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ABSTRACT 
This paper presents an FPGA architecture for video encoding 
according to the H.263 standard for video teleconferencing systems. 
The implementation is based on an off-the-shelf FPGA1 and is 
embedded in a PCI plug-in card2  with on-board SRAM plus 
external SRAM. The most complex part of the H.263 protocol, a 
base-line encoder, was implemented. The strategies, which have 
been applied to build the complex encoding operations, are treated 
in this paper. The complete application is able to operate at 30 MHz. 
This leads to a maximum compression speed of 120 Mbit/s allowing 
simultaneous real-time operation of several video streams in a single 
reconfigurable chip. Enhanced coding options can also become 
implemented with present-day FPGAs. The use of FPGA 
technology enables the adaptation of hardware to various protocols 
and environments by software and therefore saves development time 
and hardware costs. 

Categories and Subject Descriptors 
B.6.1 [Hardware - Logic-Design - Design Styles] 

General Terms 
Performance, Design. 

Keywords 
Video Compressor, FPGA, H.263, Distributed Arithmetic. 

1. INTRODUCTION 
Low bit rate coding is essential for video conference and video 
telephony systems. The ITU proposed the H.261 and H.263 
standard for these affairs. In order to achieve high bit rate reduction 
under the constraint of the highest possible picture quality these 
source-coding schemes are very sophisticated and require hardware 
processors of high complexity. Thus, application specific integrated 

circuits for video coding are normally used for high-performance 
compression systems [1].  
Recently, the freely configurable FPGA technology became capable 
of executing complex video compression algorithms with high 
performance. In this paper an FPGA implementation for H.263 bit 
streams is presented. Special interest is taken in the implementation 
of the forward and inverse discrete cosine transformation of the 
compression scheme. The solution with distributed arithmetic is 
presented. The efficient realization of the quantization and 
dequantization unit in a serial manner is shown in principle. The 
concept of the entropy coder is also illustrated. 

2. VIDEO COMPRESSION SCHEME 
Bitrate reduction of the video data is possible because of redundant 
and irrelevant information in the video signal. Basically, there are 
two sources of redundancy. Within a video frame there is a spatial 
redundancy because of the statistical correlation between contiguous 
pixels. Between preceding frames, there is temporal redundancy due 
to slow changing scenes in a video stream. Irrelevance of 
information in the video signal means that such information is 
insignificant for human visual perception. 
Reduction of temporal redundancy is performed through predictive 
coding, and statistical decorrelation is done by transforming the 
blocks of a partitioned image by the use of the discrete cosine 
transformation (DCT). Irrelevance reduction is achieved by 
quantizing the DCT results adapted to visual properties of the 
human eye. 
For predictive coding, successive frames are combined by building 
differential interframes. H.263 enables different motion 
compensation strategies to improve the prediction. Here, no motion 
compensation is applied, so that predictive coding simply means 
building the difference between a current pixel of the present frame 
and the corresponding pixel of the previous frame.  
For the decorrelating transformation H.263 defines the application 
of the DCT on 8x8 pixel blocks of a frame, as in many other image 
compression schemes, too. Quantization of the transformation 
results (Q) is achieved by integer division by user defined 
parameters. These parameters are chosen in such a manner that 
information reduction can become achieved with a minimum of 
visual artifacts. The quantized values become arranged in order of 
ascending frequency (so called zigzag-rearranging) and then entropy 
coded. Therefore, run length coding is used, where long chains of 
“0’s” that occur in this coefficient stream are efficiently represented. 
A Huffman coding scheme finally maps these run length symbols to 
variable length codes. 

1 An FPGA of the widespread XILINX XC4000X Series has been used 
(XC4085XLA). 

2 The “microEnable” FPGA Coprocessor board of Silicon-Software has 
been used [10]. 
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The entropy coding is reversible, however the quantization and in 
practice also the DCT are irreversible. In order to have the same 
prediction at both the receiver and the transmitter, a reconstruction 
path containing dequantization (Q-1) and inverse DCT (IDCT) shall 
always be incorporated into the encoder. Therewith the prediction of 
a current frame is based on the reconstructed image of the previous 
frame. 
A block diagram of the video encoder is shown in Figure 1. 
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Figure 1.    Baseline video compression scheme. 

 
3. THE ARCHITECTURE 
3.1 Forward and inverse DCT 
In this section, we will have a close look on the arithmetic used for 
calculating the forward and the inverse DCT. For these 
transformations on 8x8 pixel blocks (2D-DCT and 2D-IDCT) 
distributed arithmetic3 is used (see [1]-[3]). This leads to a bit-serial 
computation where only 16 word look-up tables (ROMs) and 
accumulators but no multipliers need to be utilized. This allows an 
implementation, which is very resource efficient on FPGAs as their 
architecture is well suited for accumulators and small ROMs. 
Especially ROMs with 16 words accessed through a four bit address 
are optimal because 16x1 ROMs are the basic building blocks for 
logic in commonly used FPGAs. Below, we give a brief derivation 
of the usage of distributed arithmetic for calculating the 2D-DCT. 

For H.263 the 2D-DCT is defined as: 
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The 2D-DCT can be computed by the use of one-dimensional DCTs 
(1D-DCTs) of the rows and subsequent 1D-DCTs of the columns. 
This is possible because of the separability of the 2D-DCT. The 1D-
DCTs can be expressed as follows: 

                                                                 
3 Distributed arithmetic is a key technology for numerous digital signal 

processing applications (see e.g. [7]). 
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Utilizing the property of the factors am
l to be symmetric in m, we 

only need to sum up four product terms: 
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For easier writing, we define um as shortcuts for the sums and 
differences of xm: 
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We can write the um as a sum of weighted bits (note: B is the data 
width of um): 
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The change of summing order in m and j as expressed in ( 6) 
characterizes the distributed arithmetic scheme in which the initial 
multiplications are distributed to another computation pattern. 
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( 6) 

For any index l the F(al,u(j)) can become precalculated and stored in 
a ROM with 16 entries. So bit-serial evaluation of the summation 
formula ( 6) for yl only requires one “rom-and-accumulator” (RAC) 
element for each l as shown in Figure 2, with preprocessed um (sums 
or differences of xm and x7-m, m=0..4) as bit-serial input. One 1D-
DCT thus consists of eight RACs plus a bit-serial preprocessor 
which calculates the um

(j). In Figure 3 you can see the serial 
preprocessor unit connected with the RAC devices. After B steps  
(note that B is the data width of um), the results of the 1D-DCT 
appear parallel at y0 to y7. 
Before applying the second 1D-DCT in the same manner, the 8x8 
matrix of the results of the first 1D-DCT must become transposed. 
This is done by a bit-serial transposition network using the recursive 
transposition technique as described in [3]. The principle is to apply 
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Figure 2.    Rom-and-accumulator element (RAC). 
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Figure 3.    Scheme of the 1D-DCT circuit.  

 
successive 2x2 transpositions on 1x1, 2x2 and finally 4x4 word sub-
blocks, assuming bit-serial input of the 8x8 blocks of data. These 
serial 2x2 transpositions are done by delaying some data words 
relative to others and switching the data path inside an elementary 
transposition cell periodically. Figure 4 shows the interconnection 
scheme of the transposition circuit, which is composed of shift 
registers and crossing switches. Here a word length B of 16 for the 
data words was assumed but any other word length is possible. C0, 
C1 and C2 are determined to toggle every B, 2*B and 4*B clock 
periods.  

By utilization of the elementary on-chip RAM cells of the FPGA for 
serial shift registers, a very efficient design resulted. For serial input 
to the transposition unit, eight additional parallel-to-serial converters 
are employed. Figure 5 shows the flowchart of the complete 2D-
DCT unit assembled of the discussed modules. 
To show that the same processing method is applicable for 
implementing the inverse 2D-DCT (2D-IDCT), which is separable 
just as in the case of the 2D-DCT, the formulas for calculating the 
one dimensional inverse DCT are given in ( 7). 
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Figure 5.    Composition of the 2D-DCT with usage of 1D-

DCT operators. 
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Figure 4.    Bit serial transposition operator. 
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The values (½ ul) and (½ vl) are calculated just as shown in ( 6), 
wherefore the same RAC-units as in Figure 2 can be utilized. 
Instead of a preprocessing unit in the case of the 1D-DCT, here a 
postprocessing device is needed, which calculates the results xl out 
of the ul and vl. 
According to resource limitations of the used FPGA, the following 
word lengths were applied for the 2D-DCT and 2D-IDCT in our 
implementation: For the RAC elements of Figure 2 the ROM 
coefficients were stored with 12 bit accuracy and the accumulators 
operated with 19 bits. The transposition unit transported numbers 
with 16 bit precision. With these word lengths the accuracy of the 
resulting 2D-IDCT could not meet the IEEE specification [8]. To 
meet the specification with this IDCT architecture, ROM 
coefficients of 20 bit accuracy, 28 bit accumulators and 22 bit 
numbers in the transposition unit are needed. This would 
approximately increase the resource utilization of the IDCT by 50 
%. Despite of having less accuracy than specified, the resulting 
image quality of the whole compression system was quite 
satisfactory. 

3.2 Quantization and Dequantization 
As mentioned in section 2 the quantizer principally performs integer 
divisions. Correspondingly the inverse quantizer calculates integer 
multiplications. Both operators work with serial arithmetic. This 
leads to a very simple data path between DCT and IDCT without 
expendable data distribution and buffering, particularly because the 
IDCT needs bit-serial input. Furthermore the applied serial dividers 
and multipliers are both resource efficient and fast. Admittedly 
synthesizing the case differentiation of the formula for the inverse 
quantization was more complex compared to an implementation 
with bit-parallel operators. Moreover reversing the order of bits both 
in the quantizer and inverse quantizer became necessary. But still 
the advantages of serial computation preponderated because the 
elements, which were additional to the dividers and multipliers, 
could have been mapped very efficiently onto the FPGA resources. 
Figure 6 shows the principal flowchart of the quantizer and its 
inverse. 
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Figure 6.    Scheme of the quantization and inverse 

quantization unit. 
 
3.3 Entropy Coding 
The entropy-coding unit (Figure 7) begins with a module, which 
arranges the quantized coefficients in order of ascending frequency 
(zigzag rearranging). This is done by the use of on-chip RAM (dual 
port RAM mode).  

The rearranged data is the input for a variable length coder (VL-
Coder). The H.263 recommendation specifies run length coding. 
Accordingly run length codes consist of a run number, which 
indicates the count of zeros preceding a non-zero coefficient, the 
value of the non-zero coefficient itself (level) and an information bit, 
whether this coefficient is the last of the current block. The VL-
Coder maps these three-dimensional run length to variable length 
codes (VL-codes). H.263 defines a code table with 101 VL-codes. 
These codes are stored in an on-chip look-up table (LUT). For 
mapping, a resource optimized code-assign module was constructed. 
In order to save on-chip memory and logic resources for 
multiplexing, the LUT became partitioned in seven sub-LUTs. Thus 
it was possible to design an easy and cheap LUT-addressing, where 
the memory for the LUTs were utilized with a saturation of more 
than 70% (a straightforward implementation of the LUT would 
result in only 10% saturation).  

Header-Coding

VL-
Coder

Generate
Headerinfo

Insert
Headercodes

FIFO
Data

Packer

Zig-
Zag

DCT-
Coeff

RAM

 
Figure 7.    Scheme of the entropy-coding unit. 

In H.263, picture data is divided in subunits containing the codes of 
6 succeeding 8x8 pixel blocks (called macro block). Preceding the 
VL-codes for these picture units, a header has to be inserted, 
consisting of coding information related to the macro block. But the 
generation of these headers depends on coefficient data of the whole 
macro block, which is still not available at the time of emission of 
the first VL-code of a macro block. So an individual RAM was 
utilized for temporary storing of variable length codes. The modules 
GenerateHeaderinfo and InsertHeadercodes of Figure 7 generate the 
correct header information related to the coefficient data, and 
produce the codes for the macro block headers. 
Packing the header- and VL-codes to constant word-length 
completes the processing. Here the codes become packed to 32 bit 
words corresponding to the data width of the RAM and the PCI 
interface. After packing, the results are stored in the same RAM 
which was utilized for buffering the VL-codes before header 
insertion. To balance the write access to the RAM, a FIFO-module 
was inserted between the header coding unit and the data packer. 

3.4 Total System 
As mentioned above the used hardware platform consists basically 
of a PCI plug-in card with one FPGA chip, on-board SRAM and 
additional external SRAM located on an add-on card. 
Figure 8 shows how the encoding modules inside the FPGA are 
connected and embedded in the FPGA periphery.  
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Figure 8.  Simplified scheme of the encoder circuit 

Interchange of data between FPGA and the PCI interface is 
controlled by asynchronous FIFOs and Flags according to the 
different clock systems of the FPGA and the PCI-interface. Before 
processing, picture data is stored in on-board RAM. This RAM is 
also used for storing the results of the reconstruction path of the 
encoder. The gray signified modules of the encoding kernel are in 
accordance with the blocks of the scheme in Figure 1. Preceding the 
DCT, a subtraction module enables calculating the differences of the 
current picture and the reconstructed frame of the previous picture to 
encode interframes. Following the IDCT, an adder unit supports 
generation of new reconstructed images out of the previous 
reconstructed frame and the current reconstructed interframe. Two 
clipping stages are necessary to avoid overflow errors.  
The entropy coder utilizes an individual RAM (external RAM) as 
mentioned in the preceding section. 

4. PERFORMANCE 
The whole design fitted in an off-the-shelf FPGA4. With the used 
FPGA, the design is able to operate at 30 MHz clock frequency (at 
some points in the design, doubled frequency of 60 MHz has been 
used, e.g. for realizing dual port memory access). As the DCT is 
able to process one 8x8 pixel block of 8 bit values in 128 clock 
cycles, a maximum compression speed of 120 Mbit/s results. This 
peak performance translates to a compression rate of 98.6 CIF5 
frames per second. Hence three image sequences at 30 frames per 
second can become compressed simultaneously. 
The compression results were compared with the output from a 
software reference encoder6, whose compression options were 
disabled. Except for a slightly different generation scheme of 
interframes, the functionality of the software encoder was 
comparable to our application7. As input, the popularly used “Miss 
America” standard image sequence was taken.  

                                                                 
4 89 % silicon area of the used Xilinx FPGA XC4085 XLA were utilized. 
5 The CIF standard defines images with 352x288 pixels stored in 4:1:1 Y-

Cb-Cr color format. 
6 The Telenor TMN5 encoder has been used. 
7 But the speed of the reference encoder was not representative for general 

software encoders because it was not speed-optimized. Particularly it 
could not perform real-time compression. 

Several measurements of signal-to-noise ratios for different 
quantization values are listed in Table 1.  
 

Table 1.    Mean SNR of the first 30 pictures from the “Miss 
America” standard sequence with use of inter-coding. 

Quant 4 8 12 16 20 
FPGA-Encoder 

SNR-Y/dB 40.6 38.1 36.6 35.4 34.5 
SNR-Cb/dB 40.5 38.6 37.5 36.8 35.2 
SNR-Cr/dB 42.6 39.6 37.8 36.2 35.2 

Software-Encoder 
SNR-Y/dB 40.8 38.5 37.2 36.3 35.5 
SNR-Cb/dB 40.6 38.8 37.8 37.1 36.6 
SNR-Cr/dB 42.9 40.1 38.4 37.1 36.0 

The quantities in Table 1 evidence the subjective visual impression 
that the image quality of the decompressed bit stream of the FPGA 
based encoder is nearly as good as it is with the output of the 
software encoder. 
Table 2 faces the achieved compression ratios of the FPGA encoder 
with the results of software encoding for different quantization 
values. The ratios of the hardware video compressor are noticeable 
below those of the software, especially for high “Quant"-Values. 
This is basically a result of the better conjunction scheme between 
successive frames applied by the software. The software utilizes a 
prediction scheme which effectively has the functionality of 
smoothing a reconstructed frame before combining it with the 
current frame to an interframe. This feature has not been 
implemented in the FPGA based encoder due to the resource 
restrictions of the target FPGA. 

Table 2.    Compression ratios for the complete “miss America” 
sequence with 111 pictures. 

Quant 4 8 12 16 20 
Uncompressed 16484 KB 
Compressed 
with FPGA 

469 
KB 

136 
KB 

88 KB 69 KB 59 KB 

Compression 
ratio 

35:1 121:1 187:1 239:1 279:1 

Compressed 
with Software 

288 
KB 

75 KB 45 KB 34 KB 28 KB 

Compression 
ratio 

57:1 220:1 366:1 485:1 589:1 

 

5. CONCLUSIONS 
We described an architecture well-suited for building the modules of 
a video compression system with FPGA technology. The application 
of distributed and bit-serial arithmetic has shown to be optimal for 
our FPGA implementation. A design resulted, where a complete 
baseline encoder for H.263 compatible bit streams was successfully 
implemented in a single off-the-shelf FPGA. 

The single chip system has a compression speed like high-
performance hardware systems. Tests of the encoder evidenced an 
image quality of the decoded bit streams, which was similar to 
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software compression results, but the compression ratio was not as 
high as that of software encoding.  
With enhanced FPGAs the DCT and IDCT may become 
implemented with sufficient accuracy to get an image quality as 
good as with software encoding. By implementing an improved 
prediction scheme, it will also be possible to close the gap of 
compression ratio between an FPGA application and software. 
Present-day FPGAs already have enough logic resources for 
realizing this features. 
In the described application the image data was transported through 
the PCI-Interface, so the FPGA operated as a coprocessor. But it is 
also possible to attach an image acquisition unit directly with the 
FPGA board (e.g. any camera interface). The interface to such a unit 
can become implemented inside the FPGA and exchanged 
dynamically depending on the requirements of the system. In this 
way the video compression hardware may work stand-alone, 
disengaging the CPU for other tasks. Moreover data channel 
bottlenecks between high speed camera and host computer may 
become resolved with such a system. 
Above all, the use of an FPGA for performing the video 
compression algorithm enables the individual adaption of the core 
algorithm with changing ancillary conditions. For example different 
designs optimized for speed, power consumption, accuracy or 
different image characteristics can become applied dynamically. 
The new possibility of using freely configurable FPGAs for video 
compression applications opens the door to novel flexible 
applications. For example direct connection of various cameras to 
fixed compression hardware becomes possible. Also platform 
independent compression and transcoding systems with 
exchangeable interfaces, loaded by software or ROMs, may become 
designed with the use of FPGAs.  
Using Field Programmable Gate Arrays enables a variety of adaptive 
and intelligent high speed video compression systems as the 
behavior of the complete circuit is configurable and selectable by 
software. At last the process of fixing bugs in hardware gets reduced 
to modify software, which means reduction of development time 
and minimization of the risk of hardware failures. 
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