibleto reducethe size of the
multiplier without muchincreasen error.

3.3 Rounding off the Quotient after iterative al-
gorithm

With prescaling the quotient obtainedat the end of
Re fine-Phase hashitsin thefractionalpart. In the caseof
floating point division, it is necessaryo return@; = 2"Q
correctlyrounded Basedon thesignof 1_%271 aswell asthe
fractionalbits of Q, ary of the standardoundingschemes
recommendeth [1] canbe implemented.The availability
of theresiduaimakesit possibleto roundof theresulteasily
unlike Multiplicative-Methods [10]. Thisis a disadwan-
tage of the Multiplicative-Methods and thesemethods
have to computethe remainderfrom the valuesX, Y and
guotient(obtainedat the end of the division). This results

3t meanghatR; , containghetop 8 bitsof R;_, andR; ,=R;_; —
=
7,0

in an additionaliteration[10, 12] andproliferationof area
dueto additionalcircuitry. Similarly, for integer division,
@ canberoundedto get@. Theroundof phaseis depen-
denton the implementationof the Approzimate-Phase
and Refine-Phase andis explainedin Section4.3. The
Modified Algorithm canbe statedasfollows:

Modified Algorithm

Compute R}. Q) and AQy;

Q = Qp;

fori=1to(k—1){
Compute I_%;I and A@;;
@=07+Q+AQ;

}

Perform rounding of Q;

4 Architecture

X Q Q)
Approx. Refine| |Roundoff—Q
Y | Phase |R | Phase| | ppase

7

Figure 1. Block Diagram of the system

We describethe architectureof the Modified Algorithm
in this part. Fromthe equationsijt is evidentthatwe need
two separateaunits, onefor Approximate-Phase andthe
otherfor Re fine-Phase. Thedetaileddiagramof the sys-
temis shovnin theFig. 1.

4.1 Approximate Phase

This Phasecan be implementedby either Lookup ta-
blesor Dividers. But the constraintdmposedby (8) make
it prohibitive to use lookup tables on accountof huge
arearequirement.Hence,dividersbasedon Subtractive-
methods areto be usedfor this purpose. Also, J, is re-
quiredonly in the Re fine- Phase andthereforethe whole
of Approximate-Phase canbe usedto computeit. This
eliminatesthe needfor an LUT at the costof an extra di-
viderwhichis justifiedsincetheareaof thedivider usedfor
thisis lessthanthatof an LUT asthe LUT needsto store
theinversedor vastrangesof thedivisor.

4.1.1 Simplifying the computation to obtain fractional
bits

Letn beaminimumpowerof 2 whichis greatetthanY and
lz = [n — log,(n)]. Consideringntegerdivision to obtain
7 bit quotient@;
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Figure 2. Implementation of the Phases of
Modified Algorithm

2 —1
n/2

The topmost[(n — 1) — Iz] bits of ); arezerosandneed
not be computed. Therefore, it is meaninglesso perform
integer division yielding j bits. Instead,f X; is scaledup
by 2(n—1-12) al| thebits obtainedaremeaningful. Thequo-
tientandtheremaindesoobtainechaveto bepostscaledy
divisionwith 2("~1=%) to getQ'sandR}s . With this,

Xi,ma:c _

— i—[(n—1)—lz2]
Ymin <2

| Qz |ma;c:

(11)

9(n—lz) _q
= 2(n—1-1z) <2

(Y - ]-)ma:c
2(n—1-1z)

R

i,mazx

=q= (12)

Sinceevery fractional bit obtainedhalvesthe upperbound
OnR; ..., prescalingy 2n—1-lz reduceghe upperbound
on R} ie q. With extram fractionalbits,

g< znflflzfm (13)

4.1.2 SRT Dividers

We useSRT dividersto obtainQ}s becaus®f the possibil-
ity of achieving the desiredarea-speettadeof by a proper
choice of Radix [4, 11, 2, 8]. The importantproperties
of SRT division are given in this section. We assume

m

that [P, A], B andQ arethe registersusedto storePartial
Remainder the Dividend and the Quotient respectiely.
Themsbof Pis denoteddy pg

(i) The Partial Remainderin the case of integer divi-

sioninvolving X and Y (both n bits long) remainsbounded
between-2/—1 and2/~! — 1 in Radix-2SRTmethodsand
betweenpY and pY in higherradiceswith p representing
the redundancyfactor [4, 11, 2, 8]It is independenbf the
numberof iterations.

(i) Everyiteration of SRTDivision returnslog,(Radiz)

numberof quotientbits. Therefore with every additional
iteration, the upperboundon | X — Y@ | reducesby a

factor of the Radixand the Quotienttendsto becomemnore

accumate

4.1.3 Implementation of Approximate-Phase

In the caseof SRT Division of X; by Y with prescalingoy
2P, ¢ is abouthalf of thatgivenby (13) if the remaindeiis
notrestoredat the endof Approximation-Phase SinceJ
requiresonebit morethanX;, v = J; mae = 2¢. Giventhe
valuesof j andk, andusing(8) and(10), it is possibleto cal-
culatethevaluesof g andp. Wesetp = (n—1—1z2), m =1

andg > (j+2). Thereforeg < %with Radix-2andslightly
greaterwith other radices. From 4.1.2(ii), it is evident
that extra m fractional bits can be obtainedby additional
[m/log,(Radiz)] = 1 iteration. Thus Approzimate-

Phase requireg k+1) SRT Dividersto computehe(j+m)

bits of J, andthe Q}s. Sincethe additionsto computepar

tial remaindethapperevery iteration,carry save addersare
usedto minimiseiterationdelay Thequotientbitsarenotin

binary format andwe needusea radix-to-binarycorverter
asin [9].

4.2 RefinePhase

TheRefine-Phase consistof (k—1) iterationsof com-
putationof }_B;', AQ; andrefinemenbf Q followedby cor-
rectionof Q andR. SinceRZ_1 canbegreaterthanl, the
registersrequiredto hold }_2;' needadditionale bits where
e = [log,(| Ry_1 Imaz)]- Computationof B, requiresa
Register multiplier ((n + 1)bit by (8 + e + 1) bit), adders
andmuxesasshown in the Fig. 2. Thedelayof this phase
can be reducedsignificantly by using 4:2 and 3:2 CSAs
(Carry Save Adders)[6]. Also by retainingonly RZG in
nonredundanbinary formatandusingredundantepresen-
tationfor othervariableslike}_zzb, delayis furtherreduced.
Since, only }_321_1@ is usedto computethe R;’, the delay

involvedin the summationto obtain}_zy in every iteration
canbereducedby usinga CPA (carry propagateadder)to
sumup thebits of R}, only. Sincesuccessie iterationsof



Re fine-Phase dependuponthe valueof R;’ computedn

the previous phasewe have reducedhe delayof updation
of Q with respecto this. The critical pathis highlightedin

thefigure. The adderscanbe incorporatednsidethe CSA

tree of the multipliers. Computationof A@ andassimila-
tioninto @ requiresamultiplier (( +m)bby (3+e+1)b),

shifterandadders.Theusageof 3:2 and4:2 CSAsreduces
thedelayof this computation.

4.3 Roundoff Phase

Due to prescalingthe numberof bits of Q computeds
alwaysmorethann. Also,
=1

Rk—l,maw
Y n/2

. R”
10— (X div™Y) |= =

For both integer division and floating point division, it is
necessaryo obsere the fractionalbits of ) alongwith the
sign of RZ_I. The correctionrequiredcan be +ulp (ie.
Isb) if R;’_l < 1. This procedures significantly differ-
ent from the proceduresadoptedto roundof the quotient
computedn the caseof otheralgorithms. The roundof in
the caseof integerandfloating point division differsin the
factthat quotientcanbe midway betweer? integersunlike
in floating point division[12]. Implementatiorof hardware
to Roundof canbe doneby simplecombinationalogic.

Let topz, trey and tq.nq denote the delays of
Approzimate, Refine and Roundoff phasesrespec-
tively. Also, let t,,,; andt,.z; representhe delayof each
iterationof Approximate-Phase and Re fine-Phase re-
spectvely. Thenthe Executiontime E is givenby E =
tapa + tref + trna. trey Canbewrittenas(k — 1)¢,e s

Due to the pipelining, Throughput-Raténcreaseson-
siderablyandis givenby 7! = Max {tapq, tres }-

5 Evaluation and Comparison

We compareour methodwith the methodsmentioned
in [14, 5, 3] aswell aswith Newton Raphson/Goldschmidt
methoddor 53-bitdivision. Thesemethodshave beencho-
sensincethey areamongthe fastestof the reportedmeth-
ods. The resultsfor SRT methodsare also shavn. The
worksin [5, 3] havereportedheareaanditerationdelaysof
componentsvrt full adderarea(Ar4) anddelay(tra) re-
spectvely andwe usethis for our estimation.Thesevalues
aregivenin Table 1. In this estimate the effect of tech-
nology, area,nterconnectindclock-skew arenotestimated
andwe assumeéhattheclock rateadaptsexactly to theiter-
ationtime of theimplementatiorasin [14, 5].

Of themethodgivenin Table(2),only the proposedand

Table 1. Component areas and delays with re-
spect to full adder [5]

Component| Rad-2 | Rad-4 | Rad-16 | Computation | Roundof
SRT | SRT SRT of R, and Phase
@ updation
Apa 250 250 500 ~ 600each ~ 500
tra 5 6 8 10 5

VHR methodscanbe pipelined*. Restof the methodscan
be pipelinedonly by loop unrolling. Sincethe hardware
replicationassociatedavith loop unrolling leadsto largein-

creasen areawithout proportionalincreasen throughput,
Loopunrolling is not consideredor comparison.

5.1 Delay

The estimatedvaluesof the delaysaregivenin Table2.
Basedon [5], trefi=10tF4 andt,nqg ~ 5tra. Thedetails
aregivenin [7]

With k£ = 4 andusing Radix 16 SRT for approximate
phasethe delayis computedasfollows: j = [53/4] = 14.
Howeverwith Radix, 16 we needto have avaluewhichis a
multiple of 4. Hencewe choosej + m = 16. We sets =
14 + 1 to satisfy(8) . Thecorversionof Ry from redundant
to nonredundanformatinvolvesusageof a3 + e + 1 bit
CPA whosedelayis givenby 3.5tpa. topy = 8X4+43.5 =
35.5tpa. E=35.54+10X3+5="70.5tra

Several Techniqguesvhich canbe usedto reducethe la-
teng areproposedhere.

o If theR;, R;',a andRZb arerepresenteth residualino-
tation,thent,..z; reducedy 2ty 4

e Using Hybrid Overlapor OverlappedQuotientselec-
tion andRemaindeformationconfiguratior{8] for the
SRT dividersusedto compute@ and.J, , we reduce
theta,m by tra.

e Prescalingby (n — Iz) insteadof (n — 1 — [z) and
loadingSRT Dividerswith X; — Y insteadof X; pro-
ducesthe effect of an additionaliteration of division
andspeedsip Approzimate-Phase.

By combiningthe abose methodsthe delaycanbereduced
t0 57.5tF 4.

4Pipelining canbe achieed in the caseof VHR Methodsby splitting
the executioninto prescaling which includescomputatiorof scalingfac-
tor followed by scalingof dividendanddivisor) andDigit selection



Table 2. Timing and Area Estimates based on

(5]

Method Type E, T ' Area AT
trpastra, Arpa | wrt Rad-2
SRT
SRT Radix-2 270,270,300 1
Radix4 170,170,300 0.629
Radix16 120,120,550 0.815
Wong's
Method[14, 3] 90,90,6000 6.667
Newton- 1MAC 100,100,3900 4.333
-Raphsorand | 1 Multiplier 70,70,6200 5.358
Goldschmidt | +1MAC
VHR
Low Area 72,54,2650 1.766
High Speed 62,44,4450 2.417
BoostedvHR
Low Area 72,54,2550 1.700
High Speed 62,44,3650 1.893
Proposed
k=4, Radix-16 Low Area | 70.5,35.5,3200 1.402
High Speed | 57.5,28.5,3900 1.372
k=3, Radix-16 Low Area 65.5,39.5,2900 1.414
High Speed | 58.5,35.5,3600 1.578
k=2, Radix-16 Low Area | 76.5,59.5,3000 2.204
High Speed | 65.5,52.5,3600 2.333
k=3, Radix-4 Low Area | 83.5,57.5,2600 1.846
High Speed | 71.5,48.5,3300 1.976
k=4, Radix-4 Low Area 80.5,45.5,2700 1.517
High Speed | 67.5,38,3400 1.616
k=5, Radix-4 Low Area 84,39.5,2800 1.365
High Speed | 70.5,35.5,3500 1.534
5.2 Area

Theareasof basiccomponentselatveto Ar 4 aregiven
in Table(1).Thetotal areais the sumof theareaof (k + 1)
dividersandthe componentsisedin Re fine-Phase.

A comparisorof areaneededor differentmethodaising
thesecomponentss givenin Table(2). Thedetailsaregiven
in [7]. Since@y, andJ, arerequiredin thefirst iterationof
Re fine-Phase, andthe other R;s andQ;s arenot needed,
low areamplementationtik e Radix-4canbeusedfor these
divisions. It is possibleto reducethe areaby 400 A g 4 with
a slight reductionin the throughputas computationof the
otherR}s overlapswith the computatiorof A@'l .

Fromthetable,it canbe seenthatthe proposednethod
is the fastestand also hasthe bestthroughputamongthe
low latengy methods Also, the Areais comparabléo these
methods.Intermsof A-T product,it is the bestamonglow

latengy methods.

6 Conclusions

It hasbeenthusshown thatby mappingdivisioninto sev-
eralshortparalleldivisions,avery goodestimateof thequo-
tient is obtainedwithout using lookup tables. Refinement
using high-speedmultiplier and addersresultsin quotient
in a very shorttime. The methodbasedon this approach
is very fastand hasthe highestthroughputwhe compared
with thefastesimethodseportedsofar.
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