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Abstract

This paper considers reducing the cost of test appli-
cation by permuting test vectors to improve their defect
coverage. Algorithms for test reordering are developed
with the goal of minimizing the test cost. Best and
worst case bounds are established for the performance
of a reordered sequence compared to the original se-
quence of test application. SEMATECH test data and
simulation results are used throughout to illustrate the
ideas.

1 Introduction

The cost of VLSI testing can be divided into four
parts: test preparation, test execution, test silicon, and
test quality [12]. The decision about whether to adopt
design for test (DFT) can affect all the four parts, as
indeed, many other aspects of design and test. Pre-
vious cost analyses have primarily focused on the sili-
con cost and the benefits derivable from automation of
DFT [1, 3, 12]. However, once the decision to adopt
DFT has been made and test vectors have been gen-
erated, test execution time remains as the only source
of test cost optimization. We focus on this aspect of
optimization in this paper.

We call the failing vector of a defective device as the
test length of the device. An optimized test execution
should feature a short average test length. Efforts to
reduce the average test length can be classified accord-
ing to how much actual tester data is available.

(1) No tester data is available. This is the case in
the early phase of the design cycle prior to fabrication.
Gate level design and chip layout information is avail-
able for test optimization.
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(2) Incremental test information is available as in the
normal test process of fabricated chips. In this case,
test vectors (or test) are applied only to the devices
that did not fail previously.

(3) Full pass/fail information is available for every
vector of each test, and for each device. This informa-
tion is expensive and collected only for a small number
of devices for failure mode analysis (FMA).

Other test data related to fault coverage and yield
modeling may be used to optimize the test as well.

Test optimization based on item (1) includes test set
compaction techniques, such as reverse order test com-
paction [8]. Test compaction methods do not take into
account the likelihood of defects and may be subjected
to further optimization with the techniques presented
in this paper.

Test optimization based on item (3) was proposed
in [6]. This method however, requires full knowledge of
defect occurrence probability and the relationship be-
tween modeled faults and physical defects. To acquire
this information, significant feedback is needed from
the manufacturing process. Special simulation tools,
such as yield simulator [11], may also be needed ,which
makes it difficult to accommodate the idea into com-
mercial testers. The results may not be accurate since
there are potentially a huge number of defects and the
fault defect relationship can be complex.

In this paper we focus on test optimization based on
item (2) above. As normal testing proceeds, the tester
data provides valuable information about defect occur-
rence and coverage that can be exploited to improve
the efficiency of the test patterns. This information
is not available during early design cycle and, unlike
the FMA data, is routinely available during the pro-
duction phase. Since it only requires the information
during normal test process, the method proposed in
this paper is much easier to implement in commercial
testers as compared to the method proposed in [6].



2 Test Cost and Efficiency

We assume that the cost of testing a device is pro-
portional to its test length. The execution cost of test
T is then closely related to the rising of the chip fallout
curve. To see this, assume there are N chips and the
test set consists of M vectors. Let Vi be the number
of vectors applied to chip i, i = 1...N . For a good chip,
Vi = M and for a bad chip, 1 ≤ Vi ≤ M . Let Fj be
the total number of chip failures up to and including
vector j, then the total test cost, ignoring the constant
of proportionality, can be computed in two different
ways:

N∑

i=1

Vi =
M−1∑

j=0

(N − Fj) (1)

where F0 � 0. Each item in the summation corre-
sponds to the N − Fj chips that have gone though the
j + 1 tests. The summation represents the area above
the test failure curve as shown in Figure 1. Hence we
also refer to the test failure curve as the test cost curve
and a reduction in the area above the cost curve would
translate into a reduction of test cost for test T .

Chip number

N

Vector

0 1 2 j M

FM

Test cost area, fixed part

Test cost area, variable part

Figure 1. The test failure curve as the test cost
curve. The cost area includes two parts: the
fixed part for the good chips, and the variable
part for the defective chips. The latter varies
for different order of test-vector application.

Based on the test cost, we define the efficiency of a
test as:

E(T ) =

∑M−1
j=0 Fj

M · FM
(2)

The efficiency corresponds to the area between x-axis
and the chip failure curve as a fraction of the area be-

tween the line y = FM and the x-axis, as shown in
Figure 1. The efficiency ranges between 1

M (when all
defective parts fail at the last vector) and 1 (when all
defective parts fail right at the the first vector). For
the same test set, a high efficiency test would have a
chip failure curve with a sharp rise. Note that the test
efficiency is independent of the empirical yield.

We know that the cost curve depends on the defect
coverage and the defect occurrence probability. To sim-
plify analysis, defects are often assumed to have equal
occurrence probability [2, 9, 13]. Under this assump-
tion, the cost curve would depend only on the defect
coverage.

3 Improving Test Efficiency

Given test failure data with the original sequence of
test-vector application, in this section, we derive ways
of reordering the test vectors so as to produce a test
sequence with a higher efficiency. Further, we derive
lower and upper bounds of improvement in the cost
curve over the original sequence.

Assume that the number of defects occurring on
a chip follows a negative-binomial distribution [10].
Then the probability that a chip will fail at defect cov-
erage f , following the work in [2], would be:

P (f) = 1 − (a · f + 1)−b (3)

Let the incremental defect coverage of vector vi be �fi

and of vector vi+1 be �fi+1. Let the probabilities of
new detection (of defective chips) for vector vi and vi+1

be pnew,i = P (f + �fi) − P (f) and pnew,i+1 = P (f +
�fi +�fi+1)−P (f +�fi) respectively. Then, by the
convexity property of Equation 3

pnew,i >
dp

df

∣∣∣∣∣
f+�fi

· �fi

and

pnew,i+1 <
dp

df

∣∣∣∣∣
f+�fi

· �fi+1

Thus, if vector vi+1 detects more failures than vector
vi (indicating pnew,i ≤ pnew,i+1) then

dp

df

∣∣∣∣∣
f+�fi

· �fi <
dp

df

∣∣∣∣∣
f+�fi

· �fi+1

Therefore, �fi < �fi+1, i.e. vi+1 has more incremen-
tal defect coverage than vector vi and a swap of the
positions of vector vi and vi+1 is justified. Note that
for the empirical values to converge to the true means,
a sufficiently large sample of tester data must be col-
lected before attempting reordering of test vectors.



3.1 The Swap Algorithm

The Swap algorithm employs the idea just presented
for reordering of test vectors. Before stating the algo-
rithm, we introduce the necessary definitions.

M , as before, is the number of vectors and Si is the
set of new defective chips that fail at vector vi in the
original sequence. Clearly, for i �= j, Si ∩ Sj = φ. Let
|(Si)| be the number of elements in Si.

Si’s are the elements of interest in the following dis-
cussion. Define Ω = {Si|i = 1...M}, then, associated
with each vector vi, there is a high bound set Hi ⊆ Ω
and a low bound set Li ⊆ Ω. Hi contains the Si’s de-
noting chips that can potentially fail at vector vi. Li

contains the Si’s denoting chips that must fail at vector
vi.

At the beginning Hi = Li = {Si}. For any set
X ⊆ Ω define function f(X) as:

f(X) =
∑

Si∈X

|(Si)| (4)

which gives total number of chips in set X . Therefore
f(Hi) gives the number of chips which can potentially
fail at vector vi and f(Li) gives the number of chips
which must fail at vector vi.

1. Initialization:
for i = 1 to M do
BEGIN

Hi = Li = {Si} ;
END

2. Swap Process:
for j = M − 1 downto 1 do
BEGIN

for i = 1 to j do
BEGIN

if f(Hi) < f(Li+1) then
BEGIN

swap vector(vi, vi+1);
Hold

i = Hi;
Hi = Hold

i ∪Hi+1;
Li = Li+1;
Li+1 = φ;
Hi+1 = Hold

i ;
END

END
END

Figure 2. The Swap Algorithm

The Swap algorithm (Figure 2) is based on com-
paring the values of f(Hi) and f(Li+1) at each step. If

f(Hi) < f(Li+1) then vectors vi and vi+1 are swapped,
i.e. vnew

i = vi+1 and vnew
i+1 = vi. The condition for

swapping ensures that vnew
i will detect more defective

chips than the old vector vi.
After the swap, it is also necessary to adjust the

high and low bound sets associated with the swapped
vectors. The basic idea behind this adjustment is that
when a vector is swapped to appear earlier in the test
sequence, it is guaranteed still to fail all the defective
chips it did before the swap; in addition, it may fail
some (or all) of the defective chips failed by the other
vector. Hence the low bound set of vnew

i+1 is the empty
set φ; the low bound set of vnew

i and the high bound
set of vnew

i+1 remain unchanged; but the high bound set
of vnew

i is the union of the high bound sets of the two
vectors.

The Swap algorithm produces a new sequence of test
vectors. When this test sequence is applied to the same
chips again, the cost curve will rise more quickly than
the old sequence and will have a higher test efficiency.
The fault coverage curve for the new sequence is also
expected to rise faster as indicated by the simulation
results in section 4.

The Swap algorithm is similar to the bubble sort.
The only difference is that after each swap, the key
values for comparison are changed in the swap algo-
rithm while in the bubble sort they remain the same.
This means the final sequence does not necessarily cor-
respond to a sort according to the key values Si’s.

Example: Assume we have a test sequence of 8
vectors (v1, v2, ..., v8) with the incremental detections
of 6, 13, 5, 9, 10, 2, 3, 4 chips respectively. For the first
inner loop, since f(H1) = 6, f(L2) = 13, vector v1, v2

are swapped. Now H1 = {S1, S2}, L1 = {S2}and
H2 = {S1}, L2 = φ. Next, vector v1 in the 2nd
position is compared with the 3rd vector v3. Since
now f(H2) = 6 and f(L3) = 5, no swap is made.
Then the 3rd and 4th vector are compared, as so
on. After the first round of the inner loop, the new
sequence would be v2, v1, v4, v5, v3, v7, v8, v6. In the
second round, vector v1 in the 2nd position, is first
swapped with v4, then compared and swapped with
v5. No other changes are made thereafter and the final
sequence is v2, v4, v5, v1, v3, v7, v8, v6.

3.2 Performance of Any New Sequence

For any reordered sequence we need to know how
well it will perform. This can be done by rerunning
the test on the same chips with the reordered sequence.
However, we show that it is possible to determine the
best and worst cases of the cost curve for any reordered
sequence without rerunning the test. First we need an



algorithm to determine the high and low bound sets of
vectors for any sequence.

Suppose (vi1 , vi2 , ..., vim) is the new sequence where
ij indicates the original position of the j-th vector. For
vector vij , vik

with j < k, if ij < ik, vij comes before
vector vik

in the original sequence, therefore, Sik
/∈ Hij

since vik
is applied after vij in both sequence. We

indicate this by saying there is no swap event between
vij and vik

.
If ij > ik we know vector vik

was applied originally
before vij but in the new sequence it is applied after
vij , therefore vij can potentially detect failures of vik.
Hence, Sik

∈ Hij and the lower bound set Lik
is set

to φ since potentially vector vik
may not detect any

failure in the new sequence. In this case we say there
is a swap event between vij and vik

.

1. Initialization:
for t = 1 to M do
BEGIN

Ht = {Sit} ;
END

2. The high bound:
for j = 1 to M − 1 do on the new sequence
BEGIN

for k = j + 1 to M do on the new sequence
BEGIN

if ( ij > ik )
Hj = Hj ∪ {Sik

};
Lk = φ;

END
END

Figure 3. Algorithm to determine high and
low bound sets of an arbitrarily reordered se-
quence

The algorithm, given in Figure 3 first initializes the
high bound set of each vector in the new sequence with
the Si’s in the original sequence, then it examines each
vector vij with all the following vectors vik

with k > j.
Only in case there is a swap event, i.e. ij > ik, we set
Hj = Hj ∪ Sik

and Lik
= φ.

Once we have the high and low bound for each
vector, the performance of the new sequence in the
best case can be derived by checking the high bound
set of the vectors, i.e. each Sx is assigned to be de-
tected by the kth vector of the new sequence where
k = min({t|Sx ∈ Ht}). Similarly, for the performance
in worst case, each Sx is assigned to be detected by the
jth vector where j = max({t|Sx ∈ Ht}). For the worst
case, it can be readily seen that each vector detects

its original failure set, i.e. vector vij detects and only
detects the chips in Sij .

One natural question is, if we do a sort of the vec-
tors based on the incremental failures of the original
test sequence, how would the new sequence perform?
First, as already indicated, the sort sequence may dif-
fer from the swap sequence. Second, in the worst case,
each vector in the new sequence detects its original chip
set, therefore the sequence based on sorting will have
the best performance in the worst case over all other
sequences.

Following the previous example, the sequence for
sort is v2,v5,v4,v1,v3,v8,v7,v6. Now, in the best case,
v2 detects f(H1) = |S1| + |S2| failures. Similarly, v5

will detect all failures in S3, S4, and S5; v4, v1, and v3

will not detect any failures as their high bound sets are
already covered by the earlier test vectors; v8 will de-
tect all failures in S6, S7, and S8; v7 and v6 will again
not detect any failures. In the worst case the failure
sets are given simply by the Si corresponding to each
vi.
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Figure 4. For the SEMATECH test data the
sorted sequence shows much better perfor-
mance than the original sequence even in the
worst case.

With Equation 1, the test efficiency in the best and
worst cases can then be computed for any new se-
quences. We derived new swap and sort sequences for
the SEMATECH scan-test data [7]. The efficiency of
the original test is 88.8%. For the swap algorithm,
98.8% ≤ E(swap) ≤ 99.3%, which is an 11.3% to 11.8%
increase in efficiency. Similarly, for the sort algorithm,
98.9% ≤ E(sort) ≤ 99.9%, i.e., an 11.4% to 12.5% in-
crease over the original sequence. It can be seen that
the sort sequence is slightly better than the Swap se-



quence in the worst case. The best case for the sort
algorithm, however, might be too optimistic unless the
faults are highly-clustered (see Section 4). Figure 4
shows the performance of the sort sequence in the best
and worst cases for SEMATECH scan-test data.

The results establish upper and lower bounds for
the cost curve. The actual curve for any sequence
is expected to lie between these two bounds. How-
ever, the SEMATECH data does not provide enough
information to compute the actual curve for an arbi-
trarily reordered sequence. Hence a simulation study,
described in the next section, was conducted to under-
stand the factors that determine the placement of the
actual curve with respect to the best and worst cases.

4 A Simulation Study

The simulation was based on a scan version of the
benchmark circuit s38417. Atalanta [4] is used as the
ATPG tool and Hope [5] is used as the fault simulator.
This scan version circuit contains 31180 single stuck-at
faults, and 165 faults are aborted. As defect level is
not an issue here we ignore the aborted faults. Ata-
lanta generated 1210 deterministic vectors for the non-
aborted faults. This sequence of vectors is hereafter
referred to as the original sequence.

The elements of interest in the simulation include
the deterministic vectors, chips, defects that may hap-
pen on a chip, and faults caused by the defects. As the
defects cannot be known exactly, we simply assume a
large number (5 times the number of faults) for them.

The overall setup of the simulation is as follows. For
each chip, we determine if it is defective by a Bernoulli
trial according to the yield. If it is defective, the num-
ber of defects occurring on it is determined according
to a negative binomial distribution and this number of
defects are randomly selected to occur on this chip. A
predetermined relationship between faults and defects
is established by assuming a Poisson distribution, with
mean c, for the number of faults caused by a defect [9].
Finally, by fault simulation we determine whether or
not a defective chip is detected by a vector. Further
details of the simulation process are being omitted be-
cause of space limitations.

4.1 Simulation Results

Simulations were done to compare the performance
of the sort sequence vs. the original sequence for two
cases of fault clustering: high (c = 20) and low (c =
2.8). The results show (Figure 5) that the actual curves
are well above the worst case in both the cases and well
below the best case for low fault clustering. Both fault
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Figure 5. Simulation results for low clustering
(top, c = 2.8) and high clustering (bottom, c =
20) of faults. Actual cost curves for the sort
sequence are well above the original curve in
the worst case, and may approach the curve
in the best case in high fault clustering case.

and defect coverages show significant improvement over
the original sequence as shown in Figure 6 and Figure 7.
In the high fault clustering case, the improvement of
defect coverage is even higher (the figure is omitted
due to space limitations). This confirms our analysis at
the beginning of Section 3 that the reordered sequence
would have sharper defect coverage increase.

Based on the above discussion, a test optimization
procedure is proposed: (1) Chips are tested with the
original test order derived from the test generator. (2)
After G chips have been tested, the test vectors are
sorted according to the number of their chip failures.
And the new order are applied to the next G chips.
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Figure 6. Simulation results: improvement of
the fault coverage curve for the sort sequence
(c = 2.8).

5 Conclusion

We analyzed test-vector reordering as a way to
reduce the test cost and established the best and
worst case performance obtainable by a reordered test
sequence. Test efficiency was defined as a yield-
independent measure of performance under reordering.
For the SEMATECH scan tests, it was shown that the
test efficiency could be improved by at least 10% by
reordering. While the results are shown for scan tests,
they apply equally to non-scan circuits as long as inde-
pendent test sub-sequences are considered for reorder-
ing.

Acknowledgment: The authors wish to thank Mr.
Phil Nigh of IBM, Burlington, Vermont, for providing
the SEMATECH data.

References

[1] T. Ambler, B. Bennetts, H. Bleeker, and G. O’Donnell.
The economics of design for test: Applications clarify
the cost of test. Evaluation Engineering, 33(11), pp.
22–23, 26, 1994.

[2] J. T. de Sousa and V. D. Agrawal. Reducing the com-
plexity of defect level modeling using the clustering
effect. Proc. Meeting on Design Automation and Test
in Europe, pp. 640–644, 2000.

[3] T. Gheewala, C. E. Stroud, D. J. Burns, N. E. Donlin,
and C. C. Packard. Acceptance barriers confronting
DFT and BIST. Proc. IEEE Int. Test Conf., pp. 1111–
1116, 1991.

0 200 400 600 800 1000 1200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vector

D
ef

ec
t c

ov
er

ag
e

Defect Coverage comparision

Original sequence
Sort Sequence    

Figure 7. Simulation results: improvement of
defect coverage curve for the sort sequence
(c = 2.8).

[4] H. K. Lee and D. S. Ha. On the generation of test pat-
terns for combinational circuits. Technical Report 12,
Dept. of Electrical Eng., Virginia Polytechnic Institute
and State University, 1993.

[5] H. K. Lee and D. S. Ha. Hope: An efficient paral-
lel fault simulator for synchronous sequential circuits.
IEEE Trans. on Computer-Aided Design, 15(9), pp.
1048–1058, 1996.

[6] W. Maly. Optimal order of the VLSI IC testing se-
quence. Proc. 23rd ACM/IEEE Design Automation
Conf., pp. 560–566, 1986.

[7] P. Nigh, W. Needham, K. Butler, P. Maxwell,
R. Aitken, and W. Maly. So what is an optimal test
mix? a discussion of the SEMATECH methods ex-
periment. Proc. IEEE Int. Test Conf., pp. 1037–1038,
1997.

[8] I. Pomeranz, L. Reddy, and S. Reddy. ROTCO: A re-
verse order test compaction technique. Proc. of IEEE
EURO-ASIC Conf., pp. 189–194, Sept. 1992.

[9] S. C. Seth and V. D. Agrawal. Characterizing the
LSI yield equation from wafer test data. IEEE Trans.
Computer-Aided Design.

[10] C. H. Stapper, F. M. Armstrong, and K. Saji. Inte-
grated circuit yield statistics. Proc. of the IEEE, 71(4),
pp. 453–470, 1983.

[11] D. M. H. Walker. Yield simulation for integrated cir-
cuits. Kluwer Academic Publishers, 1987.

[12] S. Wei, P. K. Nag, R. D. Blanton, A. Gattiker, and
W. Maly. To DFT or not to DFT? Proc. IEEE Int.
Test Conf., pp. 557–566, 1997.

[13] T. W. Williams. Test length in a self-testing environ-
ment. IEEE Design & Test of Computers, 2(2), pp.
59–63, 1985.


	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index




