
Generation of Minimal Size Code for Schedule Graphs

Claudio Passerone
Politecnico di Torino, Italy

Yosinori Watanabe
Cadence Design Systems, USA

Luciano Lavagno
Università di Udine, Italy

Abstract

This paper proposes a procedure for minimizing the code
size of sequential programs for reactive systems. It identifies
repeated code segments (a generalization of basic blocks to di-
rected rooted trees) and finds a minimal covering of the input
control flow graphs with code segments. The segments are dis-
junct, i.e. no two segments have the same code in common.
The program is minimal in the sense that the number of code
segments is minimum under the property of disjunction for the
given control flow specification.

The procedure makes no assumption on the target proces-
sor architecture, and is meant to be used between task synthe-
sis algorithms from a concurrent specification and a standard
compiler for the target architecture. It is aimed at optimiz-
ing the size of very large, automatically generated flat code,
and extends dramatically the scope of classical common sub-
expression identification techniques.

The potential effectiveness of the proposed approach is
demonstrated through preliminary experiments.

1 Introduction

Recent technology advances push the performance of cur-
rent electronic systems to new heights. However, the design
practice does not allow an increase of the productivity of de-
signers to take full advantage of the available performance; this
is particularly true in the embedded system world, where prod-
ucts must be designed in a very short time and specification
changes very often. One way to solve this problem is to make
extensive use of programmable devices, which are more flexi-
ble than hardware implementations and provide a faster design
cycle. However, to get enough performance, the software writ-
ten for the application should be of good quality.

Current design methodologies in software development try
to increase the productivity by encouraging extensive use of
IP components. Even though such a methodology is not fully
adopted in design practice, programmers often copy (possibly
large) pieces of code from previous projects or libraries. This
practice leads to a fairly high degree of redundancy in the final
code, and hence an increase in the total cost due to memory
requirements. This redundancy is further increased if the soft-
ware is not of very high quality, as it often contains duplicated
code, especially in ill-structured loops, which are difficult to
optimize by hand.

Code synthesis techniques from concurrent specifications
based on “code stitching”, such as [5, 8, 3], may also produce
code with very high redundancy.

In this paper we propose a technique to address these prob-
lems. We start from a high level abstract view of the program,
namely a graph which represents the flow of control and data,
annotated with information on the flow of the program and ac-
tions to be performed; we then generate a new program with the
same behavior of the initial one, modified to reduce the mem-
ory required to store the code. This is achieved by partitioning
the input representation of the program into a set of segments
in such a way that the code generated from those segment is
maximally shared. Our procedure is intended as a technology
independent step, and standard compilation techniques can be
used afterwards to apply architecture dependent optimizations.

We mostly target reactive real-time embedded systems: soft-
ware in this domain is often partitioned into a set of concurrent
modules which communicate through primary inputs and pri-
mary outputs; a common characteristic is that modules wait for
a set of external events, perform some computation producing
some outputs, and then go to sleep waiting for a new event to
come. Usually they monitor several different inputs, and react
to their occurrence according to the application goals. For each
primary input, our technique generate a task, which is invoked
whenever an event occurs at that input. To do this, we assume
that a special annotation is available in the initial graph repre-
sentation of the program, that clearly identifies where that input
is waited for and read.

The paper is organized as follows: Section 2 formally de-
scribes our starting point and the problem that we want to solve.
Section 3 describes in details the algorithm that we have imple-
mented. Section 4 shows some preliminary example to show
the effectiveness of our technique. Section 5 finally concludes
the paper.

2 Problem definition and previous work

The input instance of our procedure is a Schedule Graph. It
is a finite directed graph, where each node has a unique name
and each arc corresponds to an action. In the following we
may refer to a Schedule Graph also by calling it a schedule.
A Schedule Graph has a distinguished node, called the initial
node. Some of the nodes may be tagged as await nodes, which
are nodes where the system stops, waiting for a primary in-
put event; there should be at least one await node in the graph.
Await nodes are used to model reactive behavior of a system.

1

Each outgoing arc of an await node corresponds to a primary
input. Each action has a name and an associated code; there
may exist multiple arcs with the same action. Without loss of
generality, actions with the same associated code should always
have the same name. Each node also has an associated label,
called Enabled Actions (EA), which lists the names of all ac-
tions associated with its outgoing arcs. Two nodes are said to
be equivalent if they have the same Enabled Actions. A node
having more than one outgoing arc is a choice; at this time,
only data dependent choices are supported, where values of the
data available at the run-time will uniquely determine an arc
to be taken for the succeeding action1. A choice node has an
associated condition to be evaluated to resolve the choice.

A Schedule Graph models the behavior of a sequential pro-
gram where the execution starts with the initial node and tra-
verses the graph to execute actions associated with visited arcs.
The execution proceeds to one direction at a choice, based on
values of data, and stops at an await node until an event is pro-
vided at a primary input. The execution then resumes by taking
the action of the outgoing arc of the await node corresponding
to the input.

An example of a Schedule Graph is a Control Flow Graph
(CFG) of a program. Branches such as an if-then-else
construct constitute a choice (node with more than one outgo-
ing arcs), and loops correspond to a cycle in the graph repre-
senting the schedule. The entry point of the program is the
initial node, which is also the only await node in the graph,
i.e. the arrival of an input event causes the execution of the
program. More complicated examples arise from a specifica-
tion using multiple modules, whose concurrency is resolved by
means of scheduling techniques. E.g., a Schedule Graph can be
constructed as a path in the Reachability Tree of a Petri Net, or
from a Finite State Machine, where states have no associated
actions [8, 3].

An example of a Schedule Graph is shown in Figure 1. A
node has a name, followed in parenthesis by the Enabled Ac-
tions. Arcs are labeled with the names of the actions. The initial
node is , which is also tagged as an await node. This means
that the computation begins when an event is received at the in-
put. Node is also an await node: if computation ever reaches
this node, then the execution is suspended until another event is
received at the input. Nodes and are choices: at run-time,
a condition specified for these nodes is evaluated to determine
which branch to take. Actions should have an associated code,
which is executed whenever a transition from one node to the
next occurs.

Our goal is to process a Schedule Graph, generating code
for each primary input while minimizing its size. The code is
called a task for the input. This is achieved by sharing code for
the same action occurring in different arcs of the graph. This
technique is technology independent, as it does not assume any
particular underline architecture; a compiler shall be used to
perform technology dependent optimizations after applying our
procedure.

Our problem is a generalized version of a well-known step of

1As opposed to choice depending on the availability of inputs to multiply
enabled awaits.

b

a

d

d

c

a

cb

e

r(a)

v1(bc)

v3(a)

v5(bc)

v6(d) v7(e)

v2(d)

Figure 1. Example of a Schedule Graph

compiler optimization: common subexpression extraction [1],
generalized in order to expand the class of code sequences that
can be handled (arbitrary sub-trees of a control flow graph),
and simplified in that only maximal common sub-graphs are
considered, rather than those leading to maximum sharing.

Code minimization has been addressed a number of times
in embedded software compilation. Bhattacharyya et al. in [2]
give two heuristic algorithms that are specialized for Schedule
Graphs composed of multiple nested loops, and that also guar-
antee non-duplication of code segments (loop bodies). The au-
thors of [6, 7], on the other hand, work at the binary code level,
and look for common code sequences to be inserted in a “dic-
tionary” of lightweight subroutines to be called.

Our approach deals with more general Schedule Graphs,
including data-dependent branching, and works at the source
level on non-linear tree-structured fragments. It is a simpli-
fied version of general graph matching, limited to trees to keep
complexity low.

3 Code Generation

A very simple way of generating a program starting from a
Schedule Graph is to traverse it, and stitch together code for
each action, providing if-then-else constructs to reflect
the flow of control when a run-time data dependent choice is
encountered. This solution requires code for some actions to be
duplicated, due to the serial-parallel form of structured code. In
our approach, we try to preserve performance as much as pos-
sible, and we minimize the memory required for the program.

For sake of simplicity in the description of the algorithm,
we assume that the module has only one primary input. This
means that an await node corresponds to waiting for an event
on that particular input. Since we want to generate one task for
each input, this condition means that we will always generate
one single task. The algorithm can be easily extended to handle
multiple inputs, generating one task for each one of them.

3.1 Initialization: cutting loops

The code generation procedure that we have implemented
assumes that the graph it operates on is acyclic. Since this is
not in general the case for a given Schedule Graph, a first ini-
tialization step is needed to analyze the schedule and cut the

2

loops. This is used to provide a simple termination criterion
for successive transformations. The analysis is performed us-
ing a depth first traversal of the schedule from the initial node ,
and cutting loops when already visited nodes are encountered;
a new leaf node is then created, with a different name but the
same EA label of the destination node of the loop. The result-
ing graph is still a Schedule Graph, with the property of being
acyclic.

Cutting of loops preserves the property that if a node is
reachable from the initial node in the Schedule Graph, then it
is also reachable in the new acyclic graph. Since we add a
node for each loop that is cut, different cuts may yield a graph
of different size: while this does not change the results of our
algorithm, it may slightly change its running time.

3.2 Algorithm for schedule traversal

The next step traverses the newly generated acyclic graph to
extract sequences of actions that are candidates to be shared in
the generated code. In particular, the graph is divided into a set
of code segments:

Code Segment A code segment is a directed rooted tree that
associates an action with each edge, and a state to each
node. A code segment is a Schedule Graph, in which await
nodes can only be at the root, or at the leaves. It is not nec-
essary for a code segment to have an await node. During
code generation, code segments isomorphic to subtrees of
the schedule are created.

As we shall see later, code segments represent uninterrupt-
able sequences of actions. Since await nodes require the execu-
tion to be suspended, they are forbidden within a code segment.
The goal of code generation is to find the minimum set of dis-
junct code segments such that:

1. an action in the Schedule Graph belongs to one and only
one code segment,

2. each code segment is isomorphic to a set of subtrees of
the Schedule Graph, such that each arc of each subtree has
the same action with that of the corresponding arc of the
segment,

3. the set covers the entire Schedule Graph, i.e. each node of
the Schedule Graph is in a subtree, for which an isomor-
phic code segment exists.

The state of a node of a code segment lists a set of pairs of
the name and EA of a node in the Schedule Graph to which
the node of the code segment is isomorphic to. This is needed
because a single code segment may be used to execute different
paths in the Schedule Graph, and the state is used to keep track
of the flow of control. A piece of code is generated for each
code segment following the algorithm outlined at the beginning
of Section 32.

2Now applied to each segment only, rather than to the whole Schedule
Graph, that would be very inefficient.

function traverse(s)
nodelist = Create(); codelist = Create();
appendElem(nodelist, root(s));
while (!empty(nodelist))

node sch = getRemoveFirstElem(nodelist);
newcodeseg = FALSE;
if (!(node code = findCodeSeg(node sch, codelist)))

newcodeseg = TRUE;
node code = initCodeSeg(node sch, codelist);

compare(node sch, node code, newcodeseg);
return;

Figure 2. Pseudo-code for function traverse

The first property above guarantees that we minimize the
memory requirements, since code is maximally shared. The
second property tells us that within a code segment there can
only be local jumps (such as if-then-else), while global
jumps from one code segment to another occur only at the
leaves. This means that once the execution of a segment starts,
it continues until a leaf is reached. Moreover, looking at the
minimum set of code segments means that they are maximal,
since if a segment is not maximal, then it can be made isomor-
phic to a larger subtree of the Schedule Graph, by merging it
with another code segment that corresponds to the newly cov-
ered subgraph, without violating the above properties. There-
fore, we minimize the performance loss due to jumping from
one code segment to another. The third property guarantees
that the entire behavior can be represented in terms of code
segments.

The traversal uses two main functions, traverse and
compare. The first one prepares the data structure and starts
the traversal, by calling compare, from the root node of the
schedule. The second one recursively compares the schedule
to existing code segments, or creates a new code segment if
needed.

The pseudo-code for function traverse is shown in Fig-
ure 2. The argument to the function is the acyclic schedule to
be processed. Two lists are used in this function:

nodelist : a set of nodes of the schedule to be used as the
starting point of a recursive comparison.

codelist : a list of the already generated code segments.

At the beginning the codelist is obviously empty and it
should be filled by the traversal. The nodelist initially
contains only the initial node of the schedule, which will be
used as the first starting point; the function compare will
then add new nodes to nodelist during its operation, as
explained later. traverse gets and removes the first ele-
ment of nodelist and checks if it is equivalent to the root
of any already existing code segment: if it is not, a new entry in
codelist is created with a root node equivalent to the node
from the schedule, and a flag (newcodeseg) is set. The func-
tion compare is then called, either to fill the newly created
code segment, or to compare an existing one to a subtree of the
schedule rooted at the considered node.

3

function compare(node sch, node code, newcodeseg)
if (newcodeseg)

createKids(node code, Kids(node sch));
ForeachKid(node sch, &kid)

if (nKids(kid) != 0)
if (isAwait(kid) findCodeSeg(kid, codelist))

appendElem(nodelist, kid);
else if (oldnode code = isInCodeSeg(codelist))

Detach(Kids(oldnode code));
appendElem(nodelist, kid);

else compare(kid, Kid(node code), newcodeseg);
else /* (nKids(kid) == 0) */

if (oldnode code = isInCodeSeg(codelist))
Detach(Kids(oldnode code));

else /* NOT newcodeseg */
associate with node code;
if (all the associated ECS’s coincide for node code)

if (nKids(node code) == 0 && nKids(node sch) != 0)
appendElem(nodelist, node sch);

else
ForeachKid(node sch, &kid)

compare(kid, Kid(node code), newcodeseg);
else /* NOT ECSequal */

if (nKids(node code) != 0) Detach(Kids(node code));
appendElem(nodelist, node sch);

return;

Figure 3. Pseudo-code for function compare

Figure 3 is the pseudo-code for the function compare. Its
goal is to compare a subtree of the schedule to existing code
segments and create new segments if needed. The comparison
ends when await nodes are encountered, and the await nodes
are put in nodelist so that new invocations of the function
can proceed with the traversal of the entire schedule. In some
cases, however, the function returns before reaching an await
node, if certain conditions occur, as detailed next.

This function works by calling itself recursively, and im-
plements a depth first search of the subtree in the schedule
graph. The argument node sch is a node in the schedule, and
node code is the node in a code segment to be compared.
Note that even if a code segment is new, at least one node al-
ways exists because it is created by the traverse function
before calling compare.

If the code segment that has been identified is new (the flag
newcodeseg is set), then new children are created in the code
segment by copying the children from the node of the schedule
and properly setting their state. This can be done because it is
guaranteed that the two parent nodes in the code segment and
in the schedule are equivalent and therefore have the same EA.
Then, for each child in the schedule, termination conditions for
the traversal are checked: it will stop if the child itself has no
children (it means we have reached a loop in the schedule, that
was cut in the initialization step), or if it has children but it is
either an await node or a code segment already exists whose
root has the same EA. In the last two cases, the child is also
added to nodelist for further traversal. Sometimes, a node
with an EA which is already associated with a node of a code
segment is found, while the node in the code segment is not at
the root. Then a new code segment is created, by cutting the
existing one at that node, and making it the new root (function

u0(r,a)

u1(v1,bc)

u2(v2,d) u3(v3,a)

u4(r,a)

cs1
a

cb

d

u0(r,a)(v3,a)

u1(r,bc)(v5,bc)

a

cs1

b

u2(v2,d)(v6,d)
d

u4(r,a)(v3,a)

u3(v3,a)(v7,e)

c

u0(r,a)(v3,a)

u1’(v1,bc)(v5,bc)

a

cs1 u7(v7,e)

u9(v1,bc)

e

cs2 u1(v1,bc)(v5,bc)
b

u2(v2,d)(v6,d)
d

u4(r,a)(v3,a)

u3(v3,a)(v7,e)

c

cs3

(a) (b)

(c)

Figure 4. Example of schedule traversal

Detach); moreover, if the considered node had children, it is
also added to nodelist. If none of the previous conditions
occur, the traversal will continue recursively.

If the code segment is not new, i.e. newcodeseg is False,
then the state and the EA of its node are updated by adding
those of the node in the schedule to the state set. If the EA
is identical to all the previous ones, it means that the node in
the subtree and that in the code segment are equivalent, and
therefore the comparison can continue. However, it should be
stopped if the node in the code segment does not have chil-
dren and the one in the schedule does, as we should select an-
other code segment for comparison. On the contrary, if the EA
is different from the previous ones stored in the node in the
code segment, a leaf has been identified; if there are children
in the code segment, then they should be detached to create a
new code segment, and the node in the schedule is added to
nodelist.

An example of traversal of the Schedule Graph presented
in Figure 1 is presented in Figure 4 (the acyclic schedule ob-
tained after cutting the loops is not shown). Three consecutive
calls of the function compare are necessary to entirely tra-
verse the graph, and the intermediate results that they produce
are shown in (a), (b) and (c) respectively. The first call of func-
tion compare will generate code segment cs ; the second call
will compare a subtree starting at node with the already gen-
erated code segment, adding state and EA information. The
third and last step creates a new code segment cs , and splits
the first one into two different code segments, due to the back
edge to node .

3.3 Code synthesis

The goal of synthesis is to take the output of the traversal and
generate code in a target language from it. Since the association
between actions and code is already known, a structure should
be added to reflect the schedule, and variables should be used
to keep track of the state. The syntax of both the structure and
the variables is language dependent, and we have chosen the
C language to implement them (other languages can be added
with little effort).

The generated code is divided into three main parts: decla-

4

rations, initialization and run.

Declarations This part includes several declarations need-
ed in the C language, such as new data types, prototypes and
global variables. These include declarations from the original
specification, as well as declarations needed for the schedule
structure, such as state variables.

Initializations State variables need to be properly initialized
so that the first reaction is correct. The value is derived from
the schedule. Being global variables, the value will not be lost
between two successive executions, so it just need to be updated
correctly by the task.

Run This part generates the code to be used to implement
a task. It does so by generating code for each code segment,
adding a structure to jump from one code segment to another to
reflect the original schedule, based on the state information.

The structure of a code segment is always the same and can
be separated into three sections: execution, update and jump.
They will be described in details in the following:

execution It contains the real code for actions and data depen-
dent choices, taken from the original specification. It al-
ways starts with a label, which is the concatenation of the
name of the actions that form the EA of the first node of
the code segment. The label is used to jump to the code
segment.

Then the graph for the code segment is traversed in a
depth-first search manner. For each node whose EA is
a single action, the code for that action is copied into the
output file. If the node is a choice, then an if-then-
else construct is generated using the condition specified
in the node.

When a leaf is reached, the update and jump sections
are generated before going back in the traversal, so that
if there are choices in the code segment, more than one
goto appears in the implementation.

update At each leaf of a code segment the state must be prop-
erly updated so that:

1. the next code segment to call to complete the com-
putation can be correctly selected,

2. the state at the end of a sequence of code segments
corresponds to the node in the schedule reached by
the execution.

If multiple code segments are traversed during a single re-
action, each one of them is responsible to update the state
variable to reflect the change between the root node of the
code segment, and the leaf that is reached. The sequence
of these updates constitutes the global state change for that
particular reaction.

jump This section must find which code segment to call next,
or should return if the reaction is finished. With the excep-
tion of leaves, for all the nodes in a code segment the EA

1 static int sv;
2 sv = 0;
3 void ISR a(void)
4 a: a(); goto bc;
5 e: e(); sv = sv - 2; goto bc;
6 bc: if (condition(v1) == TRUE)
7 b(); d(); return;
8 else if (condition(v1) == FALSE)
9 c(); sv = sv + 1;

10 if (sv == 1) return;
11 else if (sv == 2) goto e;
12
13

Figure 5. The final code generated from the code
segments shown in Figure 4-(c).

associated with a set of states is always the same. For a
leaf, this property is not true, and the EA represents what
to do next. Therefore, a switch construct on the state is
used to select a goto statement, which will cause the ex-
ecution to jump to the label named after the destination
EA. If the destination is an await node, then a return is
generated instead of a goto.

Synthesis will therefore generate a function which has no
local variables and starts with the first code segment (whose
root is always the initial node of the schedule, by construction),
followed by all the others in the order in which they were found
during traversal. When the last code segment is generated, the
function is closed. This function has just one entry point, but
may have several exit points corresponding to all the leaves that
perform a return.

Figure 5 shows the generated code for the example described
in Figure 4. The declaration and initialization parts correspond
to lines 1–2; the run function, called ISR a(), starts at line 3.
A variable sv is used to keep track of the state, and denotes
the code associated with the action . Code segments start with
a label, equal to the EA of their root node.

3.4 Properties and Analysis

We show that our algorithm generates a set of code segments
that satisfy the properties in Section 3.2. The first thing to no-
tice is that code segments are indeed isomorphic to subtrees
of the Schedule Graph, as they are obtained by a depth-first
traversal implemented in the function compare; in fact, they
are spanning trees of subgraphs of the Schedule Graph, rooted
at the node from which function compare is initially called.
Actions appear only once in the set of code segments, because
when creating a new code segment we first check if there is
a node equivalent to the node being processed in either exist-
ing code segments or in the one currently being created, and
the creation stops whenever this is the case. Further, since we
traverse the full Schedule Graph and create code segments as
needed, we guarantee to cover it completely. The set is dis-
junct, because as soon as we reach a node which is equivalent
to one already present in another code segment, we stop build-

5

ing the new one, cutting it at the last reached node, and start
a comparison with the old one. Finally, the set is minimal be-
cause we build the largest possible segments, as we never stop
adding new nodes unless they are already present.

The algorithm for the traversal is polynomial with respect
to the size of the input acyclic graph, which in turn is linear
in the size of the original Schedule Graph. The traversal it-
self, being depth-first, is linear, but to guarantee properties we
need to search already created code segments at most once for
each node of the graph. As the total size of the code segments
is never greater than that of the initial graph, even a simple
linear searching technique would make the overall algorithm
quadratic in the size of the Schedule Graph. Using a little more
sophisticated search, the algorithm can be made ,
where is the number of nodes of the graph.

Our procedure is similar to other algorithms that operate on
graphs, namely partitioning and matching; however, it differs in
some details that make the computation easier. Partitioning is
the problem of dividing a graph into subgraphs of certain prop-
erties, where it is known to be NP-complete for many proper-
ties, such as isomorphism ([4]). Our problem also requires to
divide the graph, but each of the resulting graphs (segments)
may be isomorphic to several subgraphs of the original one;
further, each code segment can be incrementally created start-
ing from a root node until some condition is violated, which
can be checked locally. Matching assumes that a set of graphs
is given, and the problem is to find the best covering of another
graph by the set; this is also NP-hard. The difference in our
case is that the subgraphs are not given, but can be created in
such a way that the covering is minimal with respect to our cost
function. Moreover, we consider only trees as both subject and
candidate graphs, in order to keep a polynomial complexity.

4 Example

We have implemented the proposed algorithm within a
framework for the design of embedded systems, described
in [3]. It uses Petri Nets as the underlying model of compu-
tation and outputs a Schedule Graph, which can then be used
to generate code. The input specification is based on C, so also
the output code uses the same language.

We applied the methodology to an example coming from a
multi-media application, showing the effectiveness of our tech-
nique. The generated code is extremely small in size, compared
to the one obtained by directly translating the Schedule Graph
into code. Table 1 shows the number of lines of C code for
both the unprocessed and processed program, and the number
of bytes required to implement them with different kind of com-
piler optimizations. Direct shows the case of direct translation
of the Schedule Graph, while Processed is the result obtained
by applying the proposed procedure. We used a Sun Ultra-1
running Solaris 2.5.1 and gcc 2.7.2.2. While the number of
lines is reduced by almost a factor of four, the actual improve-
ment in the memory size is consistently better. When the high-
est optimizations available in gcc are used, the code size for
the direct translated program increases a lot with respect to the
other experiments; however, the impact on the processed pro-

Direct Processed Ratio

lines 1237 322 3.8
gcc-O0 34624 4844 7.1
gcc-O1 22540 3252 6.9
gcc-O2 22524 3212 7.0
gcc-O3 52288 4032 12.9

Table 1. Experimental results

gram is not as strong, so we achieve a higher ratio. The reason
for this behavior is that inlining is introduced at this optmiza-
tion step in the compiler, but the number of function calls where
this can occur is reduced in the processed program, since they
are shared.

5 Conclusions

We proposed a technique to synthesize efficient code from
a schedule to be run on a single processor. The technique pro-
duces a minimal number of large code segments, so that an
optimizing compiler can perform a good job. We presented an
application of the methodology on an example from a multi-
media application.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques and Tools. Addison-Wesley, 1988.

[2] S. Bhattacharyya, J. Buck, S. Ha, and E. A. Lee. Gener-
ating compact code from dataflow specifications of multi-
rate signal processing algorithms. IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applica-
tions, March 1995.

[3] J. Cortadella, A. Kondratyev, L. Lavagno, M. Massot,
S. Moral, C. Passerone, Y. Watanabe, and A. Sangiovanni-
Vin centel li. Task Generation and Compile-Time Schedul-
ing for Mixed Data-Control Embedded Software. In 37th
ACM/IEEE Design Automation Conference, June 2000.

[4] M. R. Garey, , and D. S. Johnson. Computers and In-
tractability. W.H. Freeman, 1979.

[5] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow graphs for digital signal processing.
IEEE Transactions on Computers, January 1987.

[6] H. Lekatsas and W. Wolf. SAMC: a code compression al-
gorithm for embedded processors. IEEE Transactions on
CAD, December 1999.

[7] S. Liao, S. Devadas, and K. Keutzer. Code density opti-
mization for embedded dsp processors using data compres-
sion techniques. IEEE Transactions on CAD, July 1998.

[8] B. Lin. Software synthesis of process-based concurrent
programs. In 35th ACM/IEEE Design Automation Confer-
ence, June 1998.

6

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

