
Software-assisted Cache Replacement Mechanisms for Embedded Systems

Prabhat Jain
prabhat@mit.edu

Srinivas Devadas
devadas@mit.edu

Daniel Engels
dwe@mit.edu

Larry Rudolph
rudolph@lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

We address the problem of improving cache predictability and
performance in embedded systems through the use of software-
assisted replacement mechanisms. These mechanisms require
additional software controlled state information that affects the
cache replacement decision. Software instructions allow a pro-
gram to kill a particular cache element, i.e., effectively make the
element the least recently used element, or keep that cache ele-
ment, i.e., the element will never be evicted.

We prove basic theorems that provide conditions under which
kill and keep instructions can be inserted into program code, such
that the resulting performance is guaranteed to be as good as or
better than the original program run using the standard LRU pol-
icy. We developed a compiler algorithm based on the theoretical
results that, given an arbitrary program, determines when to per-
form software-assisted replacement, i.e., when to insert either a
kill or keep instruction. Empirical evidence is provided that shows
that performance and predictability (worst-case performance) can
be improved for many programs.

1 Introduction

On-chip memory, in the form of cache, scratchpad SRAM, (and
more recently) embedded DRAM or some combination of the
three, is ubiquitous in programmable embedded systems to sup-
port software and to provide an interface between hardware and
software. Most systems have both cache and scratchpad memory
on-chip since each addresses a different need. Caches are trans-
parent to software since they are accessed through the same ad-
dress space as the larger backing storage. They often improve
overall software performance but are unpredictable. Although the
cache replacement hardware is known, predicting its performance
depends on accurately predicting past and future reference pat-
terns. Of course, these reference patterns vary depending on in-
put data. Scratchpad memory is addressed via an independent ad-
dress space and thus must be managed explicitly by software, of-
tentimes a complex and cumbersome problem, but provides abso-
lutely predictable performance. Thus, even though a pure cache
system may perform better overall, scratchpad memories are nec-
essary to guarantee that critical performance metrics are always
met.

Of course, both caches and scratchpad memories should be
available to embedded systems so that the appropriate memory
structure can be used in each instance. A static division, however,
is guaranteed to be suboptimal as different applications have dif-
ferent requirements. Previous research has shown that even within
a single application, dynamically varying the partitioningbetween
cache and scratchpad memory can significantly improve perfor-
mance [12].

One important aspect to cache design is the choice of the re-
placement strategy, that controls which cache line to evict from
the cache when a new line is brought in. The most commonly
used replacement strategy is the Least Recently Used (LRU) re-
placement strategy, where the cache line that was least recently
used is evicted. It is known, however, that LRU does not per-
form well in many situations, including timeshared systems where
multiple processes use the same cache and when there is stream-
ing data in applications. Additionally, the LRU policy often per-
forms poorly for applications in which the cache memory require-
ments and memory access patterns change during execution. Fur-
thermore, while caches improve average performance, they can
cause unpredictable performance. Most cache replacement poli-
cies, including LRU, do not provide mechanisms to increase pre-
dictability (worst-case performance), making them unsuited for
many real-time embedded system applications.

In this paper, we address the problem of improving cache
predictability (worst-case performance) and performance through
the use of software-assisted replacement mechanisms. The basic
mechanism we consider is an augmentation of the least recently
used (LRU) replacement method, where additional state in the
cache affects the replacement decision. Software can kill a cache
element, i.e., effectively make the element the least recently used
element, or keep a cache element, i.e., the element will never be
evicted from the cache. We consider different variations of these
cache kill and keep instructions in this paper.

Our contributions are twofold. First, we provide a theoreti-
cal foundation for the development of program analysis and trans-
formation techniques that can automatically add kill and keep in-
structions to a program. In particular, we prove basic theorems
that provide conditions under which kill and keep instructions
can be inserted into program code, such that the resulting perfor-
mance, measured as the hit rate, is guaranteed to be as good as or
better than the original program run using the standard LRU pol-

icy. Second, we develop a compiler algorithm based on this the-
ory that, given an arbitrary program, determines when to perform
software-assisted replacement, i.e., when to insert either a kill or
keep instruction. Empirical evidence is provided that shows that
performance and predictability (worst-case performance) can be
improved for many programs.

The remainder of the paper is organized as follows. In Section
2, we describe related work in software-controlled caches. In Sec-
tion 3, we describe our overall strategy for performance improve-
ment. We present our theoretical results in Section 4 that provide
the foundation for the compiler algorithm described in Section 5.
Preliminary experimental results are presented in Section 6. We
provide conclusions and discuss ongoing work in Section 7.

2 Related Work

2.1 Cache Management

Some current microprocessors have cache management instruc-
tions that can flush or clean a given cache line, prefetch a line
or zero out a given line [9, 11]. Other processors permit cache
line locking within the cache, essentially removing those cache
lines as candidates to be replaced [3, 4]. Explicit cache manage-
ment mechanisms have been introduced into certain processor in-
struction sets, giving those processors the ability to limit pollu-
tion. One such example is the Compaq Alpha 21264 [5] where the
new load/store instructions minimize pollution by invalidating the
cache-line after it is used.

In [8] the use of cache line locking and release instructions
is suggested based on the frequency of usage of the elements in
the cache lines. In [15] some modified LRU replacement policies
have been proposed to improve the second-level cache behavior
that look at the temporal locality of the cache lines either in an
off-line analysis or with the help of some hardware. In [13], active
management of data caches by exploiting the reuse information is
discussed along with the active block allocation schemes. In [6],
policies in the range of Least Recently Used and Least Frequently
Used are discussed.

Our work differs from previous work in that we provide hit rate
guarantees when our algorithm is used to insert cache control in-
structions. Further, the theoretical results that we provide can be
used as a basis for developing a varied set of methods for auto-
matic cache control instruction insertion.

2.2 Memory Exploration in Embedded Systems

Cache memory issues have been studied in the context of embed-
ded systems. McFarling presents techniques of code placement in
main memory to maximize instruction cache hit ratio [10, 14]. A
model for partitioning an instruction cache among multiple pro-
cesses has been presented [7].

Panda, Dutt and Nicolau present techniques for partitioning
on-chip memory into scratchpad memory and cache [12]. The
presented algorithm assumes a fixed amount of scratchpad mem-
ory and a fixed-size cache, identifies critical variables and assigns

them to scratchpad memory. The algorithm can be run repeatedly
to find the optimum performance point.

A technique to dynamically partition a cache using column
caching was presented in [2]. While column caching can improve
predictability for multitasking, it is less effective for single pro-
cesses. Column caching requires significant cache redesign.

3 Overall Strategy

To use caches more efficiently, application-specific information
should be incorporated into the cache line replacement decisions.
Program analysis or trace analysis gives indications about future
variable accesses that can be used to augment the LRU replace-
ment policy with cache kill or keep instructions. These cache in-
structions are implemented with some additional cache replace-
ment logic, state and tables. These instructions modify the cache
replacement state and the tables. Changing the replacement state
influences the replacement policy. A variety of cache control in-
structions with differing hardware requirements can be used.

3.1 Cache Control Instructions

We consider two forms of cache control instructions: (1) modi-
fied load/store instructions that contain the necessary cache con-
trol information (2) separate cache control instructions that con-
tain only the cache control information. We discuss the kill, con-
ditional kill, and keep control instructions and their hardware and
software requirements.

3.2 Kill Instruction

This form of a kill instruction is a load-store instruction with the
kill hint information as part of the instruction. The kill instruc-
tion allows a cache line associated with the access to be aug-
mented with a cache line kill state. This additional kill state is used
along with the LRU information to choose a cache line other than
the LRU cache line for replacement. This instruction provides a
mechanism for replacement of data earlier than it would be pos-
sible in the LRU policy. It can be used for references that result
in the last accesses of the array elements or data structures or for
references whose accessed data reuse time is such that early re-
placement is likely to benefit the overall performance.

3.3 Conditional Kill Instruction

This form of a kill instruction is a load-store instruction with the
kill hint information as part of the instruction. The kill hint infor-
mation contains the condition(s) for the cache line kill state to be
updated. We consider the cache line offset condition which spec-
ifies the cache line offset(s) as a condition. A cache line kill state
is updated only if an access generated by the kill instruction satis-
fies the cache line offset condition. For example, consider a cache
line size of 4 words , an array , and a reference . To
set the kill state of a cache line when the reference accesses
the fourth word of the cache line, the load-store instruction cor-
responding to the reference would have the cache line offset

value as the condition. So, whenever the reference accesses
the fourth word of a cache line, the kill state of that cache line
would be set.

3.4 Keep Instruction

This form of a keep instruction is a load-store instruction with the
keep hint information as part of the instruction. The keep instruc-
tion allows a cache line associated with the access to be augmented
with a cache line keep state. This additional keep state provides a
mechanism to keep a cache line in the cache longer than it would
otherwise be kept in the cache with the LRU replacement policy.
The keep state is used along with the LRU information to choose
a cache line other than the LRU cache line for replacement. It can
be used to keep the time-critical data in the cache for a desired pe-
riod of time. We consider the use of the keep state as a flexible keep
state that does not require a release instruction. If the keep state is
used as a fixed keep, then a corresponding release instruction may
be needed.

3.5 Hardware Cost

The use of the above instructions requires modification to the
replacement logic to take into account the additional cache line
states for replacement decisions. The Kill, Conditional Kill, and
Keep instructions described above require only one bit of addi-
tional state per cache line in the cache. The Conditional Kill in-
struction requires a small amount of logic for offset matching.

3.6 Software Cost

The software cost for the above instructions is in the form of the
additional flavors of load-store instructions with kill hint, keep
hint, and kill with offset condition. The use of the flavors of Kill,
Conditional Kill, and Keep instructions does not result in addi-
tional accesses in the instruction or data stream during program
execution.

4 Theoretical Results

We present theoretical results for the replacement mechanisms
that use the additional states to keep or kill the cache lines. We
show the conditions under which the replacement mechanisms
with the kill and keep states are guaranteed to perform better than
the LRU policy.

4.1 Kill+LRU Replacement Policy

In this replacement policy, each element in the cache has an ad-
ditional one-bit state () called the kill state associated with it.
The bit can be set under software or hardware control. On a hit
the elements in the cache are reordered along with their bits the
same way as in an LRU policy. On a miss, instead of replacing the
LRU element in the cache, an element with its bit set is chosen
to be replaced and the new element is placed at the most recently
used position and the other elements are reordered as necessary.

We consider two variations of this replacement policy to choose
an element with the bit set for replacement: (1) the least re-
cent element that has its bit set is chosen to be replaced; (2)
the most recent element that has its bit set is chosen to be re-
placed. The bit is reset when there is a hit on an element with
its bit set unless the current access sets the bit. We assume
that the bit is changed – set or reset – for an element upon an
access to that element. The access to the element has an associ-
ated hint that determines the bit after the access and the access
does not affect the bit of other elements in the cache.

Definitions: For a fully-associative cache with associativity ,
the cache state is an ordered set of elements. Let the elements
in the cache have a position number in the range that
indicates the position of the element in the cache. Let ,

indicate the position of the element in the
ordered set. If , then is the most recently used ele-
ment in the cache. If , then the element is the least
recently used element in the cache. Let indicate the
cache state at time when using the LRU replacement policy.
Let indicate the cache state at time when using the
Kill+LRU policy. Let and be sets of elements and let and

indicate the subsets of and respectively with bit reset.
Let the relation indicate that the and the order
of common elements in and is the same. Let
and indicate the subsets of and respectively with bit
set. Let the relation indicate that and the order
of common elements in and is the same. Let
indicate the number of distinct elements between the access of an
element at time and the next access of the element at time

.

Lemma 1 If the condition is satisfied, then the access of
at would result in a miss in the LRU policy.

Proof: On every access to a distinct element, the element
moves by one position towards the LRU position . So, after

distinct element accesses, the element reaches the LRU
position . At this time, the next distinct element access replaces
. Since , the element is replaced before its next access,

therefore the access of at time would result in a miss.

Lemma 2 The set of elements with bit set in
at any time .

Proof: The proof is based on induction on the cache states
and . We can show that after every access

to the cache (hit or miss), the new cache states and
maintain the relation for the elements with the

bit set. Please refer to the Appendix A.1 for a detailed proof.

We show the proof of the theorem below for variation (1); the
proof for variation (2) is similar.

Theorem 1 For a fully associative cache with associativity if
the bit for any element is set upon an access at time only
if the number of distinct elements between the access at time

and the next access of the element at time is such that ,
then the Kill+LRU policy variation (1) is as good as or better than
LRU.

Proof: The proof is based on induction on the cache states
and . We can show that after every access

to the cache, the new cache states and
maintain the relation for the elements with the bit reset.

In addition, the new cache states and
maintain the relation based on Lemma 2. Therefore, every

access hit in implies a hit in for any time
. Please refer to Appendix A.2 for a detailed proof.

4.2 Kill+Keep+LRU Replacement Policy

In this replacement policy, each element in the cache has two ad-
ditional states associated with it. One is called a kill state repre-
sented by a bit and the other is called a keep state represented
by a bit. The and bits cannot both be for any element
in the cache at any time. The and bits can be set under soft-
ware or hardware control. On a hit the elements in the cache are
reordered along with their and bits the same way as in an
LRU policy. On a miss, if there is an element with the bit set
at the LRU position, then instead of replacing this LRU element
in the cache, the most recent element with the bit set is chosen
to be replaced by the element at the LRU position (to give the el-
ement with the bit set the most number of accesses before it
reaches the LRU position again) and all the elements are moved
to bring the new element at the most recently used position. On a
miss, if the bit is for the element at the LRU position, then
the elements in the cache are reordered along with their and
bits in the same way as in an LRU policy. There are two variations
of this policy: (a) Flexible Keep: On a miss, if there is an element
at the LRU position with the bit set and if there is no element
with the bit set, then replace the LRU element (b) Fixed Keep:
On a miss, if there is an element at the LRU position with the
bit set and if there is no element with the bit set, then replace
the least recent element with its bit equal to .

Theorem 2 (a) The Flexible Keep variation of the Kill + Keep +
LRU policy is as good as or better than the LRU policy. (b) When-
ever there is an element at the LRU position with the bit set if
there is also a different element with the bit set, then the Fixed
Keep variation of the Kill + Keep + LRU policy is as good as or
better than LRU.

Proof: We just give a sketch of the proof here, since the
cases are similar to the ones in the Kill+LRU Theorem. We
assume a fully-associative cache with associativity . Let

indicate the cache state at time when using the
Kill+Keep+LRU policy. A different case from the Kill+LRU the-
orem is where the current access of an element results in a miss
in and the element at the LRU position has its
bit set.

Consider the Flexible Keep variation of the Kill+Keep+LRU
policy. If there is no element with the bit set, then the element

is replaced and the case is similar to the Kill+LRU policy. If

there is at least one element with the bit set in , let
the most recent element with its bit set is . Let the cache state

. The new state is
. There is no change in the order of the el-

ements in and , so the relationship
holds for the induction step. This implies the

statement of Theorem 2(a).
Consider the Fixed Keep variation of the Kill+Keep+LRU

policy. If there is at least one element with the bit set in
, let the most recent element with its bit set be

. Let the cache state . The new
state is . There is no change
in the order of the elements in and , so the relationship

holds for the induction step.
This implies the statement of Theorem 2(b).

4.3 Set-Associative Caches

Theorem 1 and Theorem 2 can be generalized to set-associative
caches.

Theorem 3 For a set-associative cache with associativity if
the bit for any element mapping to a cache-set is set upon an
access at time only if the number of distinct elements , mapping
to the same cache-set as between the access at time and the
next access of the element at time , is such that , then the
Kill+LRU policy variation (1) is as good as or better than LRU.

Proof: Let the number of sets in a set-associative cache be
. Every element maps to a particular cache set. After an access

to the element that maps to cache set , the cache state for the
cache sets to and to remains unchanged. The
cache set is a fully-associative cache with associativity . So,
using Theorem 1, the Kill+LRU policy variation (1) is as good as
or better than LRU for the cache set . This implies the statement
of Theorem 3.

Theorem 4 (a) The Flexible Keep variation of the Kill + Keep +
LRU policy is as good as or better than the LRU policy. (b) When-
ever there is an element at the LRU position with the bit set in
a cache-set , if there is a different element with the bit set in
the cache-set , then the Fixed Keep variation of the Kill + Keep
+ LRU policy is as good as or better than LRU.

Proof: We omit the proof of this theorem because it is sim-
ilar to Theorem 3.

5 Algorithm

The theoretical results presented in the previous section can be
used directly if we can determine or estimate the number of dis-
tinct memory references between two given accesses to a vari-
able or data structure. For any pair of accesses, we do not, neces-
sarily, have to determine precisely, but rather we need to deter-
mine if is less than , where is the associativity of the cache.
We will define to be for the last access to a variable.

We use a compiler-based static analysis strategy. In the case
where is hard to estimate due to conditionals in the program or
due to incomplete data layout information, a lower bound on can
be used to guarantee performance better than LRU.

The strategy has to produce the kill and keep hints that can be
incorporated into the program source code or used during the com-
pilation phase to insert appropriate kill and keep instructions into
the generated code. In the sequel, a reference corresponds to the
source code expression or a load/store instruction that may result
in different accesses. For example, given an array , the expres-
sion in the program is a reference that would generate dif-
ferent accesses to the array if is part of a loop that is iterated
multiple times.

Compiler Algorithm

1. Perform life-time analysis on variables in the program, and
identify the last use of all variables in the program.

2. Choose variables as kill candidates that are local to a proce-
dure, or shared in a small number of procedures. Also choose
global or local variables that have a relatively short life-time
and variables that are accessed infrequently.

3. Determine a lower bound on between each adjacent pair of
references of kill candidate variables.

In the case of a set-associative cache, we require informa-
tion about what cache set and block each reference is mapped
to. For statically-allocated variables, the layout of variables
assumed by the compiler along with the sizes of the vari-
ables accessed along each (control-flow) path is used to de-
termine a lower bound on . For large dynamically-allocated
variables such as arrays, allocated in a contiguous region of
memory, parts of the array will map to all the sets of the
cache. When these arrays are accessed between the accesses
to a kill candidate variable, we use the size of the arrays
and the number and type of accesses to determine how many
times, if any, the set corresponding to the kill candidate vari-
able is touched by an array access. We ignore any inter-
mediate accesses to small dynamically-allocated variables,
though we might generate kills for these variables. Thus,
given a pair of accesses to a kill candidate variable, we deter-
mine how many accesses to other variables fall into the same
set on each control flow path. The minimum number of dis-
tinct accesses over all control flow paths is the value used for

.

For a fully associative cache, the lower bound on is the min-
imum number of distinct block references along any (control-
flow) path from the first reference to the second. We do not
have to deal with the mapping to sets.

4. For kill candidate variables, if any adjacent pair of references
has , associate a kill instruction with the first refer-
ence.

5. Kill instructions are generated after the last access of all vari-
ables (since). We use conditional Kill instructions in
this case.

6. Identify keep references and associate keep instructions with
such references. The keep variable references can be critical
variables that are accessed frequently and/or have a long life-
time, e.g., a group of index variables that are used in a loop.
The keep variable references can also be a set of variables
that are accessed by the program at regular intervals, but the
interval is such that these variables would be evicted from the
cache. The keep variables can also be specified by the user.

In order to guarantee performance as good or better than
LRU, check to see that at each point in the program, the num-
ber of killed references in the cache is equal to or greater than
the number of keep references for the fixed keep method. A
limit can be specified for the maximum number of keep vari-
ables per cache set, and the hardware can enforce the limit.
We do not need to check the number of killed references for
the flexible keep method. Amongst the keep variables, the
variables that are referenced more often are given higher pri-
ority for selection.

6 Experimental Results and Analysis

For our experiments, we compiled the benchmarks for a MIPS-
like PISA processor instruction set used by the SimpleScalar 3.0
[1] tool set. We generated traces for the benchmarks using Sim-
pleScalar 3.0 [1] and chose sub-traces (instruction + data) from
the middle of the generated trace. We used a hierarchical cache
simulator, hiercache, to simulate the trace assuming an L1 cache
and memory. In our experiments, we measured the L1 hit rate and
the performance of some of the Spec95 benchmarks for various
replacement policies.

We describe our experiments using the Spec95 Swim bench-
mark as an example. We chose a set of arrays as candidates for
the kill and keep related experiments. The arrays we considered
were u, v, p, unew, vnew, pnew, uold, vold, pold, cu, cv, z, h, psi.
These variables constitute of the total accesses. We did
the experiment with different associativities of and cache
line sizes of words and a cache size 16K bytes. The overall
L1 hit rate results for the Swim benchmark are shown in Figure 1.

In Figure 1, the x-axis a,b indicates the associativity and the
cache line size in words. The column labeled LRU shows the
hit rate over all accesses (not just the array accesses) with the
LRU policy. The column labeled Kill shows the hit rate for the
Kill+LRU replacement policy. The columns labeled KK1, KK2,
KK3 show the hit rate for the Kill+Keep+LRU replacement pol-
icy with the Flexible Keep variation. In KK1, the array variables
unew, vnew, pnew are chosen as the keep candidates. In KK2, the
array variables uold, vold, pold are chosen as the keep candidates.
In KK3, only the array variable unew is chosen as the keep can-
didate. The hit rates of the variables of interest for an associativ-
ity of and a cache line size of words are shown in Figure 2
for the same columns as described above. The modified program
with cache control instructions does not have any more instruc-
tion or data accesses than the original program. In Figure 2, the
columns %Imprv show the percentage improvement in hit rate for
the variables over the LRU policy.

Swim: Overall Hit Rate

90

91

92

93

94

95

96

97

2,8 2,4 2,2 4,8 4,4 4,2 8,8 8,4 8,2

Associativity, Block Size

H
it

 R
at

e
% LRU

Kill
KK1
KK2
KK3

Figure 1: Overall Hit Rates for the Spec95 Swim Benchmark
(L1 Cache Size 16 KBytes)

Figure 3 shows the number of Kill (labeled as #Kill) and Con-
ditional Kill (labeled as #Cond Kill) instructions generated corre-
sponding the number of references (labeled as #Ref) for the array
variables of the Spec95 Swim benchmark.

The results show that the performance improves in some cases
with the use of our software-assisted replacement mechanisms
that use kill and keep instructions. The results in Figure 2 show
that the hit rates associated with particular variables can be im-
proved very significantly using our method. The bold numbers
in the KK1, KK2, and KK3 columns in Figure 2 indicate the
hit rate of the variables that were the only keep variables for
these columns. Choosing a particular variable and applying our
method can result in an substantial improvement in hit rate and
therefore performance for the code fragments where the variable
is accessed. For example, for a variable vnew, the hit rate for
LRU was , but we could improve it to using the Keep
method. This is particularly relevant when we need to meet real-
time deadlines in embedded processor systems across code frag-
ments, rather than optimizing performance across the entire pro-
gram.

Figure 4(a) shows the overall hit rate and performance for some
Spec95 benchmarks. We show hit rate and performance for a
single-issue pipelined processor that stalls on a cache miss. The
number of cycles are calculated by assuming 1 cycle for instruc-
tion accesses and 1 cycle for on-chip memory and a 10 cycle la-
tency for off-chip memory. The columns show hit rate and num-
ber of cycles assuming 10 cycles for off-chip memory access and
1 cycle for on-chip memory access. The last column shows the
performance improvement of Kill+Keep over LRU. Figure 4(b)
shows the overall worst-case hit rate and performance for the same
Spec95 benchmarks. The worst-case hit rate is measured over 10
sets of input data. The columns show hit rate and number of cy-
cles assuming 10 cycles for off-chip memory access and 1 cycle
for on-chip memory access. The last column shows the perfor-
mance improvement of Kill+Keep over LRU.

The programs that do not have much temporal reuse of its data
(e.g., some integer benchmarks) do not benefit from kill+LRU re-
placement in terms of the hit rate improvement, but if the same
programs have some data that can benefit by keeping some vari-

Vars #Ref #Kill #Cond Kill

u 28 6 10
v 28 5 12
p 24 2 11
unew 13 6 6
vnew 13 4 8
pnew 13 4 8
uold 13 5 7
vold 13 5 7
pold 13 5 7
cu 15 4 7
cv 15 2 10
z 13 5 5
h 13 4 5
psi 5 0 2

Figure 3: Number of Kill Instructions for the array variables
in the Spec95 Swim benchmark for L1 cache size 16 KB, asso-
ciativity 4, and cache line size 8 words

ables in the cache, then the Kill+Keep strategy can help in improv-
ing the hit rates for the keep variables without degrading perfor-
mance.

7 Conclusions and Ongoing Work

The main contributions of our work are in laying theoretical
groundwork for the development of techniques for inserting cache
control instructions into programs, and the development of an al-
gorithmic compiler analysis method to automatically insert cache
control instructions for improved performance. The compiler
analysis method uses the information derived from an analysis of
the program during program compilation. This method guarantees
that the performance of the modified program is at least as good as
the performance of the original program under the LRU replace-
ment policy, when performance is measured in terms of hit rate.
The use of cache control instructions improves the performance
of a program when executed using a cache, and it improves the
predictability of the program by improving its worst-case perfor-
mance over a range of input data. The increased predictability af-
forded by cache control instructions makes caches more amenable
for use in real-time embedded systems. Our preliminary experi-
ments show that significant improvements are possible using our
technique. Many different variants of this technique are possible,
and we are currently exploring these variants.

Acknowledgments

This research was conducted at the Laboratory for Computer Sci-
ence of the Massachusetts Institute of Technology. Funding for
this work was provided in part by the Defense Advanced Re-
search Projects Agency under the Air Force Research Lab contract
F30602-99-2-0511.

Vars LRU Kill %Imprv KK1 %Imprv KK2 %Imprv KK3 %Imprv

u 85.94 88.57 3.06 86.47 0.62 86.32 0.44 86.67 0.84
v 83.13 88.13 6.01 84.37 1.49 84.20 1.28 86.86 4.49
p 84.24 87.93 4.37 85.42 1.39 84.27 0.03 86.75 2.97
unew 28.67 39.72 38.56 74.16 158.68 28.80 0.47 84.77 195.71
vnew 37.37 47.17 26.21 75.86 102.97 42.83 14.58 43.97 17.64
pnew 31.15 55.51 78.22 75.28 141.68 47.31 51.88 48.23 54.84
uold 42.62 50.78 19.15 47.59 11.67 67.74 58.95 47.59 11.66
vold 54.92 62.60 13.99 62.44 13.70 75.05 36.66 62.48 13.77
pold 47.35 59.25 25.13 55.55 6.41 71.41 33.56 55.71 6.65
cu 75.81 79.73 5.54 79.35 5.11 77.96 3.19 79.73 5.54
cv 75.75 82.15 10.28 82.15 10.21 81.45 7.58 82.15 10.28
z 73.81 84.57 14.85 84.50 14.85 78.26 6.12 84.57 14.85
h 74.18 85.53 18.38 85.53 18.38 83.16 12.28 85.53 18.38
psi 92.38 92.84 0.49 92.84 0.49 92.84 0.49 92.84 0.49

Figure 2: Hit Rates for the array variables in the Spec95 Swim Benchmark for L1 cache size 16 KB, associativity 4, and cache
line size 8 words. The bold numbers in the KK1, KK2, and KK3 columns indicate the hit rate of the keep variables for these
columns.

Bench- LRU LRU KK KK % Imprv
mark Hit % Cycles Hit % Cycles Cycles

tomcatv 94.05 1105082720 95.35 1014793630 8.90
applu 97.88 113204089 97.89 113171529 0.03
swim 91.16 12795379 93.52 11188059 14.37
mswim 95.01 10627767 96.30 9715267 9.39

(a)

LRU LRU KK KK % Imprv
Hit % Cycles Hit % Cycles Cycles

93.96 122920088 95.17 113604798 8.20
97.80 635339200 97.80 635200200 0.02
90.82 100394210 93.19 88016560 14.06
94.92 81969394 96.15 75290924 8.87

(b)

Figure 4: Overall Hit Rates and Performance for benchmarks: (a) For a given input (b) Worst case. L1 cache size 16 KB, asso-
ciativity 4, and cache line size 8 words. We assume off-chip memory access requires 10 processor clock cycles, as compared to a
single cycle to access the on-chip cache.

References

[1] Doug Burger and Todd M. Austin. The simplescalar tool
set, version 2.0. Technical report, University of Wisconsin-
Madison Computer Science Department, 1997.

[2] D. Chiou, S. Devadas, P. Jain, and L. Rudolph. Application-
Specific Memory Management for Embedded Systems Us-
ing Software-Controlled Caches. In Proceedings of the
Design Automation Conference, June 2000.

[3] Cyrix. Cyrix 6X86MX Processor. May 1998.

[4] Cyrix. Cyrix MII Databook. Feb 1999.

[5] R. Kessler. The Alpha 21264 Microprocessor: Out-Of-
Order Execution at 600 Mhz. In Hot Chips 10, August 1998.

[6] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh,
Sang Lyul Min, Yookun Cho, and Chong Sang Kim. On the
existence of a spectrum of policies that subsumes the least re-
cently used (LRU) and least frequently used (LFU) policies.

In Proceedings of the international conference on Measure-
ment and modeling of computer systems, 1999.

[7] Y. Li and W. Wolf. A Task-Level Hierarchical Memory
Model for System Synthesis of Multiprocessors. In Proceed-
ings of the Design Automation Conference, pages 153–
156, June 1997.

[8] N. Maki, K. Hoson, and A Ishida. A Data-Replace-
Controlled Cache Memory System and its Performance
Evaluations. In TENCON 99. Proceedings of the IEEE Re-
gion 10 Conference, 1999.

[9] C. May, E. Silha, R. Simpson, H. Warren, and editors. The
PowerPC Architecture: A Specification for a New Family of
RISC Processors. Morgan Kaufmann Publishers, Inc., 1994.

[10] S. McFarling. Program Optimization for Instruction Caches.
In Proceedings of the Int’l Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 183–191, April 1989.

[11] Sun Microsystems. UltraSparc User’s Manual. July 1997.

[12] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in Em-
bedded Systems-on-Chip: Optimizations and Exploration.
Kluwer Academic Publishers, 1999.

[13] Edward S. Tam, Jude A. Rivers, Vijayalakshmi Srinivasan,
Gary S. Tyson, and Edward S. Davidson. UltraSparc User’s
Manual. IEEE Transactions on Computers, 48(11):1244–
1259, November 1999.

[14] H. Tomiyama and H. Yasuura. Code Placement Techniques
for Cache Miss Rate Reduction. ACM Transactions on De-
sign Automation of Electronic Systems, 2(4):410–429, Octo-
ber 1997.

[15] W. A. Wong and J.-L Baer. Modified LRU policies for im-
proving second-level cache behavior. In Proceedings of the
Sixth International Symposium on High-Performance Com-
puter Architecture, 1999.

A Appendix

A.1 Lemma 2 Proof

Proof: At , .
Assume that at time , .
At time , let the element that is accessed be .
Case H: The element results in a hit in . If the bit
for is set, then is also an element of from the as-
sumption at time . Now the bit of would be reset unless it is
set by this access. Thus, we have

. If the bit of is , then there is no change in the order of
elements with the bit set. So, we have

.
Case M: The element results in a miss in . Let be
the least recent element with the bit set in . If re-
sults in a miss in , let and

. has no element with bit set. If the
bit of is , implies

. If the bit of is set and then
and that implies . If the

bit of is set and , then because that violates
the assumption at time . Further, from the assumption at
time and this implies .

A.2 Theorem 1 Proof

Proof: We consider the Kill + LRU policy variation (1) for
a fully-associative cache with associativity . We show that

at any time .
At , .
Assume that at time , .
At time , let the element accessed is .
Case 0: The element results in a hit in . From the
assumption at time , results in a hit in too. Let

and . From
the assumption at time , and . From
the definition of LRU and Kill + LRU replacement,

and . Since
, .

Case 1: The element results in a miss in , but a hit
in . Let and

. From the assumption at time ,
and it implies that . Since

, we have . From the definition of
LRU and Kill + LRU replacement,
and . Since ,

.
Case 2: The element results in a miss in and a miss in

and there is no element with bit set in .
Let and . From the
assumption at time , there are two possibilities: (a) ,
or (b) and . From the definition of LRU and Kill +
LRU replacement, and

. Since for both sub-cases (a) and (b), we have
.

Case 3: The element results in a miss in and a miss
in and there is at least one element with the bit set
in . There are two sub-cases (a) there is an element
with the bit set in the LRU position, (b) there is no element
with the bit set in the LRU position. For sub-case (a), the ar-
gument is the same as in Case 2. For sub-case (b), let the LRU
element with the bit set be in position , . Let

and , .
From the assumption at time , , which
implies . Since has the bit set,
using Lemma 2. Let . So,
and . Using Lemma 1, for the LRU policy
would be evicted from the cache before the next access of . The
next access of would result in a miss using the LRU policy. So,

when considering the elements that
do not have have the bit set. From the definition of LRU and
Kill + LRU replacement, and

. Using the result at time , we
have .

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

