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Abstract

In this paper, a new logic synthesis method for an
AND-XOR-OR type sense-amplifying PLA is proposed. An
AND-XOR-OR type sense-amplifying PLA can achieve low-
power dissipation and high-speed operation by using latch
sense-amplifiers and a charge sharing scheme. In addition,
2-input XOR function is conveniently implemented in place
of the conventional AND/OR planes. Therefore it can real-
ize some classes of logic functions in a smaller circuit area.
Since the proposed method makes full use of the existing
two-level logic minimization algorithms, it can handle large
circuits such as 64-input Boolean function. The method
has been implemented and the experimental results are pre-
sented. The experimental results show that some classes
of Boolean functions can become much smaller and hence
we can obtain significantly faster circuits than conventional
PLAs with a small area penalty.

1. Introduction

In the past two decades, Programmable Logic Arrays
(PLAs) have been frequently used because of the advan-
tages such as high-speed operation, easy to implement and
modify, and accurate area and performance predictability.
Recently, PLAs have emerged again as an efficient style for
implementing high performance designs. For example, the
IBM 1-GHz PowerPC processor used PLAs to implement
control logic[1]. Khatri et al. proposed a VLSI design
methodology using a network of PLAs[2]. Their scheme
can dramatically reduce the cross-talk between the signal
wires with a significant improvement of area and perfor-
mance.

On the other hand, PLA implementations are relatively
large in comparison to the implementation styles which re-
alize multi-level logic. To overcome this drawback, some
variant forms of PLA which implement Boolean functions

efficiently have been proposed, such as three-level PLA and
PLA with two-input decoders. Generally, these variants are
slower.

In this paper, a logic synthesis method for AND-XOR-
OR type sense-amplifying PLAs, is presented. An AND-
XOR-OR type sense-amplifying PLA can achieve low-
power dissipation and high-speed operation by using latch
sense-amplifiers and a charge sharing scheme[3]. In addi-
tion, some AND/OR cells in a PLA can be replaced with
2-input XOR cells. Since our method makes full use of the
existing two-level minimization algorithms, they can handle
large circuits.

The rest of this paper is organized as follows. In the
next section, we briefly review AND-XOR-OR type sense-
amplifying PLA. Section 3 describes our logic synthesis
methods for AND-XOR-OR type sense-amplifying PLA.
Experimental results are presented in Section 4. Finally, in
Section 5, we conclude our work and discuss about future
works.

2. AND-XOR-OR type Sense-Amplifying PLA

The AND-XOR-OR type sense-amplifying PLA is ef-
fective in terms of high-speed operation and low-power dis-
sipation, especially for large inputs. Figure 1 shows the
basic cell of AND-XOR-OR type sense-amplifying PLA.
As illustrated in Figure 1, some AND/OR cells can be re-
placed with 2-input XOR cells. Since an XOR operation
is achieved by reconnecting some wires, there is almost no
effect on area and delay. An AND-XOR-OR type sense-
amplifying PLA can implement Boolean expressions as fol-
lows:

f =
∑

k

pk (1)

(pk = ck ⊕ dk or ck ⊕ dk or ck or ck)

ck =
∏

l

ql (ql = ll ⊕ ml or ll) (2)
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Figure 1. Basic cell of AND-XOR-OR type
sense-amplifying PLA

dk =
∏

m

rm (rm = lm ⊕ mm or lm) (3)

where ll and ml are literals. Due to the PLA structure, an
XOR operation is basically permitted only between two ad-
jacent signals. To simplify the problem, we concentrate our
attention on the Boolean expressions such as

f =
∑

k

pk (4)

(pk = ck ⊕ dk or ck ⊕ dk or ck or ck)

where ck and dk are cubes, i.e., XOR operations are per-
formed only in OR plane. Note that XOR operations in
AND plane are a kind of 2-input decoder and hence we can
handle them in a similar way to the synthesis for PLA with
2-input decoders[4].

For example, consider the conventional PLA shown in
Figure 2 which realizes the following Boolean expressions

f1 = x1 x2x4 + x1x3 x4 + x2x3x4 + x2 x3x4

f2 = x1 x2x3 + x1x3 + x2x3 + x1x2.

The expressions can be transformed into

f1 = (x1x2 ⊕ x3x4) + x1x2 x3x4

f2 = (x1x2 ⊕ x3) + x1x2
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Figure 2. Example of conventional PLA
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Figure 3. Example of AND-XOR-OR type
sense-amplifying PLA

and Figure 3 shows the corresponding AND-XOR-OR type
sense-amplifying PLA realization.

3. Logic Synthesis for AND-XOR-OR type
Sense-Amplifying PLA

3.1. Definitions

The cofactor fl of a Boolean function f with respect to
a literal l = xi or l = xi is the Boolean function f with the
fixed value indicated by the literal. The cofactor fC of a
Boolean function f with respect to a cube C is the Boolean
function f with the fixed value indicated by the literals of
C.

In addition to the above definitions, we employ the fol-
lowing definition: An XOR term is defined as a logic ex-
pression which combines two product terms by exclusive-
OR or its complement, i.e., c ⊕ d or c ⊕ d where c and d are
product terms.
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Figure 4. Proposed synthesis flow

3.2. Overall Flow

The expression given in Equation (4) can be viewed as
the sum of product terms and XOR terms. The objective of
our approach is to minimize the number of product terms
needed, where an XOR term requires two product terms.

The basic idea of our approach is simple. It finds XOR
terms contained in a given Boolean function, and then per-
forms the two-level minimization considering them. Since
there are 32n XOR terms where n is the number of inputs,
it is impractical to check whether each of them is contained
in a given Boolean function f . Therefore, we first generate
a cube c and then calculate a cube d such that d satisfies a
condition f ⊇ c ⊕ d or f ⊇ c ⊕ d.

The basic synthesis flow, shown in Figure 4, consists of
three steps: 1) generation of candidates, 2) extraction of
XOR terms, and 3) synthesis with extracted XOR terms.

3.3. Extraction of XOR Terms

The most important step in the synthesis flow is to find
XOR terms c⊕d or c ⊕ d such that a given Boolean function
f contains them. We assume that one of the cubes in an
XOR term, c, is given. Then we are particularly interested
in the condition which a cube d satisfies.

Theorem 3.1 Let c = l1l2 · · · ln and d be cubes and f be a
Boolean function. Then,

f c ⊆ d ⊆ fl1
fl2 · · · fln

⇐⇒ f ⊇ c ⊕ d (5)

where fc and flk are the cofactors of f with respect to a cube
c and a literal lk, respectively.

Proof See the Appendix. �

Corollary 3.1 Let c = l1l2 · · · ln and d be cubes and f be a
Boolean function. Then,

fl1
fl2 · · · fln

⊆ d ⊆ fc ⇐⇒ f ⊇ c ⊕ d (6)

where fc and flk are the cofactors of f with respect to a cube
c and a literal lk, respectively.

Once a cube c is given, we can obtain all cubes d which
satisfies a condition f ⊇ c ⊕ d or f ⊇ c ⊕ d by using the
Theorem 3.1 and Corollary 3.1. For example, consider a
sum-of-product expression

f = x1x2 x4 + x1x3x4 + x2 x3x4 + x2x3 x4

and let the cube c be c = x1 x2. By calculating f c and fx1 fx2 ,
we have

f c = x3x4

fx1 fx2 = x3x4

and then obtain d = x3x4 (since f c ⊆ d ⊆ fx1 fx2 ). Thus we
find that f contains x1x2 ⊕ x3x4.

3.4. Exact Method

To find XOR terms which are contained in a given
Boolean function f , candidates for cube c must be deter-
mined first. Exact method uses all possible cubes as candi-
dates for cube c. Since all XOR terms are extracted and con-
sidered, we can obtain a Boolean expression with minimum
product terms. The detailed description of the procedure is
given in Figure 5.

In the procedure, we utilize the technique used in
Boolean division [5] to synthesize a given Boolean function
with extracted XOR terms. For example, suppose a Boolean
function such as

f = x1 x2x3 + x1x3 + x2x3 + x1x2

and the extracted XOR terms are x1 ⊕ x2x3, x1x3 ⊕ x2, and
x1x2 ⊕ x3. We create new variables p1, p2, and p3 to repre-
sent each XOR terms, and form the don’t care set

g = (x1 ⊕ x2x3 ⊕ p1) + (x1x3 ⊕ x2 ⊕ p2)

+ (x1x2 ⊕ x3 ⊕ p3).

The sum of all prime implicants of f with g as a don’t care
set is as follows:

fPRIME = x1x2x3 + x1x3 + x2x3 + x1 x2 + p1 + p2 + p3.

Finally, we solve the weighted covering problem, where the
weights of p1, p2, and p3 are 2 and the weights of the others
are 1, and obtain the synthesized Boolean expression

fXOR = p3 + x1x2 = (x1x2 ⊕ x3) + x1 x2.



Given: a sum-of-products expression f
Procedure Exact method

X = {}
for all possible product term c = x1 x2 · · · xn

for each product term d which satisfies a condition
f c ⊆ d ⊆ fx1 fx2 · · · fxn

X = X ∪ {c ⊕ d}
end for

end for
g = 0
for each XOR term ck ⊕ dk in X

Create a new variable pk to represent ck ⊕ dk.
g = g + (ck ⊕ dk ⊕ pk)

end for
Compute all prime implicants of f with g as a don’t care set.
Assign weights of 2 to the prime implicants corresponding
to XOR terms and weights of 1 to the others.
Solve the weighted covering problem and obtain fXOR.
Replace pk in fXOR with ck ⊕ dk.
Output fXOR.

end Procedure

Figure 5. Procedure of exact method

3.5. Heuristic Method

In the exact method, all possible cubes are examined.
However, there are 3n candidates where n is the number of
inputs, and hence the method cannot handle Boolean func-
tions with large inputs. To overcome this difficulty, we have
developed a heuristic technique. To illustrate how to find
the good candidates heuristically, consider the following the
expressions

f = (x1x2 ⊕ x3x4) + x1x2x3x4

= x1x2 x3 + x1x2x4 + x1x3x4 +

x2x3x4 + x1x2 x3x4

= x1x2 x4 + x1x3x4 + x2 x3x4 + x2x3 x4.

As can be easily seen, the favorable candidates x1x2 and
x3x4 appear even in the last expression. From this obser-
vation, the product terms themselves and the cubes given
by removing a literal from each product term in a given
Boolean expression f can be used as candidates for a cube
c. The number of the candidates is reduced to the sum of
the number of literals and the number of cubes in a given
Boolean expression. The procedure based on this technique,
heuristic method, is described in Figure 6.

In the procedure, the cube d and the final expression fXOR

are calculated by using two-level minimization algorithms.
Since the method makes full use of two-level minimization
algorithms, we can solve the problems efficiently by using
powerful minimization methods like ESPRESSO[6].

Given: a sum-of-products expression f
Procedure Heuristic method

C = {}
for each product term c in f

C = C ∪ {c}
for each literal l in c

C = C ∪ {c − l}
end for

end for
X = {}
for each c = l1l2 · · · ln ∈ C

if c satifies f c ⊆ fl1
fl2
· · · fln

then
Simplify f c with fl1

fl2
· · · fln

as a don’t care set
and obtain d.
if d is a valid cube then

X = X ∪ {c ⊕ d}
end if

end if
end for
g = 0
for each XOR term ck ⊕ dk in X

Create a new variable pk to represent ck ⊕ dk.
g = g + (ck ⊕ dk ⊕ pk)

end for
Simplify f with g as a don’t care set and obtain fXOR.
Replace pk in fXOR with ck ⊕ dk.
Output fXOR.

end Procedure

Figure 6. Procedure of heuristic method

Note that two-level logic minimizers may count p as a
single product term and hence the XOR terms tend to appear
in the final Boolean expression. In this sense, the cost of the
output of the two-level minimizer is under-estimated. This
can be avoided by modifying the minimizer to count p as
two product terms.

3.6. Extension to Multi-output Functions

In the conventional PLAs, the product terms generated
in AND plane can be shared in some outputs. Therefore
we can reduce the number of product terms by consider-
ing all outputs at the same time. Since an AND-XOR-OR
type sense-amplifying PLA has its own restriction, product
terms cannot be shared when two or more XOR operations
need the same product term. However, if one allows an ir-
regular interconnect as shown in Figure 7, the sharing can
be performed. The method presented in this paper can be
naturally extended to such a circuit. First we extract XOR
terms for all outputs, then perform two-level minimization
considering them.
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Figure 7. Product term sharing

4. Experimental Results

The method described in the paper has been imple-
mented and interfaced with the ESPRESSO. First we ap-
plied it to all 5-input Boolean functions. Since we are
not interested in the functions which are the negation of
some variables and the permutation of some variables in
a Boolean function, the Boolean functions in the NP-
equivalence class are examined. Black bars in Figure 8 and
9 show the number of the functions which had smaller prod-
uct terms than the circuits produced by ESPRESSO. Note
that the results of our method cannot be worse than that
of ESPRESSO because our method uses ESPRESSO inter-
nally. In the figures, the horizontal axis denotes the number
of minterms, and the vertical axis denotes the number of
functions. The results show that the quality of the heuris-
tic method is comparable to that of the exact method. The
CPU time needed to perform the computation for the heuris-
tic method is 12 seconds while the exact method needs more
than 20 hours.

Next, we applied the heuristic method to example func-
tions with large inputs. Table 1 compares the results of the
heuristic method and ESPRESSO. In the table, #XORs is
the number of the XOR terms in the resulting circuit and
CPUtime is the CPU time in seconds. As can be seen from
the results, the heuristic method can reduce the number of
product terms significantly when the good XOR terms are
found. Though the CPU time is larger than ESPRESSO, it
is still reasonable, because the size of the circuit example4
is an average size in practical applications.

Finally, we designed the several layouts of the the cir-
cuit example4 in Table 1, using ROHM’s three metal layer
0.35µm CMOS process technology. For comparison, the
standard-cell based design was synthesized using Synop-
sys Design Compliler, and placed and routed by Avant!
Apollo 1. The results are shown in Table 2. The delays
for all implementations were estimated by using Avant!
HSPICE. The results show that the AND-XOR-OR type
sense-amplifying PLA realization can achieve two times
faster operation than the conventional PLA with an area in-

1The VLSI layouts in this study are designed with Avant! CAD tools.
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Figure 8. Exact method
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Figure 9. Heuristic method

crease of about 6%. The standard-cell based design is much
smaller in area however the delay time is almost two times
slower than the present PLA.

5. Conclusions and Future Works

In this paper, a logic synthesis method for AND-XOR-
OR type sense-amplifying PLA is presented. Especially, the
heuristic method makes full use of the existing two-level
minimization algorithms, it can handle large circuits. Ex-
perimental results show that some classes of Boolean func-
tions can become much smaller and hence the resulting cir-
cuits can operate much faster than the conventional PLA
with a small area penalty.

It is well known that PLAs with two-input decoders re-
quires a smaller area than conventional PLAs. Further im-
provements can be made by combining an AND-XOR-OR
type sense-amplifying PLA with two-input decoders. An
extension to AND-XOR-OR type sense-amplifying PLA
with two-input decoders is currently being investigated.



Table 1. Comparisons between ESPRESSO and the proposed method.
circuit #inputs ESPRESSO Proposed(Heuristic method)

#product terms CPU time #product terms #XORs CPU time

example1 8 11 0.0 6 1 0.1
example2 16 87 0.1 39 5 7.4
example3 32 144 0.8 99 3 14.0
example4 64 220 16.5 136 3 254.9

Table 2. Comparisons between several implementation styles of the circuit example4
type #transistors Physical dimension Delay time

Standard cell 1154 190µm × 190µm 1255ps
Conventional PLA 3940 997µm × 554µm 1505ps
Dual-rail PLA 8226 1865µm × 505µm 720ps
AND-XOR-OR type sense-amplifying PLA 5052 1159µm × 505µm 698ps

Appendix: Proof of Theorem 3.1

Theorem 3.1 Let c = l1l2 · · · ln and d be cubes and f be a
Boolean functions. Then,

f c ⊆ d ⊆ fl1
fl2 · · · fln

⇐⇒ f ⊇ c ⊕ d

where fc and flk are the cofactors of f with respect to a cube
c and a literal lk, respectively.

Proof First, we prove the following lemmas.
Lemma A.1 Let c and d be cubes and f be a Boolean func-
tion. Then,

fc ⊇ d ⇐⇒ f ⊇ cd.

Proof =⇒: By the property of cofactor,

f ⊇ c fc ⊇ cd.

⇐=: By calculating the cofactors of the both side of f ⊇ cd
with respect to c, we have

fc ⊇ d. �

Lemma A.2 Let c = l1l2 · · · ln and d be cubes and f be a
Boolean function. Then,

fl1
fl2
· · · fln ⊇ d ⇐⇒ f ⊇ cd.

Proof =⇒: By the property of cofactor, for any k,

f ⊇ lk flk
⊇ lk fl1

fl2
· · · fln

.

Thus, we have

f ⊇ (l1 + l2 + · · · + ln) fl1
fl2 · · · fln

= c fl1
fl2
· · · fln ⊇ cd.

⇐=: Since c = l1l2 · · · ln, we have

f ⊇ cd = l1d + l2d + · · · + lnd.

By calculating the cofactor of the both sides, for any k,

flk
⊇ d.

Thus, we have

fl1
fl2
· · · fln ⊇ d. �

Since c ⊕ d = cd + cd, the theorem can be proven to be
true straightforwardly by Lemma A.1 and Lemma A.2. �
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