
Application-Driven Processor Design Exploration for Power-Performance Trade-off Analysis*

Diana Marculescu, Anoop Iyer
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

{dianam,aiyer}@ece.cmu.edu

Abstract1 - This paper presents an efficient design exploration
environment for high-end core processors. The heart of the proposed
design exploration framework is a two-level simulation engine that
combines detailed simulation for critical portions of the code with
fast profiling for the rest. Our two-level simulation methodology
relies on the inherent clustered structure of application programs
and is completely general and applicable to any microarchitectural
power/performance simulation engine. The proposed simulation
methodology is 3-17X faster, while being sufficiently accurate
(within 5%) when compared to the fully detailed simulator. The
design exploration environment is able to vary different
microarchitectural configurations and find the optimal one as far as
energyxdelay product is concerned in a matter of minutes. The
parameters that are found to affect drastically the core processor
power/performance metrics are issue width, instruction window size,
and pipeline depth, along with correlated clock frequency. For very
high-end configurations for which balanced pipelining may not be
possible, opportunities for running faster stages at lower voltage
exist. In such cases, by using up to 3 voltage levels, the energyxdelay
product is reduced by 23-30% when compared to the single voltage
implementation.

1 Introduction
In recent years, power dissipation has become a critical design
concern not only for designers of battery powered or wireless
electronics, but also in the case of high-performance
microprocessors, multimedia and digital signal processors or high-
speed networking. While it is generally agreed that tools for power
estimation and optimization do exist at circuit, gate, register-transfer
or behavioral levels [1], less has been done in the area of power
analysis or optimization at microarchitecture, architecture or system-
level [2]. Having tools that are able to quantify the effect of different
performance or power optimization schemes, for a piece of code
running on a given processor, is of extreme importance for computer
architects and compiler engineers who can characterize different
architecture styles not only in terms of their performance, but also in
terms of the corresponding energy efficiency. This may also enable
the fine tuning of any existing energy/performance trade-offs.

Relevant previous work comes from several different areas such
as software power modeling for general purpose, embedded or
Digital Signal Processing (DSP) applications, compilation
techniques for power optimized software, pipeline scheduling for
low power, and energy efficient memory systems. Specifically, [3]
proposes a per-instruction base power model that can be used to find
an aggregate power estimate for a sequence of instructions. The
inter-instruction overhead due to changes in circuit state are also
taken into account, but their effect was found to be negligible. The
approach presented in [4] targets instruction scheduling to reduce
circuit state overhead. The proposed cold scheduling technique
reduces the switching activity in the control path by reordering the
instructions based on the inter-instruction energy overhead. For the
special case of real-time systems, an approach for reducing energy
via scheduling, while still meeting the deadlines, has been presented
in [5]. In [6], the case of DSP applications is addressed. There, while
the same type of models as in [3] have been developed, the inter-

instruction effects turn out to be much more prevalent, thus making
possible to develop instruction scheduling techniques that target
power minimization. In [7] a more efficient model with space
complexity linear in the instruction set size has been presented.

More recently, [8] and [9] present two more advanced
microarchitectural power simulators. In [8], a very accurate
parameterized power simulator (within 10% when compared to three
different high-end microprocessors) is presented, as well as some
interesting trade-offs between energy and performance under
varying microarchitecture settings. In [9], the case of datapath
dominated architectures is considered, as well as an analysis of the
impact of compiler optimizations and memory design on power
consumption values. A cycle-accurate power simulation
environment has been presented in [10]. There, for the case of the
SA-1100, a cycle-accurate power modeling methodology is
developed. It cannot, however, model complex, superscalar
processors with out-of-order execution.

In the area of energy optimization, the authors of [11] present an
architectural enhancement to reduce the extra work or energy in the
pipeline of a superscalar processor due to mispredicted branches,
without significant loss in performance. In [12] a technique for
reducing the average power consumption for the pipeline structure is
presented. Other approaches target techniques for energy efficient
memory systems, such as the use of selective cache ways [13], filter-
caches [14] or code compression [15]. Several approaches in the
most recent literature on power efficient architecture point out that
different microarchitectural settings do provide different values for
energy per instruction [16] or energyxdelay product [8]. It has also
been observed that there exists a wide variation from one application
to another, as well as between different parts of the same application
both in terms of the inherent parallelism and in terms of the
necessary resources to sustain a given performance level.

In this paper we address the problem of efficient design
exploration for low power of modern processors. Specifically, we
show that the power-optimal architectural configuration of the
processor depends on issue width, instruction window size as well as
pipeline depth. Processor design exploration has been addressed
previously, but only considering the effect of issue width on the
power-performance trade-off curve [16,17], or the effect of variable
cache configurations on system power [18,19]. The difference in
pipeline stage latencies has been explored for lowering the power
requirements at system level, but for a specialized communication
Myrinet GAM pipeline in a dynamic voltage scaling environment
[20].

Our proposed design exploration methodology is up to two
orders of magnitude (8X on average) faster and within 5% accurate
when compared to detailed microarchitectural simulators like
SimpleScalar [21]. The estimation engine relies on a two-level
simulation methodology: for critical parts of the code, an accurate,
lower-level (but slow) simulation engine is invoked, whereas for
non-critical parts of the application program, a fast, high-level, but
less accurate simulation is performed. Critical parts of the code are
identified using hotspot detection and sampling which is a novel and
completely general paradigm, applicable to any detailed simulation
environment. In addition to what other power simulators propose
(e.g., Wattch [8]), in our power characterization, we account for data
dependency for cycle-accurate estimates, as well as for1. *This research was supported in part by NSF Career Award CCR-0084479.

parameterizable global clock power modeling.
Our design exploration framework is able to explore many

possible microarchitectural configurations in a matter of minutes and
find the best one in terms of power/performance trade-off. In
addition to the proposed fast simulation engine, the proposed design
exploration environment relies on latency analysis of different
microarchitectural configurations (Cacti [22-24]). As the
experimental results show: (i) for complete power/performance
characterization, issue width is insufficient and has to be considered
together with instruction window size and pipeline depth; and (ii) for
very high-end configurations, balanced pipelining may not be
possible, thus allowing for opportunities for running faster stages at
lower voltage (and thus lower power). Savings of up to 23-30% in
energyxdelay product can be achieved by using up to three different
voltage levels.

To characterize the quality (in terms of power and performance)
of different configurations, we rely on a few metrics of interest. As
pointed out in [22], when characterizing the performance of modern
processors, the CPI (Cycles per Instruction) or IPC (Instructions per
Cycle, 1/CPI) is only one of two parameters that needs to be
considered, the second one being the actual cycle time. Thus, the
product CPI*Tcycle is a more accurate measure for characterizing the
performance of modern processors. In the case of power
consumption, most researchers have concentrated on estimating or
optimizing energy per committed instruction (EPI) or energy per
cycle (EPC) [8,9,16]. While in the case of embedded computer
systems with tight power budgets some performance may be
sacrificed for lowering the power consumption, in the case of high
performance processors this is not desirable and solutions that jointly
address the problem of low power and high performance are needed.
To this end, we propose the energy delay product per committed
instruction (EDPPI) defined as EPI*CPI*Tcycle as a measure that
characterizes both the performance and power efficiency of a given
architecture. Such a measure can identify microarchitectural
configurations that keep the power consumption to a minimum,
without significantly affecting the performance. In addition to
classical metrics (such as EPC and EPI), we use this measure to
assess the efficiency of our power optimization technique and to
compare different configurations as far as power consumption is
concerned.

The paper is organized as follows: Section 2 presents our
assumptions, whereas in Section 3 we present our proposed
processor design exploration environment. Section 4 presents the
two-level microarchitecture simulation engine. Section 5 describes
the details of the proposed design exploration environment and
Section 6 shows our experimental results for the proposed technique
applied on a subset of SpecInt95 benchmarks. We conclude with
some final remarks and comments on the proposed approach.

2 Assumptions
In what follows, we consider a typical superscalar, out-of-order
configuration, based on the reservation station model (Fig.1). This
structure is used in modern processors like Pentium Pro and
PowerPC 604. The main difference between this structure and the
one used in other processors (like MIPS R10000, DEC Alpha 21264,
HP PA-8000) is that the reorder buffer holds speculative values and
the register file holds only committed, non-speculative data, whereas
for the second case, both speculative and non-speculative values are
in the register file. However, the wake-up, select and bypass logic
are common to both types of architectures and, as pointed out in
[22], their complexity increases significantly with increasing issue
widths and window sizes.

We note that increasing issue widths have to go hand in hand
with increasing instruction window sizes to provide significant
performance gains. Thus, we argue that complexity (and thus, power
requirements) of today’s processors have to be characterized in
terms of issue width (that is, number of instructions fetched,
dispatched and executed in parallel), instruction window size (that is,
the window of instructions that are dynamically reordered and
scheduled for achieving higher parallelism), as well as pipeline

depth, which is directly related to the operating clock frequency.

Fig.1 The reservation station model
As part of our design exploration framework, we rely on cycle-
accurate simulation to get the performance and power consumption
metrics, as well as techniques for speeding up simulation so that
power-performance metrics are preserved with sufficient accuracy,
while the simulation time is drastically reduced.

For our design exploration environment, we will assume that
the parameters that affect the power-performance metrics of a given
core processor are the issue width, instruction window size and
pipeline depth. It is clear that pipelining depth is related to the clock
rate (and thus the performance and power consumption of the core).
However, it is also true that issue width and instruction window size
play an important role, especially for higher end configurations,
since they actually affect the number of resources used in the
processor under consideration (datapath modules, memory ports,
etc.). For example, for a 4-way superscalar processor which is able to
fetch, issue and commit 4 instructions every clock cycle, there
should be at least 2 integer ALUs, one floating-point ALU and at
least one memory port available so that the datapath doesn’t create
any bottlenecks in case the code is highly parallel. On the other hand,
issue width and instruction window size are inter-related one to
another. More parallelism can be extracted by having a wider
window size, and thus more bandwidth is needed for fetching,
issuing and committing instructions. Finally, pipeline depth is
determined by the way stages are balanced and by the inherent
latency of different core modules.

In our design exploration environment we will concentrate on
the effect of the above three parameters and we will assume that the
instruction and data caches are fixed.

3 Processor design exploration
Today’s superscalar, out-of-order processors pack a lot of
complexity and functionality on the same die. Hence, design
exploration for finding high performance or power efficient
configurations is not an easy task. As shown in previous work [16-
20], some of the factors that have a major impact on the power/
performance of a given processor are issue width, cache
configuration, etc. However, as shown in [8], the issue window
impacts strongly the power cost of a typical superscalar, out-of-order
processor. To the best of our knowledge, the issue width (and
corresponding number of functional units), instruction window size,
as well as the pipeline depth have not been considered
simultaneously as parameters in a design exploration environment.

Our proposed design exploration environment follows the flow
in Fig.2. At the heart of the exploration framework is a fast
microarchitectural simulator (estimate_metrics) that provides
sufficiently accurate estimates for the metric of interest. Depending
on the designer’s needs, this metric can be one of: CPI, CPI*Tcycle,
EPI, EDPPI, according to whether a high performance or a joint
high-performance and energy-efficient organization is sought. As
shown in Fig.2, the exploration is performed for a set of benchmarks
B, a set of possible issue widths I, instruction window sizes W and a
number of possible voltage levels N. For each pair (issue width,
instruction window size), the stage latencies are estimated. If a
balanced pipelined design is sought, the pipeline is further refined to
account for this and only one voltage levels is assumed for the entire
design. Otherwise, depending on the latencies of different stages, up
to N different voltages are assigned to different modules such that
performance constraints are maintained and the slowest stage
dictates the operating clock frequency.

Fe
tc

h

D
ec

od
e

R
en

am
e

R
eg

fi
le

R
eo

rd
er

B
yp

as
s

D
at

a-
ca

ch
e

 b
uf

fe
r

 Issue
window

Wake-up+
 select

Fig.2 The design exploration environment
As it can be seen, the estimation engine is repeatedly invoked

for varying sets of parameters. Thus, it is important to have a very
fast, yet sufficiently accurate simulation engine (estimate_metrics).
In the sequel, we show one possible solution to achieving these two,
apparently contradictory, requirements.

4 Efficient microarchitectural power simulation
In this section we present the simulation methodology that is at the
core of the entire design exploration framework. For a design
exploration environment to be able to explore many possible design
configurations in a short period of time, it has to rely either on a
smart methodology to prune the design space, or on a fast, yet
sufficiently accurate estimation tool for the metrics of interest. Our
proposed design space exploration framework relies on the second
approach.

The crux of our estimation speed-up methodology relies on a
two-level simulation methodology: for critical parts of the code, an
accurate, lower-level (but slow) simulation engine is invoked,
whereas for non-critical parts of the application program, a fast,
high-level, but less accurate simulation is performed. Following the
principle “make the common case accurate,” ideal candidates for
critical sections that should be modeled accurately are those pieces
of code where the application spends a lot of time in, which have
been elsewhere called hotspots [25].
Example: Consider the collection of basic blocks1 in Fig.3, where
edges correspond to conditional branches and the weight of each
edge is proportional to the number of times that direction of the
branch is visited. Hotspots are collections of basic blocks that closely
communicate one to another, but are unlikely to transition to a basic
block outside of that collection. In Fig.3, basic blocks 1-4 and 5-9
are part of two different hotspots that communicate infrequently one
to another.

Fig.3 An example of two hotspots
As it will be seen later, these hotspots satisfy nice locality properties
not only temporally, but also in terms of the behavior of the metrics
that characterize power efficiency and performance. Temporal
locality, as well as high probability of reusing internal variables [33]
make hotspots attractive candidates for sampling metrics of interest

over a fixed sampling window, after a warm-up period that would
take care of any transient regimes. Estimated metrics obtained via
sampling can be later reused when the exact same code is run again.
Although different, such an approach is similar in some ways to
power estimation techniques for hardware IPs using hierarchical
sequence compaction [34] or stratified random sampling [35]. In
addition, the relative sequencing of basic blocks is preserved (as in
[36]) and the use of warm-up period ensures that overlapping of
traces [37] is not necessary. This is in contrast with synthetically
constructing traces for evaluating performance [38] and power
consumption [39].

We should point out, however, that if used naïvely, the hotspot
concept could become useless from an efficiency point of view. If
detailed simulation is to be used for hotspots and they account for
most of the execution time of the application program (70%-99% of
the execution time, as we shall see later), then no significant savings
in simulation time can be achieved. To speed-up the simulation time
inside the hotspots and achieve the goal of “making the common case
fast,” we propose to use sampling of power and performance metrics
until a given level of accuracy is achieved. This is supported by the
fact that while being in a hotspot, both power consumption
(expressed as EPC or Energy per Cycle) and performance (expressed
as IPC or Instructions Per Cycle) achieve their stationary values
within a short period of time, relative to the dynamic duration of the
hotspot. As our experimental evidence shows, the steady-state
behavior is achieved in less than 5% of the hotspot dynamic
duration, thus providing significant opportunities for simulation
speed-up, with minimal accuracy loss.

Fig.4 shows how the two-level simulation engine is organized.
During detailed simulation, all performance and related power
metrics are collected for cycle-accurate modeling. When a hotspot is
detected, detailed analysis is continued for the entire duration of the
sampling period. When sampling is done, the simulator is switched
to basic profiling that only keeps track of the control flow of the
application. Whenever the code exits the hotspot, detailed simulation
is started again. This way, the error of estimation is conservatively
bounded by the sampling error within the hotspots. Performing
detailed simulation outside the hotspots ensures that the estimates
are still accurate for benchmarks with low temporal locality (e.g.,
less than 60% time spent in hotspots).

Fig.4 The two-level simulation engine
To complete our two-level simulation engine, we need a reliable

and sufficiently detailed (albeit, slow) power/performance simulator
as well as a rough (fast) profiler to keep track of where we are in the
code. To this end, we use SimpleScalar [22] as the main engine for
detailed performance estimation. SimpleScalar performs fast,
flexible and accurate simulation of modern processors that
implement a derivative of the MIPS-IV architecture [26] and support
superscalar, out-of-order execution which is typical for today’s high-
end processors. The power estimation engine is based on the
SimpleScalar architecture, but in addition, it supports detailed cycle-
accurate information for all modules, including datapath elements,
control and clock distribution network. While being similar to the
Wattch power simulator [8] in the models used for memory arrays
and caches, it has several features that Wattch does not support:
• Cycle-accurate power estimation of datapath modules like inte-

ger or floating-point ALUs and multipliers.
• Parameterizable clock power modeling as a function of the

pipeline depth and number of pipeline registers that need to be
clocked.

We would like to point out that the two-level simulation approach is
completely general and applicable to any detailed power/1.A basic block is a straight-line piece of code ending at any branch or jump

instruction.

design_explore (B, I, W, N)
for each benchmark BN in B{

for IW in I = (IW1, IW2,...,IWn)
for WS in W = (WS1, WS2,...,WSm)
estimate_stage_latencies (IW, WS);
if (balanced_pipeline) {
balance_stages (IW, WS);
estimate_metrics (BN, IW, WS, 1);

}
else
estimate_metrics (BN, IW, WS, N);

}

1

4

2

3

5

6

7 8

9

1

4

2

3

5

6

7 8

9

 Detailed
simulation In_Hotspot Sample

In_Hotspot Done_sampling
 Fast
profiling

No

Yes

No

Yes

Yes

No

Low
Level

High
Level

performance simulation engine, as long as it is augmented with a
hotspot detection mechanism for speed-up purposes.

In what follows, we present details on hotspot detection
mechanics, how is sampling done inside a hotspot and power
modeling for the core modules.

4.1 Identifying hotspots

As described previously, collections of basic blocks executing very
frequently together are called hotspots. It has been shown that most
of the execution time of a program is spent in several small critical
regions of code, or in several hotspots. These hotspots consist of a
number of basic blocks exhibiting strong temporal locality. In [25] a
scheme for detecting hotspots at run-time has been presented. Our
purpose is to use the hotspot detection mechanics in a simulation
environment so as to speed-up power/performance estimation in a
design exploration environment. To the best of our knowledge, this
has not been attempted before. As opposed to previous approaches
which implement the hotspot detection and monitoring mechanism
in hardware, we implement them within the simulator itself. The
main advantage is that the overhead introduced in simulation time is
negligible, as we shall see later.

Fig.5 The hotspot detection scheme
To keep track of branches, we use a cache-like data structure called
the branch behavior buffer (BBB). Each branch has an entry in the
BBB, consisting of an execution counter (ExecCtr) and a one-bit
candidate flag (CF). The execution counter is incremented each time
the branch (br) is taken, and once the counter exceeds the
BBB_Threshold value (512, in our case), the branch in question is
marked as a candidate branch by setting the CF bit for that branch.
Fig.5 shows the details of the hotspot detection scheme. Specifically,
in addition to the BBB structure we include the following into our
simulation engine:
• A saturating counter called the hotspot detection counter (HDC)

keeps track of candidate branches. Initially, the counter is set to
a maximum value (Max_HDC); each time a candidate branch is
taken, the counter is decremented by a value D, and each time a
non-candidate branch is taken, it is incremented by a value I.
When the HDC decrements down to zero, we are in a hotspot.
For our implementation we chose D as 2 and I as 1, such that
exiting the hotspot is twice as slow as entering it.

• The BBB and HDC are left running even when execution is
inside the hotspot. When the code strays away from the hotspot,
non-candidate branches start to execute more frequently; the
HDC then increments to its upper limit eventually, and we say
that we are out of the hotspot.

• The replacement policy for entries in the BBB is that if there is a
conflict, the old entry is retained and the new one discarded.
Entries are not replaced; this is needed so that the BBB figures
reflect the correct execution statistics.

• Every several (e.g., 4096, in our case) cycles, BBB entries which
are non-candidate entries are flushed. If a hotspot is not yet

detected, every 64K cycles, the entire BBB is reset. These two
mechanisms ensure that the replacement policy we have
adopted does not cause stagnation of entries in the table.

Fig.6 Normalized dynamic execution time spent in hotspots
The amount of time a program spends in hotspots depends on the
behavior of the program itself; Fig.6 illustrates this for the
benchmarks that we tested. The average fraction of time spent inside
detected hotspots is 92%, with the fraction being higher for
MediaBench [27] than for Spec95 benchmarks [28].

We should point out that the hotspot detection scheme described
here cannot be simply replaced by monitoring branch prediction
behavior. While it is true that the entry and exit points are branches
that have very predictable behavior, in general, the same cannot be
said about internal conditional branches. What the described scheme
provides in addition to branch prediction behavior monitoring, is a
way of generating collective statistics characterizing basic blocks
which are closely coupled one to another. In the following, we
describe how metrics of interest can be obtained via sampling inside
detected hotspots.

4.2 Sampling hotspots

As mentioned before, the main mechanism for achieving speed-up in
power /performance simulation is the fast convergence of both IPC
and EPC metrics while code is running inside a hotspot. Our
proposed sampling scheme is shown in Fig.7.

Fig.7 The timeline of events
After a hotspot is detected, no sampling is done for a warm-up
period needed to bypass any transient regime due to compulsory
cache misses, etc. Then, for a number of cycles denoted by the
sampling window size, metrics of interest (committed instructions,
access counts, cache misses, etc.) are monitored and collected in
lumped CPI, EPI or EDPPI metrics that characterize the entire
hotspot. After the sampling period is over, the simulator is switched
to the fast profiling mode and then back to detailed mode when the
exit out of the hotspot is detected.

To illustrate this proposed sampling scheme, we have
considered three of the SpecInt95 benchmarks that exhibit a different
profile as far as parallelism, branch behavior and functionality is
concerned: ijpeg (an image processing benchmark), gcc (GNU C
compiler) and compress (implementing the Ziv-Lempel compression
algorithm). Using the SimpleScalar architectural simulator and our
proposed cycle accurate power simulation engine (described next),
we show in Fig.8-9 the relative error obtained when different
sampling window sizes are used. The results have been obtained by
sampling IPC and EPC values for each detected hotspot for a

hotspot_detect (BBB, HDC, br) {
if br is not in BBB {
if not a conflict
insert br in BBB;

else return;
}
BBB(br).ExecCtr ++;
if BBB(br).ExecCtr > BBB_Threshold
BBB(br).CF = true;

if BBB.CF(br) == true
HDC = HDC - D;

else
HDC = HDC + I;

if HDC == 0
In_Hotspot = true;

else
if HDC == Max_HDC and In_Hotspot == true
In_Hotspot = false;

}

W
ar

m
-u

p

Hots
pot d

et
ec

tio
n

Hotspot execution
Sam

plin
g

Estimate metrics of interest for entire hotspot

Out o
f h

ots
pot

W
ar

m
-u

p

Hots
pot d

et
ec

tio
n

Hotspot execution
Sam

plin
g

Estimate metrics of interest for entire hotspot

Out o
f h

ots
pot

Detailed simulation Fast profiling

sampling window size varying between 32K and 128K cycles. The
sampling is started after a warm-up period of 200,000 cycles.

Fig.8 Sampling error for IPC (instructions committed per cycle)

Fig.9 Sampling error for EPC (average power consumption)
The dynamic duration of the hotspots of different benchmarks varies
between 1M and 50M cycles. As it can be seen, for both IPC (Fig.8)
and EPC (Fig.9), there is no significant accuracy loss if sampling is
done for only 1-5% of the cycles for each hotspot. In fact, the
percentage error when compared to the baseline simulator is in all
cases less than 6% for IPC (4-5% on average, depending on the
sampling window size) or for EPC (2-4% on average). We note that
the error is not necessarily monotonic with increasing sampling
window size, due to the different control and data dependencies
exhibited by different applications, but is always within 6% when
compared to the detailed power/performance simulation engine.

4.3 Microarchitectural power modeling

Our proposed microarchitectural power modeling scheme relies on
using activity-driven, parameterizable power models, like Wattch
[8]. However, unlike Wattch which concentrates on accurately
modeling the memory arrays using capacitance models very similar
to previously proposed Cacti tools [22-24], we use in addition cycle-
accurate models for datapath modules like integer and floating point
ALUs and multipliers. Also, we include parameterizable models for
global clock power as a function of pipeline depth and configuration.

Specifically, the power models used for the datapath modules
are based on input dependent macromodels [29]. The input statistics
are gathered by the underlying detailed simulation engine and used,
together with technology specific load capacitance values, to obtain
power consumption values. Assuming a combination of static and
dynamic CMOS implementations, we use a cycle-accurate power
macromodeling approach for each of the units of interest [29]:

where Pmodule,k is the power consumption of a given module during
cycle k, when input vector is followed by .

While estimation accuracy is important for all modules inside

the core processor, it is recognized that up to 40-45% of the power
budget goes into the global clock power [2]. Thus, accurate
estimation of the global clock power is particularly important for
evaluating power values of different core processor configurations.
Specifically, we estimate the global clock power as a function of the
die size and number of pipeline registers [30]:

 (1)

where the first term accounts for the register load and second and
third account for the global and local wiring capacitance (α is a term
which depends on the local routing algorithm used, h is the depth of
the H-tree). Cr is the nominal input capacitance seen at each clocked
register and Cw is the wire capacitance per unit length, while Nr is

the number of pipeline registers, for p pipeline stages.

To estimate the die size and number of clocked pipeline
registers, we use the microarchitectural configuration as follows:

 (2)

where memory and CAM arrays (Content-Addressable Memory)
account for caches, TLBs, branch prediction table, rename logic and
instruction window, functional units are the integer and floating
point units and clock refers to the clock distribution tree and clocked
pipeline registers. To estimate the size of each module, we rely on
the wirelength and module size calculation done in Cacti which is at
the basis of latency estimation.

The pipeline depth is directly related to the actual latency of
different modules and the level of pipelining used for each of them.
For example, if a target clock frequency of 200MHz is chosen and
the D-cache cycle time is 4500 ps, the D-cache access has to be
pipelined in 2 stages to accommodate the given clock frequency.
Even without a prescribed clock frequency, balanced pipelining is
desired and more pipeline stages may be required to achieve this. To
estimate the area of different memory arrays (I-cache, D-cache,
TLB, branch prediction table, instruction issue window, etc.) and
their latency, we use Cacti tools which provide accurate models
(within 5-7% error when compared to HSPICE) for estimating load
capacitances based on realistic implementations of different memory
arrays and CAM structures. In addition, it relies on load calculation
based on RC models using wirelength estimation and appropriate
scaling among different technologies. Similar models are used for
power modeling of array and CAM structures in Wattch. For a
complete analysis of wirelength, module size or latency, the reader is
referred to [22-24,30,31].

5 Core processor design exploration
We describe in this section the core processor design exploration
environment. The set of parameters that the design exploration
framework considers are issue width (IW), instruction window size
(WS) and pipeline depth (PD).

As pointed out previously, IW and WS are inter-related since
more parallelism (and thus higher IW) can be extracted when a larger
window size (WS) is used. Thus, we have pruned the design space by
selecting only (IW, WS) pairs belonging to a meaningful subset. In
addition, the number of pipeline stages is directly related to the end-
to-end latency of each module. To achieve higher clock rates, more
often designers resort to pipeline stage balancing (by moving logic
across stages) or to using deeper pipelining so as to increase clock
rate. However, deeper pipelines have the disadvantage of increasing
mispredict penalties, in addition to higher global clock power
consumption. In addition, in some cases it is not possible to further
pipeline or move logic around to achieve balanced pipelines, as is the
case of wake-up and select logic. There is a clear trade-off between
nicely balanced pipelined designs achieving high throughput (and
possibly high power consumption) and more power efficient, non-
balanced pipelines, with a lot of potential for finely tuning the supply
voltage of each stage to the required throughput. Our processor
design exploration framework is intended to find the energyxdelay

Pmodule k, Fmodule Vmodule k 1–, Vmodule k,,()=

Vmodule k 1–, Vmodule k,

Pclk fclkVdd
2

NrCr 1.5 2
h

1–()DCw α 4
h
NrCw+ +

 =

Nr Nii 1=

p
∑=

Area Areamemory arrays– AreaCAM arrays–
AreaFunctional units– AreaRegfile Areaclock

+
+ + +

=

product-optimal core organization via simultaneous
microarchitecture configuration, clock frequency and multiple
supply voltage selection.

For each selected microarchitecture configuration, the design
exploration environment first determines the latency of each module
for a given microarchitecture configuration, as described in Section
4. It then tries to balance the pipeline stages by further pipelining
accesses to caches, register file or functional units (except wake-up/
select stage since it has to be performed atomically). After the
number of pipeline stages is determined, the two-level simulation
engine is invoked and power/performance metrics are reported. In
case an imbalance is detected in the latency of pipeline stages, the
design exploration environment tries to assign lower voltages to
faster stages so as to reduce power.

While we do consider assigning different voltages for the
purpose of reducing power consumption, we do keep the global
clock lines powered at the higher Vdd. This will limit the amount of
savings that can be achieved since the clock power consumption can
be significant (up to 40% [2]).

6 Experimental results
The purpose of our experimental study is threefold:
1. To assess the effectiveness of our proposed scheme for speeding-

up microarchitecture level simulation.
2. To explore the design space based on different microarchitectural

configurations in terms of power consumption, performance and
energyxdelay product.

3. To assess the efficiency of our proposed architectural design
exploration framework for multiple supply voltage usage in
different microarchitectural settings.

6.1 Efficient microarchitecture simulation

In this section, we provide our results for the two-level simulation
environment described in Section 3. The processor configuration
considered was a 4-way superscalar with an instruction window size
of 32. We have also assumed a register file of size 32, a direct
mapped I-cache of size 16K with a block size of 32B and a 4-way set
associative D-cache of size 16K with 32B blocks. To report our
experimental results, we have used as detailed simulator a modified
version of Wattch which accounts for data dependent power values
and parametrized clock power, as described in Section 3. For the
purpose of reporting the results, the simulator was run in the high-
performance mode which uses a fairly accurate branch prediction
mechanism. For the non-detailed profiling simulation, we have
monitored only branch instruction for the purpose of identifying if
we are still in or out of a hotspot, as described in detail in Section 3.

Fig.10 Simulation accuracy and speed-up (128Kcycles sampling)
We present in Fig.10 the accuracy and speed-up of the proposed
mixed mode simulation engine, both in terms of power and
performance. As it can be seen, since most benchmarks spend most
of the execution time in hotspots, using sampling inside hotspots
with a sampling window size of 128K cycles provides between 3X
and 17X improvement in simulation time (including the overhead
due to hotspot detection). In addition, Fig.10 shows the accuracy of
this two-level simulation environment. When compared to the
original cycle accurate simulator, our proposed two-level simulation

is within 3% accurate for EPC estimates and 3.5% for IPC values.
Thus, being both accurate and fast, the two-level approach is an ideal
candidate for a design exploration framework, as described next.

6.2 Design exploration

In the following, we present our results on the same subset of the
SpecInt95 benchmark suite (compress, ijpeg, gcc). The three
benchmarks were chosen so as to exhibit different behavior both in
terms of power and performance values when microarchitectural
configurations are varied. All other benchmarks fall into one of the
presented categories. All metrics have been obtained assuming a
0.35µm technology, with Vdd = 2.5V.

As the set of microarchitectural configurations to be explored,
we have chosen (IW,WS) c {(2,16), (4,16), (4,32), (8,32), (8,64),
(8,128)}. After the latency analysis step is completed, accesses are
further pipelined if needed. As shown in [22-24,30,31], the first
candidates for further pipelining are I-cache and D-cache accesses,
as well as the execution stage and register file. Doing so, the
bottleneck remains the wake-up and select logic which has to be
performed atomically and thus may dictate the overall clock
frequency. For all configurations considered above, by further
pipelining all mentioned stages, we get the following pipeline
structure:

Fig.11 The pipeline structure
However, for the first 4 cases the clock rate is dictated by half of TD-

cache, whereas in the last 2 cases ((8,64) and (8,128)) the slowest
stage is the wake-up and select. Including the delay of pipeline
registers, the performance is given by the number of committed
instructions per unit time IPC/Tcycle, whereas the energy metrics are
given by the average power per cycle (EPC), energy per committed
instruction (EPI = EPC * CPI) and energyxdelay product per
committed instruction (EDPPI = EPI * CPI * Tcycle).

In all cases reported, the best IPC is obtained when a wider IW
and/or a large WS is used. IPC steadily increases when IW is
increased, although in some cases (e.g., gcc), the dependence on WS
is more prevalent. However, in most cases, going from a window
size of 32 to 64 or 128 brings almost no improvement in terms of
performance and it can actually reduce the performance due to a
slower clock rate dictated by a very slow wake-up/select logic (as is
the case of (8, 128) configuration). On the other hand, the average
power consumption (EPC) is usually minimized for lower values of
IW and WS but this reduction comes at the price of decreased
performance. In fact, the total energy consumed during the execution
of a given benchmark may actually increase due to increased
idleness of different modules.

To characterize the total energy consumption, the energy per
committed instruction (EPI) is a more appropriate measure. While in
some cases (compress, ijpeg) EPI decreases with higher IW and
increases with higher values of WS, there are cases where EPI
decreases with increasing IW (gcc). However, for all 3 benchmarks,
the lowest EPI configuration is characterized by relatively low
values for IW and WS (4 and 16, respectively). If, however, the
highest energy reduction with lowest performance penalty is sought,
in all cases but one (gcc) the optimal configuration (i.e., lowest
energyxdelay product EDPPI) is achieved for IW = 8 and WS = 32.
Although the energy is not minimized in these cases, the penalty in
performance is less than in other cases with similar energy savings.

Thus, in terms of energy efficiency, the best configuration is not
necessarily the one that achieves the highest IPC or performance.
Depending on the actual power budget, processor designers may
choose to go with lower-end configurations, with not too much of a
reduction in performance.

0

2

4

6

8

10

12

14

16

18

E
rr

o
r

an
d

 S
p

ee
d

-u
p

gcc ijpeg compress Avg

Bi-modal simulation accuracy and speed-up

IPC error [%]
EPC error [%]
Speed-up

I-cache Dec Ren Read-Reg Wake Execute D-cache Write-back
Bpred Up+Sel Commit

Fig.12 Detailed analysis for some SpecInt95 benchmarks

6.3 Using multiple supply voltages

To this end, we consider the effect of using multiple voltages on a
high-end configuration (8-way superscalar, with a 128- entry issue
window) assuming that up to three supply voltages are available:
Vdd1 = 2.5V, Vdd2 = 2V, Vdd3 = 1.5V. We consider both the case of
balanced pipelining (as in Fig.11), as well as the case of an 8-stage
pipeline (Fig.13) with latencies per stage computed as in [22-24,31].
For the 3 voltage supply case, we have also included the overhead
due to level converters and DC-DC converter [32]. We show in
Fig.14-15 the performance (IPC/Tcycle) and energyxdelay product
per committed instruction EDPPI for both cases. .

Fig.13 The case of non-balanced pipeline
As expected, balancing stages via finer pipelining increases
performance by 40%, and also decreases EDPPI by 10-15% at the
expense of a larger power per cycle. However, if we assume that
three different supply voltages are available (2.5V, 2V, 1.5V), we
can run faster stages at lower voltages, and thus lower power,
without changing the clock rate of the original pipeline. For the case

in Fig.11 (balanced) we have used Vdd1 for the issue window and
global clock, Vdd2 for D-cache and functional units, and Vdd3 for the
rest of the resources. In the non-balanced case (Fig.13), we have
used Vdd1 for D-cache and functional units, Vdd2 for issue window
and I-cache, as well as Vdd3 for the rest of modules. As seen in
Fig.15, the EDPPI decreases by about 30% for non-balanced
pipelining and by 23% in the balanced case. We can also see that by
using multiple voltages, the gap between the energy efficiency of the
8-stage and 13-stage processor organizations is reduced by more
than 50%.

Fig.14 Performance of balanced vs. non-balanced pipelines

Fig.15 Energyxdelay product using multiple supply voltages
Several conclusions can be drawn from this exploratory analysis:
1. As expected, performance and power efficiency can be severely

limited if stage balancing is not possible (see the (8, 128)
configuration in Fig.12).

2. Energy metrics are typically minimized for lower-end
configurations. In particular, EPI (reciprocal of MIPS/Watt) is
minimum for a 4-way, 16-entry issue window core, whereas IPC
is maximum for higher-end configurations. Keeping power
consumption under control for these cases may not be possible
unless some performance is surrendered, or if the
microarchitecture configuration is drastically changed.

3. For very high-end configurations where balancing may no longer
be possible, using multiple voltages can improve energy efficiency
by about 23-30%, without reducing performance when compared
to the original pipeline.

We would like to point out that the exploration of the design
space has been performed for all configurations described herein in
less than 1.5 hours for all benchmarks considered, whereas using a
brute-force approach based on low-level, detailed simulation would
have taken at least 12-14 hours.

7 Conclusion and discussion
In this paper, we have presented an efficient design exploration
environment for high-end core processors. At the heart of this design
exploration framework is a two-level simulation engine that
combines detailed simulation for critical portions of the code with
fast profiling for the rest. The critical regions of the code are
discovered via hotspot detection and are sampled for power/
performance metrics convergence. The proposed simulation
methodology is 3-17X faster, while being sufficiently accurate
(within 5%) when compared to the fully detailed simulator.

The design exploration environment is able to vary different

0

0.2

0.4

0.6

0.8

1

1.2

1.4
N

o
rm

al
iz

ed
 v

al
u

es

2 2 4 4 8 8 8

8 16 16 32 32 64 128

Issue width x Window size

gcc

IPC
Perf=IPC/Tcycle
EPC
EPI
EDPPI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
ed

 v
al

u
es

2 2 4 4 8 8 8

8 16 16 32 32 64 128

Issue width x Window size

ijpeg

IPC
Perf=IPC/Tcycle
EPC
EPI
EDPPI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
ed

 v
al

u
es

2 2 4 4 8 8 8

8 16 16 32 32 64 128

Issue width x Window size

compress

IPC
Perf=IPC/Tcycle
EPC
EPI
EDPPI

I-cache Dec Ren Read-Reg Wake Execute D-cache Write-back
Bpred Up+Sel Commit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

gcc ijpeg compress

Non-balanced pipeline

Balanced pipeline

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
al

iz
ed

 E
D

P
P

I

gcc ijpeg compress

Non-balanced pipeline (2.5V)
Balanced pipeline (2.5V)
Non-balanced pipeline (2.5V,2V,1.5V)
Balanced pipeline(2.5V,2V,1.5V)

energyxdelay product is concerned in a matter of minutes. For very
high-end configurations, it was shown that balanced pipelining may
not be possible, and thus opportunities for running faster stages at
lower voltage exist. In such cases, by using up to 3 voltage levels,
the energyxdelay product is reduced by 23-30% when compared to
the single voltage implementation.

As a possible future research direction, the paradigm of running
slower stages at a lower voltage could also be employed in a
run-time environment that is able to adjust the voltage and clock
frequency dynamically, on a fine grain, to fit the application needs.

8 Acknowledgments
The first author would like to thank the reviewers for their detailed
and constructive feedback.

9 References
[1] J. Mermet and W. Nebel, ‘Low Power Design in Deep Submicron

Electronics,’ Kluwer Academic, Norwell, MA, 1997.
[2] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, F. Baez,

‘Reducing Power in High-Performance Microprocessors,’ in Proc.
ACM/IEEE Design Automation Conference, pp.732-737, June 1998.

[3] V. Tiwari, S. Malik, and A. Wolfe, ‘Power Analysis of Embedded
Software: A First Step Toward Software Power Minimization,’ in
IEEE Trans. on VLSI Systems, vol.2, no.4, pp.437-445, April 1994.

[4] C.L. Su, C.-Y. Tsui, and A.M. Despain, ‘Saving Power in the
Control Path of Embedded Processors,’ in IEEE Design and Test of
Computers, vol.11, no.4, Dec. 1994.

[5] S.T. Cheng, C.M. Chen, J.W. Huang, ‘Low-Power Design for Real-
Time Systems,’ in Real-Time Systems, vol.15, no.2, pp.131-148,
Sept. 1998.

[6] M.T.-C. Lee, V. Tiwari, S. Malik and M. Fujita, ‘Power Analysis
and Minimization Techniques for Embedded DSP Software,’ in
IEEE Trans. on VLSI Systems, vol.5, no.1, pp.123-135, Jan. 1997.

[7] B. Klass, D.E. Thomas, H. Schmit, D.E. Nagle, ‘Modeling Inter-
Instruction Energy Effects in a Digital Signal Processor,’ in Power-
Driven Microarchitecture Workshop, in conjunction with Intl.
Symposium on Computer Architecture, Barcelona, Spain, June 1998.

[8] D. Brooks, V. Tiwari, and M. Martonosi, ‘Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,’ in Proc.
Intl. Symposium on Computer Architecture, Vancouver, BC, Canada,
June 2000.

[9] N. Vijaykrishnan, M. Kandemir, M.J. Irwin, H.S. Kim, and W. Ye,
‘Energy-Driven Integrated Hardware-Software Optimizations Using
SimplePower,’ in Proc. Intl. Symposium on Computer Architecture,
Vancouver, BC, Canada, June 2000.

[10] T. Simunic, L. Benini and G. De Micheli, ‘Cycle-accurate
simulation of energy consumption in embedded systems,’ in Proc.
ACM/IEEE Design Automation Conference, New Orleans, June
1999.

[11] S. Manne, A. Klauser, and D. Grunwald, ‘Pipeline Gating:
Speculation Control for Energy Reduction,’ in Proc. Intl.
Symposium on Computer Architecture, Barcelona, Spain, June 1998.

[12] T.M. Conte, K.N. Menezes, S.W. Sathaye, and M.C. Toburen,
‘System-Level Power Consumption Modeling and Trade-off
Analysis Techniques for Superscalar Processor Design,’ in IEEE
Transactions on VLSI Systems.

[13] D. Albonesi, ‘Selective Cache Ways: On-Demand Cache Resource
Allocation,’ in Proc. Intl. Symposium on Microarchitecture
(MICRO-32), Haifa, Israel, pp.248-259, Nov. 1999.

[14] J. Kin, M. Gupta, and W. Mangione-Smith, ‘The Filter Cache: An
Energy Efficient Memory Structure,’ in IEEE Micro, Dec.1997.

[15] H. Lekatsas, J. Henkel, and W. Wolf, ‘Code Compression for Low
Power Embedded System Design,’ in Proc. ACM/IEEE Design
Automation Conference, Los Angeles, CA, June 2000.

[16] V. Zyuban and P. Kogge, ‘Optimization of High-Performance
Superscalar Architectures for Energy Efficiency,’ in Proc. ACM Intl.
Symposium on Low Power Electronics and Design, Portofino, Italy,
July 2000.

[17] J. Kin et al., ‘Power Efficient Media Processors: Design Space
Exploration,’ in Proc. ACM/IEEE Design Automation Conference,
New Orleans, LA, June 1999.

[18] W.-T. Shiue and C. Chakrabarti, ‘Memory Exploration for Low
Power, Embedded Systems,’ in Proc. ACM/IEEE Design
Automation Conference, pp.140-145, New Orleans, LA, June 1999.

[19] I. Hong et al., ‘Power Optimization of Variable Voltage Core-Based
Systems,’ in Proc. ACM/IEEE Design Automation Conference, San
Francisco, CA, June 1998.

[20] G. Qu et al., ‘Energy Minimization of System Pipelines Using
Multiple Voltages,’ in Proc. IEEE Intl. Symposium on Circuits and
Systems, June 1999.

[21] D. Burger, T.M. Austin, ‘The SimpleScalar Tool Set, Version 2.0,’
CSD Technical Report #1342, University of Wisconsin-Madison,
June 1997.

[22] S. Palacharla, N.P. Jouppi, and J.E. Smith, ‘Quantifying the
Complexity of Superscalar Processors,’ CS-TR-1996-1328, Univ. of
Wisconsin, Nov. 1996.

[23] K.I. Farkas, N.P. Jouppi, and P. Chow, ‘Register File Design
Considerations in Dynamically Scheduled Processors,’ WRL
Research Report 95/10, Digital Equipment Corp., Nov. 1995.

[24] S.J.E. Wilton and N.P. Jouppi, ‘An Enhanced Access and Cycle
Time Model for On-Chip Caches,’ WRL Research Report 93/5,
Digital Equipment Corp., July 1994.

[25] M.C. Merten, A.R. Trick, C.N. George, J.C. Gyllenhaal, and W.-M.
Hwu, ‘A hardware-driven profiling scheme for identifying program
hot spots to support runtime optimization,’ in Proc. Intl. Symposium
on Computer Architecture, June 1999.

[26] C. Price, ‘MIPS IV Instruction Set, revision 3.1.,’ MIPS
Technologies, Inc., Mountain View, CA, Jan. 1995.

[27] C. Lee, M. Potkonjak, and W. Mangione-Smith, ‘MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and
Communication Systems,’ in Proc. Intl. Symposium on
Microarchitecture, Dec. 1997.

[28] Spec’95 Benchmark Suite, http://www.spec.org
[29] C.-Y. Tsui, K.-K. Chan, Q. Wu, C.-S. Ding, and M. Pedram, ‘A

Power Estimation Framework for Designing Low Power Portable
Video Applications,’ in Proc. ACM/IEEE Design Automation
Conference, San Diego, June 1997.

[30] C. Svensson and D. Liu, ‘Low Power Circuit Techniques,’ in Low
Power Design Methodologies (Eds. J.M. Rabaey and M. Pedram),
pp.37-64, Kluwer Academic, Norwell, MA, 1996.

[31] Cacti 2.0 Technical Report, http://www.research.compaq.com/
wrl/people/jouppi/cacti2.pdf

[32] M. C. Johnson and K. Roy, ‘Datapath Scheduling with Multiple
Supply Voltages and Level Converters,’ in ACM Trans. on Design
Automation of Electronic Systems, Vol.2, No.3, July1997, pp. 227–
248.

[33] J. Huang, D.J. Lilja, ‘Extending Value Reuse to Basic Blocks with
Compiler Support,’ in IEEE Trans. on Computers, vol.49, No.4,
Apr. 2000.

[34] R. Marculescu, D. Marculescu, and M. Pedram, ‘Sequence
Compaction for Power Estimation: Theory and Practice', in IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol.18, No.7, July 1999.

[35] C.-S. Ding, Q. Wu, C.-T. Hsieh, M. Pedram, ‘Stratified random
sampling for power estimation,’ in IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol.17, No.6, June 1998.

[36] P.K Dubey and R. Nair, ‘Profile-driven Generation of Trace
Samples,’ in Proc. IEEE Intl. Conf. on Computer Design: VLSI in
Computers and Processors, Oct. 1996.

[37] A.-T. Nguyen, P. Bose, K. Ekanadham, A. Nanda, M. Michael,
‘Accuracy and Speed-up of Parallel Trace-Driven Architectural
Simulation,’ in Proc. IEEE Intl. Symposium on Parallel Processing,
1997.

[38] V.S. Iyengar, P. Bose, and L. Trevillyan, ‘Representative Traces for
for Processor Models with Infinite Cache,’ in Proc. ACM Intl.
Symposium on High-Performance Computer Architecture, Feb.
1996.

[39] C.-T. Hsieh, M. Pedram, ‘Microprocessor Power Estimation Using
Profile-Driven Program Synthesis,’ in IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol.17, No.11,
Nov. 1998.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

